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Abstract
The recent surge of interests in cognitive assessment has led to developments of novel statistical
models for diagnostic classification. Central to many such models is the well-known Q-matrix,
which specifies the item–attribute relationships. This article proposes a data-driven approach to
identification of the Q-matrix and estimation of related model parameters. A key ingredient is a
flexible T-matrix that relates the Q-matrix to response patterns. The flexibility of the T-matrix
allows the construction of a natural criterion function as well as a computationally amenable
algorithm. Simulations results are presented to demonstrate usefulness and applicability of the
proposed method. Extension to handling of the Q-matrix with partial information is presented. The
proposed method also provides a platform on which important statistical issues, such as hypothesis
testing and model selection, may be formally addressed.
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Diagnostic classification models (DCMs) are an important statistical tool in cognitive
diagnosis and can be employed in a number of disciplines, including educational assessment
and clinical psychology (Rupp & Templin, 2008b; Rupp, Templin, & Henson, 2010). A key
component in many such models is the so-called Q-matrix, which specifies item–attribute
relationships, so that responses to items can reveal the attribute configurations of the
respondents. K. Tatsuoka (1983, 2009) proposed the simple and easy-to-use rule space
method for Q-matrix-based classifications.

Different DCMs can be built around the Q-matrix. One simple and widely studied model
among them is the DINA model (Deterministic Input, Noisy output “AND” gate; see Junker
& Sijtsma, 2001). Other important developments can be found in K. Tatsuoka (1985);
DiBello, Stout, and Roussos (1995); Junker and Sijtsma (2001); Hartz (2002); C. Tatsuoka
(2002); Leighton, Gierl, and Hunka (2004); von Davier (2005); Templin (2006); Templin
and Henson (2006); and Chiu, Douglas, and Li (2009). Rupp et al. (2010) contains a
comprehensive summary of many classical and recent developments.

There is a growing literature on the statistical inference of Q-matrix-based DCMs that
addresses the issues of item parameters estimation when the Q-matrix is prespecified
(Henson & Templin, 2005; Roussos, Templin, & Henson, 2007; Rupp, 2002; Stout, 2007).
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Having a correctly specified Q-matrix is crucial for parameter estimation (such as the
slipping, guessing probability, and the attribute distribution) and for the identification of
participants’ underlying attributes. As a result, these approaches are sensitive to the choice
of the Q-matrix (de la Torre, 2008; de la Torre & Douglas, 2004; Rupp & Templin, 2008a).
For instance, a misspecified Q-matrix may lead to substantial lack of fit and, consequently,
erroneous attribute identification. Thus, it is desirable to be able to detect misspecification
and to obtain a data-driven Q-matrix.

In this article, the authors consider the estimation problem of the Q-matrix. In particular,
they introduce an estimator of the Q-matrix under the setting of the DINA model. The
proposed estimator only uses the information of dependence structure of the responses (to
items) and does not rely on information about the attribute distribution, or the slipping, or
guessing parameters. The definition of these concepts will be provided in the text
momentarily. Nonetheless, if additional information is available such as a parametric form
of the attribute distribution or partial information about the Q-matrix, the estimation
procedure is flexible enough to incorporate those structures. Such information, if correct,
can substantially improve the efficiency of the estimator, enhance the identifiability of the
Q-matrix, and reduce the computational complexity. In addition to the construction of the
estimator, computational algorithms and simulation studies are also provided to assess the
performance of the proposed procedure.

It is worth pointing out that this method is in fact generic in the sense that it can be adapted
to cover a large class of DCMs besides the DINA model. In particular, the procedure is
implementable to the DINO (Deterministic Input, Noisy output “OR” gate) model, the
NIDA (Noisy Inputs, Deterministic “AND” Gate) model, and the NIDO (Noisy Inputs,
Deterministic “OR” Gate), model among others. In addition to the estimation of the Q-
matrix, the authors emphasize that the main idea behind the derivations forms a principled
inference framework. For instance, during the course of the description of the estimation
procedure, necessary conditions for a correctly specified Q-matrix are naturally derived.
Such conditions can be used to form appropriate statistics for hypothesis testing and model
diagnosis. In connection to that, additional developments (e.g., the asymptotic distributions
of the corresponding statistics) are needed, but they are not the focus of the current study.
Therefore, the proposed framework can potentially serve as a principled inference tool for
the Q-matrix in DCMs.

This article is organized as follows: the section Estimation of the Q-Matrix is a presentation
of the estimation procedures and the corresponding algorithms. Section on Simulation
includes simulation studies to assess the performance of the proposed estimation methods.
Some discussions are given in the last section.

Estimation of the Q-Matrix
The situation that N participants taking a test consisting of J items would be considered. The
responses are binary, so that the data will be an N × J matrix with entries being 0 or 1. The
DCM to be considered for such data envisions K attributes that are related to both the
participants and the items.

Model Setup and Notations
The following notation and specifications are needed to describe the DCMs.

Responses to items—There are J items and R = (R1, …, RJ)T is used to denote the
vector of responses to them, where, for each j, Rj is a binary variable taking 0 or 1 and
superscript T denotes transpose.
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Attribute profile—There are K attributes and α = (α1, …, αK)T is used to denote the
vector of attributes, where αk = 1 or 0, indicating the presence or absence of the k th
attribute, k = 1, …, K.

Note that both α and R are participant-specific. Throughout this article, it is assumed that
the number of attributes K is known and that the number of items J is observed.

Q-matrix—This describes the link between the items and the attributes. In particular, Q =
(Qjk)J × K is an J × K matrix with binary entries. For each j and k, Qjk = 1 indicates that item
j requires attribute k and Qjk = 0 otherwise.

Let ξj(α, Q) denote the ideal response, which indicates whether a participant possessing
attribute profile α is capable of providing a positive response to item j if the item–attribute
relationship is specified by matrix Q. Different ideal response structures give rise to
different DCMs. For instance,

(1)

is associated with the DINA model, where 1 is the usual indicator function. The DINA
model assumes conjunctive relationship among attributes; that is, it is necessary to possess
all the attributes indicated by the Q-matrix to be capable of providing a positive response to
an item. In addition, having additional unnecessary attributes does not compensate for a lack

of the necessary attributes. To simplify the notation, .

The last ingredient of the model specification is related to the so-called slipping and
guessing parameters (Junker & Sijtsma, 2001). The concept is due to Macready and Dayton
(1977) for mastery testing; see also van der Linden (1978). The slipping parameter is the
probability that a participant (with attribute profile α) responds negatively to an item if the
ideal response to that item ξ(α, Q) = 1; similarly, the guessing parameter refers to the
probability that a participant responds positively if his or her ideal response ξ(α, Q) = 0. s is
used to denote the slipping probability and g to denote the guessing probability (with
corresponding subscript indicating different items). In the discussion, it is more convenient
to work with the complement of the slipping parameter. Therefore, c = 1 − s is defined to be
the probability of answering correctly, with sj, gj, and cj being the corresponding item-
specific notation. Given a specific participant’s profile α, the response to item j under the
DINA model follows a Bernoulli distribution:

(2)

In addition, conditional on α, (R1, …, RJ) are jointly independent.

Last, subscripts are used to indicate different participants. For instance,  is
the response vector of participant r. Similarly, αr is the attribute vector of participant r. With
N participants, R1, …, RN is observed but not α1, …, αN. It is further assumed that the
attribute profiles are independent and identically distributed (i.i.d.) such that

and let p = (pα : α ∈ {0, 1}K), c = (c1, …, cJ), and g = (g1, …, gJ). Thus, the model
specification is finished.
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Estimation of the Q-Matrix
Intuition—The participants’ attribute profiles are not directly observed. Thus, the estimator
of the Q-matrix is built only on the information contained in the response vectors, R1, …,
RN. The estimation of the Q-matrix is based on an assessment of how well a given matrix Q
fits the data. Throughout the discussion, Q is used to denote the true matrix that generates
the data and Q′ to denote a generic J by K matrix with binary entries. In particular, each Q-
matrix along with the corresponding parameters (Q′, p, c, g) determines the distribution of
the response vector R given by

(3)

Consider the (observed) empirical distribution

(4)

If the Q-matrix and the other parameters, (Q′, p, c, g), are correctly specified, the empirical
distribution in (4) eventually converges to (3) as the sample size (the number of participants)
becomes large. The estimator is then constructed based on this observation.

The T-matrix—The T-matrix is central to the construction of the estimator. It is another
representation of the Q-matrix and serves as a connection between the observed response
distribution and the model structure. In particular, it sets up a linear dependence between the
attribute distribution and the response distribution. It is a tool that allows the expression of
the probabilities in (3) in terms of matrix products. Each row vector of the T-matrix is
specified first. For each item j, recall that

(5)

where P(Rj = 1|Q′, α, c, g) = (cj − gj)ξj(α, Q′) + gj. If a row vector BQ′, c, g(j) of length 2K

containing the probabilities P(Rj = 1|Q′, α, c, g) for all αs is created and those elements are
arranged in an appropriate order, then for all j, Equation 5 can be written in the form of a
matrix product

where p is the column vector containing the probabilities pα. Similarly, for each pair of
items, it may established that the probability of responding positively to both items j1 and j2
is

where BQ′, c, g (j1, j2) is a row vector containing the probabilities P(Rj1 = 1|Q′, α, c, g) P(Rj2

= 1|Q′, α, c, g) for each α. Note that each element of BQ′, c, g(j1, j2) is the product of the
corresponding elements of BQ′, c, g(j1) and BQ′, c, g(j2). With a completely analogous
construction,
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for each combination of distinct (j1, …, jl). Similarly, BQ′, c, g(j1, …, jl) is the element-by-
element product of BQ′, c, g(j1), …, BQ′, c, g(jl). From a computational point of view, one
only needs to construct the BQ′, c, g(j)’s for each individual item j and then take products to
obtain the corresponding combinations.

The T-matrix has 2K columns. Each row vector of the T-matrix is one of the vectors
BQ′, c, g(j1, …, jl), that is, the T-matrix is a stack of B-vectors

By the definition of the B-vectors,

(6)

is a vector containing the corresponding probabilities associated with a particular set of
parameters (Q′, c, g , p). β is the vector containing the probabilities (corresponding to those
in Equation 6) of the empirical distribution, for example, the first element of β is

 and the (J + 1)th element is . With a large sample and
a set of correctly specified parameters (Q, c, g , p),

(7)

almost surely as N → ∞.

An illustrative example—To aid the understanding of the T-matrix, one simple example
is provided. Suppose that two attributes have to be tested. The population is naturally
divided into four strata. The corresponding contingency table of attributes is

Attribute 2

Attribute 1 p00 p01

p10 p11

Let vector p = (p00, p10, p01, p11)T contain all the corresponding probabilities in this
particular order. Consider an exam containing three problems and admitting the following
Q-matrix,
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(8)

To simplify the discussion, the case that ci = 1 and gi = 0 is considered; that is, there is no
chance of slipping or guessing. Thus, the response R is completely determined by the
attribute profile α. Under this simplified situation, if the Q-matrix is correctly specified, the
following identities are obtained:

where  is the total number-correct responses to item j. The corresponding
T-matrix and β-vector are created as follows:

(9)

The first column of Tc, g(Q) corresponds to the zero attribute profile, the second corresponds
to α = (1, 0), the third corresponds to α = (0, 1), and the last corresponds to α = (0, 1). The
first row of T(Q) corresponds to item one, the second to two, and the third to three. Note that
the T-matrix changes as the Q-matrix changes. For instance, for an alternative matrix

the corresponding T-matrix would be

(10)

while the β-vector remains.

To illustrate this idea, consider the matrix in Equation 8. With a correctly specified Q-
matrix, it can be established that

(11)

Note that the β-vector is directly observed and the attribute distribution p is not. Thus, the
preceding display suggests that a necessary condition for a correctly specified Q-matrix is
that the preceding linear equations (with p being the variable) has a solution subject to the
natural condition that Σαpα = 1.

If for any misspecified Q-matrix, Equation 11 does not have any solution, then the Q-matrix
is identifiable. Otherwise, more constraints may be included in the T-matrix to enhance the
identifiability. For instance, the combination of items one and two may be considered; that
is,
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(12)

where . The preceding identity also suggests that people who are
able to solve Problem 3 must have both attributes and therefore are able to solve both
Problems 1 and 2; that is, N3 = N1∧2. Certainly, this is not necessarily respected in the real
data, though it is a logical conclusion. The slipping and guessing parameters are introduced
to account for such disparities. With the additional constraint in (12) included, the
corresponding T-matrix and β-vector should be

(13)

Similarly, one may include other (linear) constraints in the T-matrix that correspond to
combinations of distinct items.

Objective function and estimation of the Q-matrix—Based on the preceding
construction and the discussions, an objective function is introduced,

(14)

where | · | is the Euclidean distance. If all the parameters are correctly specified, it is
expected that Sc , g , p(Q) → 0 as N → ∞. A natural estimator of the Q-matrix would be

Dealing with the unknown parameters—Most of the time, the parameters (c, g , p) are
unknown. Under these situations, the profiled objective functions are considered:

(15)

where the minimization is subject to the natural constraints that ci, gi, pα ∈ [0, 1] and Σαpα
= 1. Then, the corresponding estimator is

(16)

The minimization of p in Equation 15 consists of a quadratic optimization with linear
constraints, and therefore can be done efficiently. The minimization with respect to c and g
is usually not straightforward. One may alternatively replace the minimization by other
estimators (such as the maximum likelihood estimator [MLE]) (ĉ(Q′), ĝ(Q′), p̂(Q′)). Thus,
the objective function becomes

(17)

The corresponding estimator is
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(18)

This alternative allows certain flexibility in the estimation procedure. The S-function in
Equation 17 is usually easier to compute. Therefore, the estimator (Equation 18) is often
used and a hill-climbing algorithm to compute Q ̃ is given in the next subsection.

Remark 1: Conceptually, all the combinations (j1, …, jl) for l = 1, …, J may be included
in the T-matrix, which results in a T-matrix of 2J − 1 rows. Such a T-matrix is called
saturated. The corresponding vector β contains all the information of the observed
responses. However, from a practical point of view, to ensure a convergence of when
the T-matrix is saturated, it is necessary to have sample size N>>2J. That is, the sample
size needs to be sufficiently large so that the count in each cell of the J-way contingency
table is nonzero. Unfortunately, such a large sample is usually not achievable even for a
reasonable number of items, for example, J = 20. Furthermore, to construct a matrix of
2J row typically induces a substantial computational overhead.

With this concern, all combinations of items in the T-matrix are not typically included. A
practical suggestion is to include, in an ascending order, 1-way, 2-way combinations, and so
on, until the number of rows of the T-matrix reaches N/10. Generally speaking,
combinations of fewer items are included first, followed by those of more items. In the
simulation study presented later, a T-matrix including at least up to (K + 1)-way
combinations performs well empirically. For the corresponding theoretical analysis, see Liu,
Xu, and Ying (2011).

Computations
In this subsection, the computation of the estimator is considered. In particular, the estimator
in Equation 18 and the objective function (Equation 17) are considered. Let (ĉ, ĝ, p̂) be the
MLE. The computation of the MLEs can be done efficiently by the expectation–
maximization (EM) algorithm (de la Torre, 2009; Dempster, Laird, & Rubin, 1977).
Furthermore, the optimization of Equations 16 and 18 is considered.

The optimization of a general nonlinear discrete function is a very challenging problem. A
simple-minded search of the entire space consists of evaluating the function S up to 2J × K

times. In the current setting, an a priori Q-matrix, denoted by Q0, is usually available. It is
expected that Q0 is reasonably close to the true matrix Q.

For each Q′, let Uj(Q′) be the set of J × K matrices that are identical to Q′ except for the jth
row (item). Then the algorithm is described as follows:

Algorithm 1: Choose a starting point Q(0) = Q0. For each iteration m, given the matrix
from the previous iteration Q(m − 1), the following steps are performed:

1. Let

(19)

2. Let j* = arg infj S(Qj).

3. Let Q(m) =Qj*.

Repeat Steps 1 to 3 until Q(m) = Q(m − 1).
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At each step m, the algorithm considers updating one of the J items. In particular, if the jth
item is updated, the Q-matrix for the next iteration would be Qj. Then, Q(m) is set to be the
Qj* that admits the smallest objective function among all the Qjs. The optimization
(Equation 19) consists of evaluating the function S up to 2K times. Thus, the total
computation complexity of each iteration is J × 2K evaluations of S.

Remark 2: The simulation study in the next section shows that if Q0 is different from Q
by 3 items (out of 20 items) Algorithm 1 has a very high chance of recovering the true
matrix with reasonably large samples.

Simulation
In this section, simulation studies are conducted to illustrate the performance of the
proposed method. The data from the DINA model are generated under different settings and
the estimated Q-matrix and the true Q-matrix are compared.

Estimation of the Q-Matrix With No Special Structure
The simulation setting—To start with, a 20 × 3 Q-matrix (J = 20 items and K = 3
attributes) is considered, denoted by Q1, given by

(20)

The attributes are generated from a uniform distribution; that is,

The slipping parameters and the guessing parameters are set to be si = gi = 0.2 for all items.
In addition, for each sample size N = 500, 1,000, 2,000, and 4,000, 100 data sets were
generated under such a setting.

To reduce the computational complexity, the T-matrix contains combinations of up to 4
items. More generally, the simulation study shows that a T-matrix containing all the (K + 1)
(and lower) combinations delivers good estimates. Algorithm 1 is implemented with a
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starting Q-matrix Q0 specified as follows. The Q0 is constructed based on the true matrix Q
by misspecifying 3 items. In particular, 3 items out of the total 20 items are randomly
selected without replacement. For each of the selected items, the corresponding row of Q0 is
sampled uniformly from all the possible K dimensional binary vectors excluding the true
vector (of Q) and the zero vector. That is, each of these rows is a uniform sample of 2K − 2
vectors. Thus, it is guaranteed that Q0 does not have zero vectors and is different from Q by
precisely 3 items. The simulation results are given by the first row of Table 1. The columns
“Q̂ = Q” and “Q̂ ≠ Q” contains the frequencies of the events “Q̂ = Q” and “Q̂ ≠ Q,”
respectively. Based on 100 independent simulations, Q̂ recovers the true Q-matrix 98 times
when the sample size is 500. For larger samples, the estimate Q̂ never misses the true Q-
matrix.

The data from Q-matrices with four and five attributes are simulated:

(21)

With exactly the same settings, the results are given by the corresponding rows in the Table
1. The estimator performs well except for the cases where N = 500. This is mainly because
the sample size is small relative to the dimension K.

An improved estimation procedure for small samples—The data sets generated
according to Q2 and Q3 with N = 500 when the estimator Q̂ did not perform as well as other
situations are investigated. In particular, the cases when Q̂ ≠ Q are considered. It is observed
that Q-matrices with more misspecified entries do not necessarily admit larger S values. In
some cases, Q does not minimize the objective function S; nonetheless, S(Q) is not much
larger than the global minimum infQ′ S(Q′). Figures 1 and 2 show two typical cases. For
each of the two figures, two plots are provided. The x-axis shows the number of iterations of
the optimization algorithm. The y-axis of the left plot shows the number of misspecified
entries of Q(m) at iteration m; the plot on the right shows the objective function S(Q(m)).
For the case shown in Figure 1, the algorithm just misses the true Q-matrix by one entry; for
the case in Figure 2, the algorithm in fact passes the true Q-matrix and moves to another
one. Both cases show that the true Q-matrix does not minimize the objective function S. In
fact, the values of the S function have basically dropped to a very low level after three
iterations. The algorithm tends to correct one misspecified item at each of the first 2
iterations. After Iteration 3, the reduction of the S function is marginal, and there are several
Q-matrices that fits the data approximately equally well. For such situations where there are
several matrices whose S values are close to the global minimum, careful investigation of all
those matrices and selection of the most sensible one from a practical point of view are
recommended.

Liu et al. Page 10

Appl Psychol Meas. Author manuscript; available in PMC 2013 August 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Motivated by this, a modified algorithm with an early stopping rule is considered, that is, the
algorithm is stopped when the reduction of the S-function value is below some threshold. In
particular, a threshold value of 4:5% of S(Qm−1) at the m-th iteration is chosen. With this
early stopping rule, the estimator for Q2 and Q3 can be improved substantially. The results
based on the same samples as in Table 1 are shown in Table 2 which shows much high
frequency of recovering the true Q-matrix.

When attribute profile α follows a nonuniform distribution—The situation where
the attribute profile α follows a nonuniform distribution is considered. A similar setting as in
Chiu et al. (2009) is adopted, where attributes are correlated and unequal prevalence. A
multivariate probit model is assumed. In particular, for each participant, let θ = (θ1, …, θk)
be the underlying ability following a multivariate normal distribution MVN(0, Σ), where the
covariance matrix Σ has unit variance and common correlation ρ taking values of 0.05, 0.15,
and 0.25. Then the attribute profile α = (α1, …, αK) is determined by

The other settings are similar as the previous simulations. The true Q-matrix given as in
Equation 20 and K = 3 is considered. The slipping and guessing parameters are set to be 0:2.
In all, 100 independent data sets are generated. Table 3 shows the frequency of Q1 being
recovered by the estimator (after applying a similar early stopping method introduced in the
previous subsection). The more correlated the attributes are, the more difficult it is to
estimate a Q-matrix. This is mostly because the samples are unevenly distributed over the
2K possible attribute profiles, and thus, the “effective sample size” becomes smaller.

Estimation of the Q-Matrix With Partial Information
In this subsection, the situation where partial knowledge is available for the Q-matrix is
considered. Consider one of the situations discussed in the next section. Consider a J × K Q-
matrix where, among the total J items, the attribute requirements of J − 1 items are known.
Of interest is learning the Jth item. In this simulation, let J = 2K + 1. The first 2K rows of Q
are known to form two complete matrices; that is,

where IK is the identity matrix of dimension K and VJ is the row corresponding to the J-th
item to be learnt. The corresponding estimator becomes

where UJ(Q) is defined in the Computations section, as the set of Q-matrices identical to Q
for the first J − 1 rows.

With a similar setting to the previous simulations, the slipping and guessing parameters are
set to be 0.2 and the population is set to be uniform, that is, pα = 2−K. For each combination
of K = 3, 4, and 5, different VJ s are considered. A total of 100 independent data sets are
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generated. Table 4 shows the frequency of VJ being recovered by the estimator. One
empirical finding is that the more “1”s VJ contains, the more difficult it is to estimate VJ.

Discussions
Estimation of the Q-matrix for other DCMs

The differences among DCMs lie mostly in their ideal response structures and the
distribution of the response vectors implied by the Q-matrices. The distribution of response
vector R takes an additive form as in (3) if responses to different items are conditionally
independent given the attribute profile α. With such a structure, one can construct the
corresponding B-vectors that contain the corresponding conditional probabilities of the
response vectors given each attribute profile α. Furthermore, a T-matrix is constructed by
stacking all the B-vectors and an S-function is defined as the L2 distance between the
observed frequencies and those implied by the Q matrix. An estimator is then obtained by
minimizing the S-function. Thus, this estimation procedure can be applied to other DCMs.
For instance, one immediate extension of the current estimation procedure is to the DINO
model.

Incorporating available information in the estimation procedure
Sometimes partial information is available for the parameters (Q, c, g, p). For instance, it is
often reasonable to assume that some entries of the Q-matrix are known. Suppose the
attributes are separated into “hard” and “soft” ones. By “hard,” it means those that are
concrete and easily recognizable in a given problem, and by “soft,” it means those that are
subtle and not obvious. It is then assumed that entries in columns which correspond to
“hard” attributes are known. Alternatively, there may be a subset of items whose attribute
requirements are known, while the item–attribute relationships of all other items need to be
learnt, for example, when new items need to be calibrated according to the existing ones.
Furthermore, even if an estimated Q-matrix may not be an appropriate replacement of the a
priori Q-matrix provided by the “expert” (such as exam makers), it can serve as validation as
well as a method of calibration using existing knowledge about the Q-matrix. When such
information is available and correct, computation can be substantially reduced. This is
because the optimization, for instance, that in Equation 18, can be performed subject to
existing knowledge of the Q-matrix. In particular, once the attribute requirements of a subset
of J − 1 items are known, one can calibrate other items, one at a time, using those known
items. More specifically, consider a J × K matrix Q*, the first J − 1 items of which are
known. The last item is estimated by Q̂ = arg supQ′∈UJ(Q*) S(Q′), that is, the S-function is
minimized subject to the knowledge about the first J − 1 items. Note that this optimization
requires 2K evaluations of the S-function and is therefore efficient. Thus, to calibrate M
items, the total computation complexity is O(M × 2K), which is typically of a manageable
order.

Information about other parameters such as c, g , and p can also be included in the
estimation procedure. For instance, the attribute population is typically modeled to admit
certain parametric form such as a log-linear model with certain interactions (Henson &
Templin, 2005; von Davier & Yamamoto, 2004; Xu & von Davier, 2008). This type of
information can be incorporated in to the definition of Equations 15 and 17, where the
minimization and estimation of (c, g , p) can be subject to additional parametric form or
constraints. Such addition information is helpful enhancing the identifiability of the Q-
matrix.
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Theoretical properties of the estimator
Under restrictive conditions, the theoretical properties of the proposed methods have been
established in Liu et al. (2011), which assumes the following conditions hold. First, the
guessing parameters for all items are known. In the definition of the objective function
(Equation 17), ĝ is replaced by the true guessing parameters. Second, the true Q-matrix is
complete, that is, for each attribute k, there exists an item that only requires this particular
attribute. Equivalently, there exist K rows in Q such that the corresponding submatrix is
diagonal. Together with a few other technical conditions, it is shown that with probability
converging to 1, Q̂ (and Q̃) is the same as the true matrix Q up to a column permutation.
Two matrices Q1~Q2 are written if they differ only by a column permutation. Permuting the
columns of a Q-matrix is equivalent to relabeling the attributes. The data do not contain
information about the specific meaning of the attributes. In this sense, the two matrices Q1
and Q2 cannot be distinguished based on the data if Q1~Q2. Therefore, results of the form
P(Q̂~Q) → 1 are the strongest type that one may expect. In addition, the binary relationship
“~” is an equivalence relationship. The corresponding quotient set is the finest resolution
possibly identifiable based on the data.

Under weaker conditions, such as absence of completeness in the Q-matrix or the presence
of unknown guessing parameter, the identifiability of the Q-matrix may be weaker, which
corresponds to a coarser quotient set. One empirical finding is that Q-matrices with more
diversified items tend to be easier to identify. For instance, one simple yet surprising
example of a nonidentifiable Q-matrix is that

with slipping and guessing probabilities being 0:2 for all items and pα = 1/4 for all α. This
Q-matrix cannot be distinguished from

that is, one can find another set of slipping, guessing probabilities and  that implies the
same distribution of the response vector.

Model Validation
The proposed framework is applicable to not only the estimation of the Q-matrix but also the
validation of an existing Q-matrix. If the Q-matrix is correctly specified and the assumptions
of the DINA model are in place, then one may expect

in probability as N → ∞. The above convergence requires no additional conditions to
establish the consistency of Q̂ and Q̃ (such as completeness or diversified attribute
distribution). In fact, it suffices that the responses are conditionally independent given the
attributes and (ĉ, ĝ) are consistent estimators of (c, g). Then, one may expect that
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If the convergence rate of the estimators (ĉ, ĝ) is known, for instance, (ĉ − c, ĝ − g) =
Op(N−1/2), then a necessary condition for a correctly specified Q-matrix is that Sĉ, ĝ(Q) = Op
(N−1/2). The asymptotic distribution of S depends on the specific form of (ĉ, ĝ).
Consequently, checking the closeness of S to zero forms a procedure for validation of the
existing knowledge of the Q-matrix and the DINA model assumption.

Sample size—As the simulation results show, the estimator misses the true Q-matrix with
non-ignorable probability (more than 50%). This probability is substantially reduced (to 2%)
when the sample size is increased to N = 1, 000. This suggests that a practically large sample
N should be at least 30 × 2K. Note that the K binary attributes partition the population into
2K groups. To have the estimator yield reasonably accurate estimate, there should be on
average at least 30 samples in each group. In addition, performance of the estimator maybe
further affected by the underlying attribute distribution. For instance, if the attributes are
very correlated, the probabilities of certain attributes will be substantially smaller than
others. For such cases, estimation for some rows in the Q-matrix (those corresponding to the
small probability attributes) will be less accurate. For such situations, the “effective sample
size” is even smaller.

Computation—The optimization of S(Q) over the space of J × K binary matrices is a
nontrivial problem. This is a substantial computational load if J and K are reasonably large.
This computation might be reduced by splitting the Q-matrix into small submatrices. For
typical statistical models, dividing the parameter space is usually not possible. The Q-matrix
adopts a particular structure with which there is certain independence among items so that
splitting the Q-matrix is valid. Similar techniques have been employed in the literature, such
as chapter 8.6 in the K. Tatsuoka (2009) with large-scale empirical studies in that chapter. In
particular, for instance, if there are 100 items, one can handle such a situation as follows.
First, split the 100 items into 20 groups (possibly with overlapping items between groups if
necessary); then apply the estimator to each of the 20 groups of items, respectively. This is
equivalent to breaking a big 100 × K Q-matrix into 20 smaller matrices and estimating each
of them separately. Last, combine the 20 estimated submatrices together to form a single
estimate. Given that the computation for smaller scale matrices is much easier than those big
ones, the splitting approach reduces the computation overhead. Nonetheless, developing a
fast computation algorithm is an important line of future research.

Summary—As a concluding remark, it is emphasized that learning the Q-matrix based on
the data is an important problem even if a priori knowledge is sometimes available. In this
study, an estimation procedure of the Q-matrix is proposed under the setting of the DINA
model. This method can also be adapted to the DINO model that is considered as the dual
model of the DINA model. Simulation study shows that the estimator performs well when
the sample size is reasonably large.
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Figure 1.
Results of a simulated data set with N = 500 and K = 5, for which the estimated Q-matrix
does not pass the true one
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Figure 2.
Results of a simulated data set with N = 500 and K = 5, for which the estimated Q-matrix
passes the true one but does not converge to it
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Table 2

The Results of Algorithm With an Early Stopping Rule for Q2 and Q3 Based on the Same Samples as in Table
1

N = 500

Q̂ = Q Q ̂ ≠ Q

Q = Q2 94 6

Q = Q3 70 30
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