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Abstract

The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related
potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to
methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-
magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing
positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density
reconstructions for the P1 (80–120 ms), P2 (150–190 ms) and EPN component (200–300 ms) were computed using realistic
individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly
involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to
directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast,
negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior
cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal
networks are active when positive versus negative words are processed. We account for these effects in terms of an
‘‘emotional tagging’’ of word forms during language acquisition. These tags then give rise to different processing strategies,
including enhanced lexical processing of positive words and a very fast language-independent alert response to negative
words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and
withdrawal-related stimuli, be they acquired or biological.
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Introduction

Emotional stimuli are perceptually processed with higher

priority than neutral stimuli (for review, see [1]). This is reflected

in faster detection times of emotional compared to neutral stimuli

in behavioral paradigms (e.g., [2]), in enhanced amplitudes of

event related potentials and magnetic fields (ERPs, ERMFs) in

electro- and magnetoencephalography (EEG, MEG) (e.g., [3–7]),

as well as in an enhanced blood oxygen level dependent response

in the visual cortex (e.g. [8]). Thereby, one of the central sources of

information for the identification of significant stimuli is their

emotional value [1]. The motivational direction (approach vs.

withdrawal) and strength of emotional stimuli can be characterized

by two factors [9,10]: their hedonic valence (pleasant vs.

unpleasant) and their arousal (arousing vs. calm). These two

factors are interdependent, such that pleasant or unpleasant

stimuli usually evoke high arousal, while stimuli that are neutral

are often rated as non-arousing [11].

Several ERP components relevant to human vision, such as the

P1 (80–120 ms), the P2 (150–190 ms) and the Early Posterior

Negativity (EPN, 120–300 ms) have been shown to be sensitive to

emotional-neutral differentiations even if the organism is engaged

in other activities (e.g. [12,13]). For example, Carretié et al. [13],

employed an oddball-task in EEG to investigate the spatiotempo-

ral dynamics of automatic attention capture of positive, negative,

and neutral deviant pictures in a stream of neutral standard

pictures. The participants’ task was to mentally count the number

of changes in color of the picture frame, i.e. their cognitive

resources were involved in a task that was not related to the

emotionality of the pictures. The data revealed enhanced

activation in the anterior cingulate cortex (ACC) to negative

pictures in the P1, whereas in the P2, both positive and negative

pictures recruited this structure more than neutral ones. Such

emotional attention mechanisms, also labeled motivated attention

[14], have been postulated to ensure that an organism notices

potentially revival relevant stimuli without effort. Interestingly,

enhanced ERP-amplitudes have not only been found in response
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to emotional pictures (e.g. [4,12,13]) and faces (e.g. [5]), but also

for stimuli that are entirely symbolic and have acquired their

(emotional) meaning by learning, such as gestures [15] and

emotional words ([16–22], for reviews, see [23,24]). Studies on

emotional word processing have primarily focused on differences

in perception between emotionally arousing and neutral words,

usually reporting differences in the EPN and the P1 [16–20,22,25].

By contrast, the time course of valence effects – when arousal was

controlled for – is less clear: Whereas some studies have suggested

that in words, valence is processed prior to arousal [16,26], that is

as early as the P1, others have either reported later valence effects

[17,27–30], or none at all (e.g., [19,20]). Similarly, the direction of

valence effects in words remains poorly understood. While for

pictures, there seems to be a processing advantage for negative

compared to (equally arousing) positive stimuli (e.g., [31]; for

review see [32]), words have often shown the reverse pattern, with

an advantage for positive over negative words – again keeping

arousal constant. This positivity bias in words has been

substantiated by superior behavioral performance (e.g. [30,33–

36], but see [37,38]), by more pronounced ERPs (e.g. [16,17,27–

30,34], but see [22]) and by a stronger hemodynamic activation in

regions supporting semantic retrieval (bilateral middle temporal

and superior frontal gyrus) [36] as well as the amygdala [17]. As

for non-symbolic emotional stimuli, functional magnetic resonance

imaging (fMRI) studies have revealed higher amygdala activity for

arousing negative and/or positive words than for neutral words

(e.g., [17,39–44]) suggesting that the amygdala, a key structure in

emotional processing (e.g., [45]), preferentially processes emotion-

al arousal. In contrast, frontal structures have often been linked to

the processing of valence [41,43,44,46]. Regarding valence effects

in prefrontal structures, there are two prevailing views. The

hypothesis of hemispheric asymmetry ([47,48], for a critical review

see [49]) claims that the left hemisphere, specifically the left PFC,

is more involved in positive (approach-related) emotions, whereas

the right hemisphere is dominant during negative (withdrawal-

related) emotions. Support for this hypothesis stems mainly from

electrophysiological and lesion studies, but a valence-specific

hemispheric asymmetry is not readily found in fMRI studies

(e.g. [46,50–53]; but see [54–56]). Imaging data gave rise to a

second proposal, according to which lateral orbital PFC regions

are preferentially activated by negative stimuli, whereas ventro-

medial PFC regions are more sensitive to positive stimuli (e.g.

[46,52]). Yet, the time course of prefrontal effects of valence

remains elusive. There is some evidence from EEG and MEG that

high-arousing negative stimuli (e.g. negative pictures and aver-

sively conditioned stimuli) recruit prefrontal structures, such as the

anterior cingulate cortex (ACC) [13] and the orbital and dorsal

prefrontal cortex (for review, see [57]) very rapidly, even before

120 ms. However, in verbal stimuli, there is so far no evidence for

early valence-specific prefrontal activation (for review, see [58]),

nor for the validity of any of the above hypotheses.

There are several possibilities to account for this: First, right

hemispheric and/or frontal valence effects for symbolic word

stimuli may well depend on access to their (hedonic) meaning,

involving the left hemisphere. In fact, the so-called time course

hypothesis implies a shift of activation from the left to the right

hemisphere while semantic information is processed [59,60]. A

similar line of argumentation might apply to effects of arousal. In

line with these considerations, all studies employing source

reconstruction methods have localized arousal effects in posterior

left temporal, language-related [19,20,25], or occipital [18], but

never in prefrontal regions. Second, valence effects in words might

be weak and could therefore easily be missed by common ERP

recordings. Most previous studies have applied conventional

single-modality (EEG) methodologies [18,20,25] with the excep-

tion of [19], the companion paper to the current study, in which

we analyzed the same data as presented here, but with a different

goal: In this study [19], we focused on the evaluation of a

combined EEG-MEG source reconstruction methodology and

applied it on arousal effects which have proved quite robust in

words. Combined EEG-MEG recordings are able to uncover and

localize activity even in rather deep structures such as the posterior

cingulate [61]. We were able to find such activity in the EPN time

window (200–300 ms) in which emotional were distinguished from

neutral words. To give as much credibility to our results as

possible, we employed an extremely conservative approach by

using (1) a significance criterion of P = 0.001 and (2) by

determining a cluster extend threshold at a level of P = 0.001.

Even with this very conservative approach, we confirmed previous

EEG work with regard to the time course for distinguishing

emotional from neutral words (e.g. [20]) and previous fMRI work

with regard to the localization of these effects [62]. This not only

permitted a high confidence in the results, but also in the

employed source reconstruction methodology. Overall, in ([19],

see table S2 in tables S1), we reported stronger neural responses to

high-arousing (positive and negative) nouns compared to low-

arousing neutral nouns in occipital, parietal, and posterior

cingulate regions during the EPN and in the left middle temporal

lobe during the P1 (80–120 ms), as well as convergent behavioral

effects. In line with brain responses, participants remembered

more emotional than neutral words in an unannounced free recall.

Confirming a positivity bias in response to positive words, we also

observed a tendency towards a better memory for positive

compared to negative words (P = 0.064), but no neurophysiological

valence-specific correlates. While the extremely conservative

approach used in [19] did not target valence effects, we here ask

if such effects can be uncovered with a more common and less

conservative approach in the same data set. If it is true that –

independently of the task –valence is processed simultaneously or

even before arousal, we expect to find valence effects as early as

the P1 [16,26], possibly with an involvement of prefrontal

structures [13]. We ask how positive and negative words are

differentiated with respect to their time course and localization. If

the reported processing advantage for positive words is best

explained by accelerated/enhanced lexical processing, we predict

enhanced activity for these words in the left temporal lobe, crucial

for lexico-semantic processes. A next question is whether

prefrontal hemispheric asymmetries play a role in valence

processing in words, and if so, what is the time course? To

approach these questions, we focus on three emotion-sensitive

intervals of interest: the P1, the P2, and the EPN. We think that

our methodological approach of combined EEG/MEG source

reconstruction on the basis of individual realistic head models will

be more sensitive to valence effects than single modality

recordings, due to its better sensitivity [63] and source localization

accuracy [64,65] in prefrontal [66] and temporal cortex areas [67]

– regions of specific importance for valence and language

processing, respectively (for details, see [19]). To anticipate our

results very briefly, we found valence effects as early as 100 ms in

cortical networks including prefrontal and language related areas

in the P1 and P2. However, already at this point, we would like to

point out that compared to arousal effects, valence effects seem to

be much weaker and harder to uncover.

Early Valence Effects of Words in EEG and MEG
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Materials and Methods

Participants
Twenty healthy, right-handed German native speakers (aged

21–31 years, eleven female) were selected from a database of the

Institute for Biomagnetism and Biosignalanalysis in Münster,

Germany. Inclusion criteria were right-handedness, no current or

former severe neurological or psychiatric disorder and normal or

corrected to normal vision. All participants were familiar with the

MEG and EEG testing procedure and were financially compen-

sated with nine Euros per hour. Due to strong and continuous

artifacts in the EEG-recordings, two participants were excluded

from the analysis.

Ethics Statement
This study was approved by the Ethics Committee of the

Medical Faculty of the University of Münster (2009-392-f-S). All

participants provided their written informed consent to participate

in this study.

Stimuli
Stimuli consisted of 180 German high-arousing positive (e.g.

love), high-arousing negative (e.g. pain) and low-arousing neutral

(e.g. month) nouns (taken from [20]). Arousal and valence were

assessed by a rating with 45 students, using the Self-Assessment

Manikin [11]. Arousal levels of words with a positive or negative

valence did not differ, but exceeded those of neutral nouns. The

three word categories were matched for length, frequency of use

(based on the CELEX database; [68]), concreteness and neigh-

borhood size (as obtained from the dlex database under http://

dlexdb.de/) (for more information and statistical values, see [19],

table S1 in tables S1).

Procedure
The individual EEG-electrode positions for each subject were

digitized using a 3D tracking device (Polhemus, Colchester).

Participants were then seated in the magnetically shielded, sound-

attenuated, and dimly lit MEG chamber. To monitor the head

position in the MEG scanner, three landmark coils (two auditory

channels and the nasion) were recorded by means of the Polhemus

3SpaceH Fasttrak. Head motion during the MEG/EEG measure-

ment was below 0.5 cm for all participants.

Participants were instructed to covertly read the words

presented visually in black characters on a light grey screen, with

a viewing distance of 90 cm and an average visual angle of 3.93u
(center to edge, SD = 1.24u). Each participant was shown five

repetitions of differently randomized RSVP (rapid serial visual

presentation) sequences. Each sequence consisted of a stream of

180 words (60 positive, 60 negative, 60 neutral) that were each

presented for 1,000 ms, without inter-stimulus intervals (1 Hz

presentation). Transitional probabilities between the three condi-

tions were kept equal, and sequence orders were counterbalanced

across subjects. Immediately after the measurement, participants

completed an unannounced free-recall task in which they were

asked to recall as many words as possible.

Neurophysiological Recording and Data Analysis
Neurophysiological signals from 275 MEG sensors, 80 EEG

electrodes and an electrocardiogram (ECG) were recorded

simultaneously with a sampling frequency of 600 Hz and an on-

line low-pass filter of 150 Hz, by means of a whole-head MEG/

EEG-system (Omega 275, CTF, VSM MedTech Ltd.) with first-

order axial SQUID gradiometers (2 cm diameter, 5 cm baseline,

2.2 cm average inter-sensor spacing). The 80 EEG electrodes,

including six ocular electrodes (EOG), were mounted on a flexible

MEG compatible lycra electrocap (easycap, Falk Minow Services,

Munich Germany), placed in accordance with the extended

version of the international 10–10 system and referenced to FCz

during recording. All electrode impedances were kept below 8 kV.

ECG was recorded by means of electrodes attached to the subjects’

right cervix and left costal arch.

Preprocessing of EEG-MEG-Data
Offline preprocessing was done with Brain Electrical Source

Analysis (BESA 5.3) software. EEG and MEG recordings were

filtered using a 40 Hz low-pass and a 1 Hz high-pass filter.

Correlates of ocular activity were corrected by applying an

adaptive artifact-correction method [69]. EEG electrodes with

sustained artifact contamination were interpolated, if fewer than

six non-adjacent sensors were affected. Otherwise, the participant

was excluded from further analyses. The averaging epoch for each

trial lasted from 200 ms before to 600 ms after stimulus onset. To

avoid phasic artifact contamination, trials exceeding a magnetic

field strength of 3000 pT in the MEG or a potential of 120 uV in

the EEG in any sensor were excluded from subsequent analysis.

The number of excluded trials did not differ across emotional-

word conditions (F (2,34) = 1.416, P = .257;.255 (Greenhouse-

Geisser corrected). For each condition, averages were computed

and subsequently down-sampled to 250 Hz. Critical time intervals

for the P1 (80–120 ms), the P2 (150–190 ms) and the EPN (200–

300 ms) were determined a priori on the basis of the current

literature [13,20,25]. The global power (GP) amplitudes of EEG

and MEG sensor space signals served to verify the appropriateness

of these intervals in this dataset (see figure 1, see also [19]).

Current Density Reconstruction on the Basis of Individual
Boundary Element Models

As volume conductor models, we used three-compartment boundary

element models (BEM) comprising skin, skull, and brain that were

generated on the basis of individual T1-weighted anatomical scans

recorded with a 3-Tesla Magnet Resonance Imaging (MRI)

Scanner (Gyroscan Intera T30, Philips, Amsterdam, Netherlands)

prior to the experimental session. Preprocessing steps of these

images are described in detail in the companion paper [19]. Using

the CURRY software package (version 6; Compumedics Germany

GmbH, Hamburg), these MRI-scans and the individual EEG and

MEG sensor positions were co-registered by aligning the

anatomical landmarks (nasion, left and right preauricular points).

For the individual BEMs, a mesh size of 9, 8 and 6 mm and

conductivity values of 0.33, 0.0042 and 0.33 S/m were chosen for

the skin, skull and brain boundary elements, respectively [70]. A

source model using a cortical triangle mesh with 3 mm triangle

side length was built on the basis of the gray matter segmentation.

This model contained the hemispheric gap but was constrained to

the cortex by excluding the brainstem and the cerebellum.

Depending on the individual brain anatomies, this procedure

resulted on average in 14863 (SD = 1911) dipole locations. We

computed combined (EEG and MEG) current-density reconstructions

(CDR) using the Minimum Norm Least Squares (MNLS, L2-

Norm) method (see [71]) - an inverse method that allows the

reconstruction of distributed neural sources without requiring a-

priori assumptions regarding the number and possible locations of

underlying neural generators. To calculate the MNLS estimate,

the pseudo-inverse of the so-called lead-field matrix (which

describes the sensitivity of each sensor to the sources) was

multiplied with the averaged recorded data. The Tichonov

regularization parameter lambda, needed for the calculation of

the pseudo-inverse, was based on an estimation of individual noise

Early Valence Effects of Words in EEG and MEG
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levels within a pre-defined baseline interval, ranging from 150 to

50 ms before stimulus onset. The individual noise level was

computed from the average of standard deviations of all channels

separately for EEG (mean across subjects: M = 0.33, SD = 0.09)

and MEG (mean across subjects: M = 8.40fT, SD = 1.84). To

address different noise levels between EEG and MEG, a whitening

procedure on the basis of the noise variance estimated from this

interval was used. Note that differences between experimental

conditions of ERPs and ERMFs within this interval cancel out,

due to experimentally balanced transitional probabilities. A

square-root compensation was applied [72] to correct for the

undesired depth dependency of L2-minimum norm solutions.

Finally, mean L2-norm solutions for the P1 (80–120 ms), P2 (150–

190 ms), and the EPN (200–300 ms) were averaged separately for

each condition and subject. In order to eliminate individual

differences in brain structure for the statistical analysis, individual

CDRs were normalized to a standard space, using the SPM8

software package (for more details on the normalization proce-

dure, see [73]). CDRs were masked and smoothed with an

adapted template of the cerebral cortex restricted to gray matter.

Voxel-wise one-way within-subject Analyses of Variance

(ANOVA) were carried out separately for the CDRs of the time

intervals of interest, using the SPM8 software package, to test for

Figure 1. Event-related potentials and fields in response to positive and negative words. (A) Evoked potentials/fields (ERPs/ERMFs)
during reading of positive (green) and negative (red) words. The graph displays the GP across all sensors for the EEG (left) and the MEG (right). The
critical time intervals (P1, P2 and EPN) for the CDRs are shaded in gray. (B) Scalp/field distribution of sensor space activity in EEG and MEG, depicted
separately for the positive (left) and negative (right) condition for three intervals of interest (top: P1, middle: P2, bottom: EPN). The red dots indicate
EEG-electrodes (upper row), the green circles represent MEG sensors (lower row). Cooler colors indicate more negative-going potentials/fields,
whereas warmer colors display more positive-going potentials/fields. (C) Scalp/field distribution of the scalp/field potential difference (activation for
positive minus activation for negative words) in EEG and MEG, depicted for the three intervals of interest (top: P1, middle: P2, bottom: EPN).
doi:10.1371/journal.pone.0070788.g001
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differential neural generator activation across different experi-

mental conditions.

To control for false positives due to multiple testing, we used the

Alphasim [74] implementation in REST [75] to determine a

spatial cluster-extend threshold. This method yields an estimation

of the probability for a cluster to occur on the basis of 5,000 Monte

Carlo simulations. Thereby, a cluster was defined as a group of

voxels with P-values of #0.05 that were separated by no more

than one voxel width. We estimated the cluster extend threshold

on the basis of all voxels that were considered possible sources of

the CDRs, by applying the mask used on the CDRs. This

procedure yielded an empirically determined minimum cluster size

of 774 voxels for a cluster P-value of 0.05. Note that the choice of a

significance criterion of P#0.05 as compared to P#0.001 in the

companion study [19] on the one hand reduces the beta error (i.e.

misses), but on the other hand makes an alpha error (i.e. false

positives) more likely.

Results

Recall Performance
Effects of the emotionality of the words on the recall

performance, including effects of arousal, are described in detail

in [19]. Here, we focus on effects of valence. Participants correctly

recalled 11.9 positive (SD = 5.5) and 9.9 negative (SD = 6.2) nouns.

Post hoc comparisons (Bonferroni corrected) comparing positive

and negative words revealed a trend towards a better memory of

positive compared to negative words (t(17) = 2.1; P = .064 (two

tailed)).

ERP Data in Sensor Space
The time course of activity in sensor space is shown separately

for EEG and MEG in figure 1 (Panel A). In EEG, the global

powers of the amplitudes for the positive (green) and negative (red)

condition are quite similar in the P1, and the EPN, but reveal a

difference in the P2. By contrast, global powers of MEG

amplitudes suggest differences in the P1, and to a smaller degree,

in the P2 and during the onset of the EPN. Note that in sensor

space, high global power amplitudes may be induced by both

positive and negative values. Therefore the direction of effects

cannot be interpreted directly. The electric potential and magnetic

field distributions during the peaks of the P1 (100 ms), P2

(160 ms), and EPN (250 ms), are depicted separately for the

negative and positive emotional condition in Panel B. Panel C

displays the potential and field differences between the positive

and negative condition plotted on a head model. For the P1, we

observe that positive compared to negative words elicit a relative

positivity (red) over posterior regions and a stronger negativity

(blue) over anterior regions in EEG. The corresponding MEG

distribution shows multiple and widely distributed areas with

ingoing and outgoing difference fields. The strongest enhanced

outgoing field (positive, red) is localized over left temporo-occipital

regions, smaller outgoing difference fields are observed over

bilateral frontal areas. The complexity of the MEG distribution

suggests several simultaneously active neural generators. During

the P2 (160 ms), the EEG uncovers a stronger right-lateralized

anterior positivity and a stronger left lateralized anterior negativity

for positive compared to negative words. The corresponding MEG

difference field distribution again shows widely distributed areas,

with the strongest outgoing difference field in left temporo-frontal

and right occipital areas. For the EPN (250 ms), the difference

map between the positive and negative conditions again suggests

simultaneous activity of various areas. The EEG shows stronger

relative positivities for positive word processing over left fronto-

temporal regions and negativities over right frontal, temporal and

parietal regions. The MEG also reveals widely distributed areas,

with the strongest outgoing difference fields over left frontal and

right occipito-parietal areas.

Combined EEG-MEG Current-density Reconstructions
In the following, we will present results from the statistical

analyses of the combined EEG-MEG-current density reconstruc-

tions of the P1 (80–120 ms), the P2 (150–190 ms) and the EPN

(200–300 ms) time intervals. All analyses were based on planned

contrasts (positive.negative and negative .positive condition) in a

one-way ANOVA (within subject), with the significance level set at

P,.05. Figure 2 shows all clusters showing significant activation

differences between positive and negative words that survived the

Alphasim correction. The corresponding peak T values for each

cluster, as well as peak coordinate labels and cluster sizes are

presented in table 1. Note that the labels mentioned in table 1 refer

to the peaks of each cluster. However, due to large cluster sizes, the

regions showing significant differences between conditions are

relatively broad and extend to other structures. This can be seen in

figure 2 and will be described in detail in the text.

The current density reconstructions reveal enhanced activation

for positive compared to negative words (see figure 2, Panel A) in

the P1 and in the P2 interval. When inspecting the GP plots in

sensor space (Figure 1A), it appears that negative words cause

more activation than positive words. However, since high

amplitudes in GP include both positive and negative values, the

sensor space activation maps cannot easily be interpreted in terms

of intensity of the underlying neuronal signal. In fact, the direction

of effects may be quite different in source space. In the EPN, this

contrast did not survive the Alphasim correction. In the P1, three

clusters display higher estimated neural activity for the positive

compared to the negative condition (pos.neg). The first cluster

peaks in the left middle temporal lobe, and expands to the left

inferior and middle frontal lobe, both of which are parts of the

prefrontal cortex (PFC). The second cluster is located in the

bilateral parietal lobe and precuneus, with a peak in the left

superior parietal lobe. The third cluster is located in the occipital

lobe and includes the right calcarine, the right superior occipital

lobe as well as parts of the right lingual lobe and the middle

occipital lobe. Similarly to the P1, the P2 reveals several clusters

with enhanced activity for positive over negative words. The first

cluster comprises the bilateral frontal and temporal lobe,

predominantly in the right hemisphere. It peaks in the right

middle orbital frontal cortex (BA 11) and extends to the ACC,

both of which belong to the PFC. A second cluster has its peak in

the left superior temporal lobe (BA 42), and extends to the middle

temporal lobe and the pre- and postcentral gyri. Activity in the

right superior parietal (cluster 3) and the left inferior temporal

lobes (cluster 4) is also larger for positive than for negative words.

In contrast to this temporally and spatially widely distributed

positivity bias, activation for negative words exceeded positive

words only in the P1 time interval, and only in one significant

cluster positioned at the left superior medial frontal lobe. This

prefrontal cluster extends to the right ACC and the left middle

frontal lobe.

Although EPN effects did not survive Alphasim correction, we

wish to document which clusters show valence effects, given that

the EPN is one of the most prominent emotion-sensitive

components (see table 2).

Early Valence Effects of Words in EEG and MEG
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Discussion

This study investigated the spatiotemporal brain dynamics of

spontaneous valence processing of high-arousing positive versus

high-arousing negative nouns, visually presented for silent reading.

In order to optimize the temporal and spatial resolution and to

obtain the full neurophysiological signal, a combined EEG/MEG

source reconstruction was performed on the basis of realistic head

models, for three intervals of interest: The P1 (80–120 ms), the P2

(150–190 ms) and the EPN (200–300 ms).

There were four main findings: First, positive and negative

words at least partly recruited different brain regions early in the

processing stream. This supports previous findings that positive

and negative words are dissociated as early as the P1 [16,26]. In

particular, relative to negative words, positive words elicited

stronger neuronal activity (1) in left temporal and prefrontal,

bilateral parietal, and occipital regions during the P1 and (2) in the

left temporal lobe, distributed bilateral fronto-temporal areas,

including prefrontal regions such as the ACC and the orbital lobe,

and in the right superior parietal lobe during the P2. In contrast,

negative words caused enhanced activity in the P1 only. This effect

was located in a prefrontal cluster comprising the left superior

medial frontal lobe, the ACC and the left middle frontal lobe.

These early valence specific effects presumably reflect an ‘‘intrinsic

pleasantness’’ check, as proposed by the component process model

of emotion [76]. Second, in line with the assumption of a positivity

bias (e.g. [30,33–36], but see [37,38]), positive words were at trend

better recalled and elicited stronger neural responses in cortical

networks associated with lexical processing (left temporal and

inferior frontal regions; see [36]) than negative ones. Importantly,

Figure 2.Neural generators of valence effects in the P1 and P2 time interval. (A) Cortical regions differential activation patterns for positive
(pos) compared to negative (neg) words in the P1 (left) and the P2 (right) (B) Cortical regions displaying enhanced activation to negative compared
to positive words in the P1. No other contrast met our significance criteria. All images were thresholded using a voxel-wise statistical height threshold
of (P,.05, Alphasim corrected at k = 744). Functional images are superimposed on a standard (SPM: render_single_subj):
doi:10.1371/journal.pone.0070788.g002

Table 1. Regions of activation differences between positive (pos) and negative (neg) words in the P1 (80–120 ms) and in the P2
(150–190 ms) interval.

Time window Brain Region (peak) BA Cluster size MNI coordinates of local maximum T

X Y Z

pos.neg

P1:80–120 ms Temporal_Mid_L 3871 252 220 219 2.83

Parietal_Sup_L 1783 226 270 61 2.74

Calcarine_R 832 10 294 11 2.45

P2:150–190 ms: Frontal_Mid_Orb_R 11, 10 21259 30 60 211 3.86

Temporal_Sup_L 42 2051 268 227 7 3.29

Parietal_Sup_R 1502 14 270 65 3.06

Temporal_Inf_L 952 254 8 39 2.51

neg .pos

P1:80–120 ms Frontal_Sup_Medial_L 32 1465 24 24 39 2.53

x, y, z = coordinates according to MNI stereotactic space (Brain Region according to AAL-Atlas [106], L = left, B = bilateral, R = right, sup = superior, mid = middle,
inf = inferior), T = peak T value for the respective contrast of the valences, BA = approximate Brodmann’s area, Cluster size in voxels, P..05 (Alphasim corrected).
doi:10.1371/journal.pone.0070788.t001
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our results add temporal detail by linking these effects to the P1

and P2. Third, prefrontal structures were involved in the

generation of valence effects in the P1 and the P2. This provides

support for the hypothesis that prefrontal structures are particu-

larly important during the processing of valence [41,43,44,46]

early in the processing stream [13]. Fourth, from the fact that we

did not find valence effects in a previous extremely conservative

analysis of the same data [19], we can infer that these effects are

less pronounced than arousal effects. Neither the contrast Neg

.Pos in the P2 interval, nor any contrast in the EPN interval

survived the Alphasim correction.

In the following, we first address the relevance of our effects for

the claim of speeded lexical processes in response to emotional

compared to neutral words, with faster access to its subcompo-

nents, e.g. to word forms and meanings. (cf. [19,25]). We

particularly focus on the assumed lexical advantage for positive

over negative words (e.g. [25,36]), by discussing effects in language

related regions (left temporal and inferior frontal) that display

more activity in response to positive than negative words during

the P1 and the P2. However, when taking into account all cortical

structures that are differentially activated by positive and negative

words, it is obvious that the observed effects do not reside in lexical

processing only. Thus, second, we will discuss regions that are

commonly not found in studies on lexical processing. We will

thereby evaluate the hypothesis that they represent valence-

specific ‘‘tags’’ of the word form [19], generated on the basis of

previous learning experiences. For example, if a pre-lingual child is

approached by a butterfly vs. a wasp the mother’s reaction (‘‘Look

there is a butterfly’’ vs. ‘‘Be careful, there is a wasp’’) will cause

different learning experiences. Whereas the child will direct its

attention towards the butterfly, it will associate the wasp with a state

of alert, probably without an elaborate perceptual analysis, but

with a focus on a potential exit strategy. The idea of an ‘‘emotional

tagging’’ assumes that these perceptually and physiologically

different mechanisms are represented in the mapping between

the word form (butterfly vs. wasp) and a (positive vs. negative)

meaning. Thus, if valence effects in response to words reflect a

(valence-specific) tagging during language acquisition, one would

expect to find similar regions to be active in words as in neutral

stimuli that have been affectively conditioned, or in non-symbolic

stimuli.

Regions Displaying More Activity to Positive Compared
to Negative Words

Lexical effects in the left temporal and inferior frontal

lobe in the P1 and the P2. The most pronounced cluster

displaying enhanced activity for positive over negative words peaks

in the left middle temporal lobe, and expands to inferior and

middle frontal regions. Both the left middle temporal lobe, which

houses parts of the mental lexicon (e.g. [77]), and the left inferior

frontal cortex have often been linked to different language-related

demands, including lexical and semantic processing (e.g. [78–81]).

The middle temporal lobe has also been shown to generate effects

of arousing compared to neutral words in the P1 time range

[19,25]. The locus and timing of these effects support the view that

the emotional quality of words is reflected in their enhanced lexical

processing. Here, we add that the middle temporal lobe also

subserves valence effects, with enhanced activity for positive

relative to negative words. Together with data from the

companion study [19], showing arousal effects in the left middle

temporal lobe, these findings suggest that arousal and valence

effects are manifest at the same time in the same brain areas. One

interpretation is that arousal differentially influences lexical

processing of positive and negative words [25], however it is also

possible that arousal and valence effects simply add up in this

region.

As we discussed in detail elsewhere (e.g. [19]), there is ample

evidence from psycholinguistic studies that lexical processing starts

as early as 100 ms after stimulus onset ([82]; see also [83–87]).

Combined EEG-MEG data [83] have localized effects of the

lexical status (word-pseudo-word contrast) to the left middle

temporal lobe, though slightly later than our P1 effect. Thus, both

the topography and the timing of our effect fit well with the

assumption of an early lexical advantage for positive over negative

words. This might reflect accelerated access to lexical represen-

tations (lexical access), an interpretation that is supported by

studies comparing lexical decision latencies to differently valenced

words: When other lexical variables (e.g. frequency, word length)

Table 2. Regions of activation differences between positive (pos) and negative (neg) words in the EPN (200–300 ms) with a cluster
size of k.30.

Time window Brain Region BA Cluster size MNI Coordinates of local maximum T

X Y Z

pos.neg SupraMarginal_R 40, 2, 34, 1, 42 243 68 262 23 2.37

Precentral_L 6, 8, 4 175 254 4 47 2.17

Frontal_Sup_L 10, 9 461 216 60 29 2.08

Angular_R 39 109 50 256 21 2.03

SupraMarginal_R 40 107 50 242 31 1.99

Precuneus_L 39 0 258 71 1.98

Occipital_Inf_R 19, 18 54 48 282 25 1.97

Precuneus_L 7 119 28 272 63 1.94

neg .pos Cuneus_R 7, 19 404 16 278 35 2.28

Frontal_Mid_R 8 88 42 24 51 2.10

Precentral_R 6,9 35 40 2 41 1.83

x, y, z = coordinates according to MNI stereotactic space (Brain Region according to AAL-Atlas [106], L = left, B = bilateral, R = right, sup = superior, mid = middle,
inf = inferior), T = peak T value for the respective contrast of the valences, BA = approximate Brodmann’s area, Cluster size in voxels, P..05 (uncorrected).
doi:10.1371/journal.pone.0070788.t002
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were controlled for, positive words were reacted to faster, and

more accurately than negative words (e.g., [30,34–36,38,88,89]).

Similar to the left temporal and inferior frontal effects observed

in the P1, the P2 also revealed more activity for positive than for

negative words in the left temporal lobe (left middle and superior

temporal lobe, left inferior temporal lobe). This may indicate

continuing lexical and semantic processing, which is commonly

assumed to proceed in parallel (e.g. [84,90]). In addition to the left

temporal effect, the P2 revealed a broad cluster comprising the

bilateral frontal lobe. Note that – compared to the left hemispheric

dominance during the P1– effects in the P2 were less lateralized. If

we assume that the left temporo-frontal effects in the P1 reflect

lexical and/or semantic processes, this finding is in line with the

time-course hypothesis, which implies a shift of activation from the

left to the right hemisphere while semantic information is

processed (e.g. [59,60], see also [58]). Thus, the left temporal

initiation of the valence effect (Pos.Neg), as well as its

development over time support the idea of an early lexical

advantage for positive over negative words.

Non-lexical valence effects in the P1 and the P2. Not only

left lateralized, language-related brain regions showed enhanced

activity to positive compared to negative words. Additionally, we

found right-lateralized occipital and bilateral parietal regions to

display more activity for positive words during the P1. The right

superior parietal lobe remained more active in response to positive

words, until the P2. Similar localizations of valence effects

(Pos.Neg) have also been reported in fMRI studies (e.g. [36]).

Both occipital and parietal effects might be attributed to additional

attention for positive stimuli in the visual association cortex (VAC),

a system in which attention is clearly engaged in information

processing (cf. [91]), as predicted in our example (‘‘butterfly’’ vs.

‘‘wasp’’). There are some hints from conditioning studies, in which

multiple auditory or visual conditioned stimuli (CS) were paired

with unconditioned stimuli (US) (MultiCS-conditioning, see [92–

94]) that point towards enhanced activity for positive over negative

stimuli in the parietal lobe. To our knowledge there is only one

conditioning study which, in addition to negative stimuli, also used

positive US [93]. Although Bröckelmann et al. [93] did not

specifically focus on the differentiation between positively-, and

negatively-conditioned stimuli, cortical activation over (right

hemispheric) parietal sites appears to be stronger for positive

compared to negative items early in the processing stream [93].

Additionally, there is evidence for enhanced processing of positive

compared to negative stimuli in the VAC even in non-symbolic

stimuli [95]. Similar to our effects, this study reported enhanced

occipital voltage and dipole strength for positive compared to

negative emotional pictures between 120 and 150 ms after

stimulus presentation. In the light of these findings, the P1 effect

in the VAC observed in our study might in fact reflect a valence-

specific tagging of the word form during acquisition.

Still, this finding does not explain, why processing of positive

stimuli is also enhanced in language-related structures. What is the

relationship between additional attention in the VAC, and

enhanced lexical processing in left temporal regions? What is

their functional interplay? One explanation might be that positive

valence per se enhances lexical access. However, it is also possible

that additional attention allocation in the VAC interacts with

other variables that are known to affect lexical access. We

controlled for many lexical variables (including frequency,

imageability, word length), but recently, it was shown that positive

words are usually rated as more familiar than negative words [96],

even when word frequency was controlled for. In the present

study, we did not control for familiarity, thus valence and

familiarity might be confounded. However, even in this case,

one might speculate that the additional VAC-activation to positive

words is responsible for the higher familiarity values of positive

words, because this activation secures enhanced information

processing (cf. [91]), and might thus lead to higher familiarity

ratings. In this case, the often reported lexical advantage of

positive words would be mediated by familiarity.

In addition to the effects in the VAC and in language-related

structures, bilateral fronto-temporal areas were more strongly

activated for positive than for negative words in the P2, with a

peak in the right middle orbitofrontal cortex. The orbitofrontal

cortex is involved in a variety of emotion-related functions,

including the representation of affective value of reinforcers and

punishment (for review, see [97]). A meta-analysis on the

functional anatomy of this region reveals a functional division of

this structure in which, in line with our data, the medial

orbitofrontal cortex is related to monitoring the reward value of

different (primary and secondary) reinforcers [98]. Within this

cluster, the ACC showed valence-specific activation patterns, with

enhanced activation for positive compared to negative words. In

fact, it has been claimed that electrophysiological signals in the

ACC as measured in single neurons (e.g. [99]) ‘‘encode

motivational aspects of events along a good-bad (and perhaps a

better-worse) continuum’’ ([100], p. 1623). Amongst other

functions, the ACC represents the neural basis for the interaction

of emotion and attention (for a review, see [101]). In contrast to

the VAC, which clearly serves the orienting of attention necessary

for processing information, the ACC has been attributed to a

general alert state [91]. Thus, overall, our data – in line with our

example – suggest that positive words, elicit an alert state only

‘‘after’’ the engagement of directed attention in the VAC and a

preliminary lexical analysis initiated during the P1 window.

Regions Displaying More Activity to Negative Compared
to Positive Words

Negative words – compared to equally arousing positive words –

elicited enhanced activity in the P1 time window only. They

recruited a prefrontal network peaking in the left superior medial

frontal lobe and extending to the right ACC (BA 32) and the left

middle frontal lobe. The coactivation of these two structures has

often been reported in the literature, and has been attributed to

wide-spread cortico-cortical connections between the medial

frontal lobe and the ACC (for review, see [102]). The apparent

paradox is how negatively-valenced words can activate this

prefrontal network responsible for the encoding of motivational

aspects of events [100] and for a general alert response [91] at a

point in time when lexical analysis has only just started. This

paradox may be solved by assuming emotional tags for word forms

that, depending on their valence, directly activate these survival

relevant structures. There is evidence for a very rapid (,100 ms)

modality-independent involvement of prefrontal brain regions in

response to negatively conditioned stimuli (for review see, [57]).

With MultiCS-conditioning, it was shown that prefrontal regions

respond in a highly stimulus-resolving manner and thus allow for a

rapid differentiation of learned CS-US from CS-noUS associa-

tions. Thus, the prefrontal network establishes a perfect basis for

the ‘‘emotional tagging’’ of word forms during word acquisition –

as illustrated in our example. Convergent evidence for the

temporal sequence of effects in the ACC (i.e. first negative, then

positive) comes from Carretié et al. [13] who used an odd-ball

paradigm with emotional pictures to study automatic attention as

indexed by enhanced ACC activity. In this study, in the P1

(105 ms), only negative pictures received enhanced activation in

the ACC whereas in the P2, both positive and negative pictures

recruited this structure more than neutral ones. In line with our
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findings, this study has demonstrated that the spatiotemporal

activation of the ACC is modulated by the valence of a stimulus,

with a faster time course for negative than for positive stimuli.

Note that we observed a stronger ACC activation in response to

positive compared to negative words, whereas [13] did not find

differences between these conditions during the P2. This might be

due to differences in the experimental procedures (RSVP vs.

oddball paradigm), or to differences in the material (words vs.

pictures).

Why should the activation of this prefrontal ‘‘alert system’’ rely

on a lexical analysis in positive, but not in negative words? From

an evolutionary perspective, the consequences of reacting slowly to

negative (e.g. unsafe or harmful) stimuli are often much more

dramatic than the consequences of a similar reaction to positive

stimuli [103,104]. Thus, it makes sense that the prefrontal ‘‘alert

system’’ is directly activated by negative events – in our case words

– despite the lack of a full lexical analysis of the (negatively tagged)

word form.

Still, it remains unclear, what happens after this first activation of

the prefrontal system. Why is the enhanced activity for negative

words only visible in the P1? There are two lines of argument for

this finding. First, ‘‘a general-purpose defense mechanism that

reacts to threat (such as that conveyed by emotional words) by

temporarily disrupting all ongoing activity’’ ([105], p.232) might

be active. In this line of argument, one might assume that the

linguistic analysis and mechanisms of directed attention in the

VAC to negative stimuli are less pronounced, because they are

suppressed by prefrontal structures being recruited during the P1.

However, the findings of our companion study [19] showed that

positive and negative words were better recalled than neutral ones,

and were associated with enhanced activity in parietal and

occipital areas, and in posterior limbic structures. Given this

pattern, we consider this explanation rather unlikely. Second, it is

possible that the activation of the prefrontal alert system is sufficient

to secure adaptive responding to negative stimuli, as formulated in

the response relevance hypothesis (cf. [38]). In the current study,

we cannot distinguish these two alternatives, because our

participants were not involved in any tasks during the experiment.

Future research employing the same word categories in combina-

tion with different tasks may shed light on the functional

contribution of these different cortical and limbic structures. A

case in point is a behavioral study by Estes and Verges [38], who

found a lexical advantage for positive over negative words, as

indexed by shorter reaction times in a lexical-decision task. In

contrast, in a valence-judgment task, participants were faster to

categorize a word as negative [38]. Consequently, the authors

have argued that a selective response to negative stimuli can be

only found in tasks where stimulus valence is response-relevant.

Hypothesis of Hemispheric Asymmetry
A further goal of our study was to investigate the hypothesis of

valence-specific prefrontal lateralization effects ([47,48] for a

critical review see [49]). In the P1 and P2 interval, we found no

evidence for such a lateralization. Valence-specific lateralization of

the PFC was in fact found in the later EPN time interval; however,

this effect did not survive the Alphasim correction. In the EPN

(200–300 ms), we observed more activity for positive than for

negative words in the left prefrontal cortex (BA 4, 6, 8, 9, 10) and

the reverse pattern, more activity for negative compared to

positive words, in the right prefrontal cortex (BA 6, 8, 9). These

findings closely resemble an fMRI study that localized asymme-

tries of positive compared to negative words to the dorsolateral

PFC (BA 6, 9) [56] and provide support for the hypothesis of

hemispheric asymmetry (e.g., [47,48]), which links approach-

related emotions to left and avoidance-related emotions to right

frontal regions. But again, these effects were significant by trend

only and should thus be interpreted with caution.

Conclusions
Taken together, this study shows that the hedonic valence of

words is identified early on in the processing stream. Positive

words initially predominantly activate language-related structures

such as left middle temporal and inferior frontal regions, and the

visual association cortex, that is, occipital and parietal regions

subserving directed attention processes (cf. [91]). This is then

followed by enhanced prefrontal and ACC activity in the P2. By

contrast, negative words immediately activate the ACC, which has

been attributed to a general alert state (cf. [91]). We have

accounted for these effects is in terms of an ‘‘emotional tagging’’ of

word forms during language acquisition, which is then followed by

different processing strategies, including enhanced lexical process-

ing of positive words and a very fast language-independent alert

response to negative words. The valence-specific recruitment of

different networks might underlie fast adaptive responses to both

approach- and withdrawal-related stimuli, be they acquired or

biological.
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4. Junghöfer M, Bradley MM, Elbert TR, Lang PJ (2001) Fleeting images: A new

look at early emotion discrimination. Psychophysiology 38: 175–178.
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64. Goldenholz DM, Ahlfors SP, Hämäläinen MS, Sharon D, Ishitobi M, et al.

(2009) Mapping the signal-to-noise-ratios of cortical sources in magnetoen-

cephalography and electroencephalography. Hum Brain Mapp 30: 1077–1086.
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