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ABSTRACT

The identi®cation and characterization of regulatory
sequence elements in the proximal promoter region
of a gene can be facilitated by knowing the precise
location of the transcriptional start site (TSS). Using
known TSSs from over 5700 different human full-
length cDNAs, this study extracted a set of 4737
distinct putative promoter regions (PPRs) from the
human genome. Each PPR consisted of nucleotides
from ±2000 to +1000 bp, relative to the corres-
ponding TSS. Since many regulatory regions
contain short, highly conserved strings of less
than 10 nucleotides, we counted eight-letter
words within the PPRs, using z-scores and other
related statistics to evaluate their over- and under-
representation. Several over-represented eight-letter
words have known biological functions described
in the eukaryotic transcription factor database
TRANSFAC; however, many did not. Besides
calculating a P-value with the standard normal
approximation associated with z-scores, we used
two extra statistical controls to evaluate the signi®-
cance of over-represented words. These controls
have important implications for evaluating over- and
under-represented words with z-scores.

INTRODUCTION

There is presently a major effort to characterize the human
transcriptome and to improve genome annotation with full-
length cDNA libraries (1,2). A unique opportunity for
understanding gene regulation in humans is at hand because
of these efforts, and because of the availability of a high-
quality human genome sequence (3). To take advantage of the
opportunity, this article examines proximal promoters, includ-
ing gene regulatory sequences located near the transcriptional
start site (TSS), which are particularly important in the
initiation of transcription (4).

Since proximal promoter sequences are of great importance,
many computational methods have been developed for
identifying TSSs (5±7). It is possible, however, to identify
the TSS by aligning the corresponding full-length cDNA
sequence to the human genome. Experimental knowledge

of the precise 5¢ ends of cDNAs should facilitate the
identi®cation and characterization of regulatory sequence
elements in proximal promoters (8). As a ®rst experimental
step in this direction, Suzuki et al. (9) used the oligo-
capping method to identify TSSs from cDNA libraries
enriched in full-length cDNA sequences, which they
have made available at the Database of Transcriptional
Start Sites (DBTSS; http://dbtss.hgc.jp/). We have used the
DBTSS data set and aligned the full-length cDNAs to the
human genome, thereby extracting putative promoter regions
(PPRs).

Many regulatory sequence elements in the PPRs are likely
to be short, highly conserved strings of less than 10
nucleotides (10). Recently, as many as 1858 exact 8mers
were found conserved in orthologous promoters of closely and
distantly related yeast species (11). Additionally, conserved
8mers have also been found in regulatory regions of higher
eukaryotes using phylogenetic footprinting methods (12).
These elements can be identi®ed by enumerative methods,
which count all possible DNA words of a certain length in
promoter sequences and then use statistics such as z-scores to
evaluate over-represented words (13±16).

Signi®cant progress in the quality of the human genome
sequence has been observed since the publication of the draft
sequence in 2001 (3). Many ambiguities in the DNA sequence
around the annotated genes have been resolved in the NCBI
build 33, allowing a statistical analysis of eight-letter words in
PPRs. Here we describe the results of applying enumerative
methods to eight-letter words in the human PPRs where the
statistical signi®cance of over-represented words was deter-
mined using three different methods: (i) analytically derived
z-scores (the standard method of assigning statistical
signi®cances to exact word matches in DNA); (ii) computer
simulation of the Markov chain underlying the z-scores, to
compare the z-scores with the actual extreme value distribu-
tion that they are supposed to approximate; and (iii) computer
simulation of 1000 mock data sets, composed of matched,
uniform random DNA sequences from the human genome
(which produced P-values that were much more conservative
than the z-scores). Our results show that when applied to our
data, the three controls produce very different P-values.
However, we anticipate that the over-represented words
identi®ed in this study should provide seeds for developing
position-speci®c scoring matrices to identify novel transcrip-
tion factor-binding sites (TFBSs).
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MATERIALS AND METHODS

Identi®cation of PPRs

We extracted 5756 representative full-length human cDNAs
from the DBTSS (9). Using the MegaBLAST program (17),
we located full-length cDNA clones in a reference human
genome sequence, NCBI Build 33. Spidey, a tool that
aligns cDNA to genomic DNA, was used to determine
the positions of the TSSs within the genomic sequence
(http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/).
We considered a piece of genomic DNA to correspond to a
cDNA, if (i) it contained the TSS; (ii) it covered >90% of the
cDNA; and (iii) it had >90% identity in the ®rst exon. A total
of 4737 cDNAs met these three criteria. With the TSSs in
hand, we de®ned our 4737 PPRs as the genomic sequences
running from ±2000 to +1000 bp, relative to each TSS at 0 bp.
The PPRs are available at ftp://ftp.ncbi.nlm.nih.gov/pub/
marino/published/hs_promoters/fasta/.

CpG islands in the PPRs

A CpG algorithm developed by Takai and Jones (18) and
implemented at NCBI identi®ed CpG islands within the PPRs.
Note that the algorithm is more restrictive than the original
de®nition due to Gardiner-Garden and Frommer (19). We
de®ne a DNA region to be a CpG island, if (i) it is >500 bp in
length; (ii) it has a G + C content >50%; and (iii) its ratio of
CpG observed/expected is greater than or equal to 0.6
according to the strict NCBI de®nition (http://www.ncbi.nih.
gov/mapview/static/humansearch.html#cpg).

Transcription factor-binding sites in the PPRs

TFBSs were identi®ed from the vertebrate matrices in the
TRANSFACâ Professional Suite (Version 7.2) (20), using
the TFBS Perl modules for TFBS analysis (21) (http://
forkhead.cgb.ki.se/TFBS/). When searching for transcription
factors corresponding to TATA, GC and CAAT boxes, we
used the same relative cut-off scores as Tsunoda and Takagi
(22) to make our results comparable with those of Suzuki et al.
(23). In all other cases, for simplicity, we used a relative cut-
off score of 0.75.

Random genomic DNA data sets

A total of 1000 random genomic data sets, each composed of
4737 randomly selected human genomic DNA sequences of
length 3001 bp, were generated as follows. The 545 contigu-
ous sequences (contigs) from NCBI build 33 (2 866 452 029
total base pairs) were used as a source of human genomic
DNA. Each contig was sampled roughly in proportion to its
length, as follows. All the contigs were ordered end-to-end in
chromosomal order and assigned a virtual start and end
position. Then, uniformly from 1 to 2 866 452 029, the starting
position of a mock PPR was selected at random. If it was in the
last 3000 bases of a particular contig, the mock PPR was
rejected to avoid running over the end of the contig.
Otherwise, the mock PPR ran from the starting position, to
its end 3000 bases downstream in the contig. The two possible
DNA orientations for each contig were also sampled, each
with probability 0.5. Sampling continued until 4737 sampled
mock PPR sequences were accepted, forming a single random

genomic data set. The sampling was repeated to form 1000
random genomic data sets.

Evaluation of over- and under-representation of eight-
letter words in the PPRs

Using overlapping windows, we counted all possible two-,
three- and eight-letter words in the 4737 PPRs, considering
only words consisting of the four unambiguous nucleotides
acgt. Then, we performed the same counts for the 4737 mock
PPRs from the 1000 random genomic data sets. Somewhat
arbitrarily, the numbers 2 and 8 were selected before the data
analysis, for the following reasons. A protein interacting with
DNA often attaches to several binding elements of contiguous
nucleotides, with gaps between the elements. A binding
element usually does not include both sides of the DNA
double helix. Somewhat arbitrarily, therefore, the number 2
represents an approximate lower bound for the number of
nucleotides on the non-binding side. With each turn of the
DNA helix being 10.5 nucleotides, the number 8 then
approximates the remaining number of nucleotides per turn.
Words of length 3 = 2 + 1 were counted, because some of the
statistics below require this count, in addition to the two- and
eight-letter word counts.

Several statistics were used to evaluate over- or under-
representation of words in the PPRs relative to the human
genome. In previous notations (24), all statistics were
standardized with the equation

z�W� � N�W� ÿ ÃN�W�������������
ÃV�W�

q �1�

In equation 1, W represents the word being evaluated, and
N(W) is its count in the PPRs. The quantities NÃ (W) and VÃ (W)
are various estimates (given below) of the mean and variance
of N(W).

Calculation of the S-score (standardized score)

The S-score is z(W) in equation 1, with NÃ (W) and VÃ (W) being
the sample mean and sample variance of N(W) over all mock
PPRs from the 1000 random genomic data sets. Thus, if Ni(W)
was the count for the word W in the i-th random genomic data
set, then

ÃN�W� � 1

1000

X1000

i�1

Ni�W� �2�

and

ÃV�W� � 1

1000ÿ 1

X1000

i�1

fNi�W� ÿ ÃN�W�g2 �3�

Calculation of the z-score

The z-score is z(W) in equation 1, with N(W) and V(W) being
the (conditional) mean and variance of N(W) derived from a
second-order Markov model. The (transitional) word frequen-
cies in the Markov model were determined from the empirical
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Figure 1. Distribution of the PPRs in the human genome. (A) The positions of the TSS from the 4737 PPRs on each chromosome (horizontal lines) are repre-
sented as vertical bars. The vertical lines above the chromosome lines correspond to TSSs mapped in the positive chromosome orientations; and those below,
the negative chromosome orientations. (B) The location of the 5¢ end of 18 372 reviewed RefSeq transcripts present in NCBI build 33 and obtained from
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/RNA/rna.fa.gz.
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three-letter word counts within the PPRs. Relevant formulas
can be found in Schbath (24), Prum et al. (25) and Schbath
et al. (26).

Under the second-order Markov model, each individual
z-score has an asymptotic standard Gaussian (normal) distri-
bution as N(W) ® `. We were mainly interested in the P-
values of the largest z-scores over 48 = 65 536 eight-letter
words, however, so normal approximations are very inaccur-
ate in the present context (see Results and Discussion). We

Figure 2. Dinucleotide frequencies in the PPRs and the human genome
(NCBI build 33). (A) The dinucleotides are ranked left to right according to
their S-score from most under-represented to most over-represented. (B)
CpG Islands in the PPRs (upper panel). The CpG islands are represented as
black lines in the PPRs where other regions are represented as white spaces.
Positional CpG frequency in the PPRs (lower panel). Total CpG dinucleo-
tide counts were obtained in overlapping 2 bp windows for all PPRs and
their frequency estimated relative to the number of sequences (4737). The
nucleotide positions are relative to the TSS.

Table 1. Dinucleotide frequencies in the PPRs

Dinucleotide Counts in
PPRs

% Counts in
random
DNA

% S-score

AT 696 056 4.90 1 098 285 7.73 ±90.90
TA 607 901 4.28 933 555 6.57 ±72.89
AA 989 468 6.96 1 392 168 9.80 ±60.39
TT 1 034 667 7.28 1 390 939 9.79 ±50.83
CA 927 872 6.53 1 031 830 7.26 ±46.57
AC 674 321 4.75 716 326 5.04 ±24.35
TG 977 909 6.88 1 031 298 7.26 ±24.30
GT 712 115 5.01 716 059 5.04 ±2.00
TC 854 573 6.01 843 167 5.93 5.33
GA 866 219 6.10 843 311 5.93 9.68
AG 1 031 731 7.26 994 087 7.00 15.60
CT 1 032 230 7.26 993 679 6.99 15.70
CC 1 126 357 7.93 739 821 5.21 88.94
GG 1 186 183 8.35 739911 5.21 100.73
GC 962 288 6.77 605 789 4.26 120.38
CG 531 105 3.74 139 773 0.98 229.03

Table 2. Representative eight-letter wordsa with high z-scores in the PPRs

Eight-letter word z-score (rank) P-value Total
count

No. of
vertebrate
TRANSFAC
(version 7.2)
site entries

gattacag +311.86 (01) 0 3149 5
aaaaaaaa +271.10 (02) 0 20828 4
tttttttt +264.51 (03) 0 22589 3
ggattaca +244.97 (04) 0 3039 4
gtaatccc +227.57 (05) 0 2381 3
tgtaatcc +215.46 (06) 0 2560 3
ctactaaa +203.21 (07) 0 1447 0
ttagtaga +197.92 (08) 0 1672 0
agtagctg +195.68 (09) 0 2048 3
tgtgtgtg +184.66 (10) 0 3866 5
tcgaactc +182.06 (11) 0 813 0
gtagctgg +181.49 (12) 0 1968 4
tagtagag +178.41 (13) 0 1588 1
attacagg +174.46 (14) 0 3153 4
ctaatttt +172.18 (15) 0 2263 1
ttgtattt +166.35 (16) 0 2187 0
ccgccgcc +141.04 (31) 0 1975 4
gggcgggg +108.41 (68) 0 3498 58
ggggcggg +104.18 (85) 0 3388 43
ggcggggc +79.13 (177) 0 2459 35
ggtgagtg +39.52 (640) 0 740 2
cgacgcgg +34.55 (791) 1.1e±256 171 0
tgacgtca +31.39 (906) 1.8e±211 245 26
gcatgcgc +30.20 (954) 1.8e±195 418 3

aWeb queries available at http://www.ncbi.nlm.nih.gov/CBBresearch/
Landsman/HRSE/.

952 Nucleic Acids Research, 2004, Vol. 32, No. 3



therefore also estimated extreme value distributions for the
z-score with two Monte Carlo methods.

Extreme value distribution of the z-score (Markov chain
method)

Using empirical transition probabilities derived from the
three-letter word counts in the PPRs, we simulated the second-
order Markov model underlying the z-scores. Each of 1000

resulting synthetic Markov data sets was composed of 4737
sequences of length 3001 to match our actual PPR data set. We
calculated z-scores for all possible eight-letter words using the
transitional frequencies from the empirical three-letter word
counts in the synthetic Markov data set under scrutiny. For
each synthetic Markov data set, we recorded the maximum
z-score over all possible eight-letter words. Finally, we
determined the 95th percentile (corresponding to a P-value

Figure 3. Major TFBSs in the PPRs. Positional scores for (A) TATA, (B) GC and (C) CAAT boxes (TRANSFAC accessions M00252, M00255 and M00254,
respectively). The relative scores of the boxes are plotted as a function of their positions in the PPRs on the left. The sequence logos (31) for TRANSFAC
count matrices corresponding to the boxes appear on the center. The relative scores of the boxes plotted as a function of their DNA location using a random
genomic data set are presented on the right. All computations were performed with the TFBS Perl modules for transcription factor detection and analysis as
described in Materials and Methods.
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of 0.05) of the 1000 synthetic maximum z-scores. The 95th
percentile from our simulation therefore approximates the
maximum z-score that is produced from the second-order
Markov model by chance alone 5% of the time. In this Markov
model of the PPRs, any z-score in the actual PPR data set that
lies above the 95th percentile can be deemed statistically
signi®cant at P < 0.05. Similar procedures were also carried
out for the minimum z-scores.

Extreme value distribution of the z-score (random
genomic method)

For each of the 1000 random genomic data sets, which were
composed of 4737 sequences of length 3001 to match our PPR

data set, we calculated (just as for the original PPR data set)
the z-scores of all possible eight-letter words. Just as for the
1000 synthetic Markov data sets, we calculated the 95th
percentile of the maximum z-score for the 1000 random
genomic data sets. As above for the Markov model, any
z-score in the actual PPR data set that lies above the 95th
percentile can be deemed statistically signi®cant at P < 0.05.
Similar procedures were also carried out for the minimum
z-scores.

Algorithms and implementations for the statistics

All statistical computations were carried out with the
Microsoft Visual C++ 6.0 compiler. The computer had a
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single 2.2 GHz Intel Pentium 4 CPU under the Microsoft
Windows 2000 operating system. Because the statistical
computations were in the central loop of a Monte Carlo
simulation, they had to be ef®cient.

We used a typical 1±1 hash function for the nucleotide
alphabet acgt, one that maps words of length h into a hash

space of integers between 0 and 4h ± 1. We then performed
string operations within the hash space. For example, our word
counts used a single pass of the relevant sequences. As each
new character was read from the sequence, we incrementally
updated the hashed integer for the word in the eight-letter
window under scrutiny. The two- and three-letter word counts

Figure 4. Representative vertebrate TRANSFAC matrices with clusters in the PPRs.
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were calculated from the eight-letter word counts. String
operations required by the formulas for the z-score were also
performed in the hash space.

RESULTS

Identi®cation and characterization of the putative
promoter regions (PPRs)

In all 24 chromosomes of the human genome, the distribution
of the 4737 PPRs paralleled that of the 18 474 reviewed (NM-
pre®xed) RefSeq transcripts (27) in NCBI build 33 (Fig. 1). As
a representative sample of human genes, therefore, our PPR
data set displays no obvious location bias.

Previous studies estimated that 40±50% of human genes
overlap with CpG islands (23,28). We found that 76% of our
PPRs (3608 of 4737) overlap with at least one CpG island. To
explore further the frequency of CpG and other dinucleotides
in the PPRs, we used our S-score to compare frequencies in the
PPRs with those in the human genome (Fig. 2A). In the PPRs
relative to randomly sampled genomic sequence, the S-score
indicated that of all dinucleotides, CpG was the most over-
represented (Table 1), as might have been expected.
Additionally, dinucleotides containing G and C are over-
represented, whereas dinucleotides containing A and T were
under-represented.

Figure 2B displays the CpG islands found in the PPRs and
the positional preferences of CpG dinucleotides relative to the
TSS. The CpG islands appear to cluster near the TSS, but in
many cases they extend over longer regions. The CpG
frequency generally increases with proximity to the TSS, but
it drops dramatically at positions ±29 to ±24 and ±1. Indeed,
TATA boxes prefer these positions (see Fig. 3) and, in accord
with this preference, the decrease in the CpG frequency was
balanced by an increase in the frequency of TpA, ApT and
ApA (data not shown).

Since we expected to ®nd important TFBSs in their known
locations, we examined the frequency and positional prefer-
ences of TATA, GC and CAAT boxes. We found that 1343
(28.4%) of the PPRs contained TATA boxes; 4197 (88.6%),
GC boxes; and 2839 (60%), CAAT boxes, in agreement with
previous ®ndings (23). Figure 3 displays the positional
preferences of these three motifs with respect to positions
±500 to +500 bp relative to the TSS; each motif hit of a
particular score at a particular position is represented as a dot.
The boxes appear to cluster relative to the TSS, revealing
possible regions preferred for transcription factor binding.
Additionally, to get an estimate of the background noise for
each box, we used a random genomic DNA data set; note that
the background noise decreases signi®cantly at relative scores
above 0.85. In Figure 4, we present examples of other
TRANSFAC matrices with apparent clustering tendencies.
The positional relative scores for 466 vertebrate TRANSFAC
matrices with respect to positions ±500 to +500 bp relative to
the TSS, along with their sequence logos, can be found at ftp://
ftp.ncbi.nlm.nih.gov/pub/marino/published/hs_promoters/
tfbs/. The positional preferences of all words clearly merit a
more detailed statistical analysis, and will be presented
elsewhere (L. MarinÄo-RamõÂrez, J.L. Spouge and D.
Landsman, in preparation).

Statistical analysis of eight-letter words in the PPRs

Many eight-letter words with high z-scores correspond to
known TFBSs in the vertebrate subset of the TRANSFAC
database, which in most cases is associated with one or more
binding factors and references in the literature (Table 2). The
most frequent eight-letter word found in the vertebrate subset
of TRANSFAC sites is gggcgggg, which is a DNA sequence
recognized by the Sp1 factor and was ranked number 68
according to its z-score. Indeed, other Sp1-related eight-letter
words also had high z-scores (e.g. ggggcggg, ggcggggc,
cccgcccc). We found TRANSFAC site entries for 12 of the 16
eight-letter words with the highest z-scores, suggesting a
biological role in transcriptional regulation for words with
high z-scores.

In addition, we found a few eight-letter words that are
involved in transcriptional regulation but received poor
z-scores. This is the case for atttgcat, which is the target for
the ubiquitous octamer-binding factor present in immuno-
globulin heavy chain genes (29). This observation can be
explained by the fact that our data set contains only a few
immunoglobulin genes, making dif®cult the identi®cation of
over-represented words present in those genes.

Unfortunately, the normal approximation implicit in the
z-scores does not closely parallel the corresponding extreme
value distribution (high or low). For example, in Table 2, the
eight-letter word gattacag received the highest z-score, z =
311.86; the word aaaaaaaa was next, with z = 271.10. Under
the normal approximation, even after multiplying by 65 536 to
correct for multiple testing, 12 615 words received a
Bonferroni upper bound less than 0.05, indicating a statistic-
ally signi®cant one-sided P-value (P < 0.05).

Table 3 presents the P < 0.05 levels for z-scores from some
related extreme value distributions (extreme value distribu-
tions do not require a correction for multiple testing). A
simulation of the actual Markov chain underlying the z-scores
estimated the 95th percentile of the corresponding extreme
value distribution at z = 31.00. Only 926 words had z-scores
above z = 31.00. Even more surprisingly, however, the
smallest maximum z-score produced by 1000 mock PPR data
sets sampled from random genomic DNA was z = 291.10. In
the actual PPR data set, only one z-score (z = 311.86) exceeded
z = 291.10. Moreover, the actual maximum z-score (z =
311.86) corresponded to the 4.7 percentile of maximum
z-scores among the 1000 mock PPR data sets from random
genomic DNA, a value that might be considered anomalously
low. Both the Markov and random DNA controls indicate that
the normal approximation overestimates the signi®cance of a
z-score.

Table 3. Extreme value distributionsa of the z-score

Upper z-score
P0.05 (words
above z-score)

Lower z-score
P0.05 (words
below z-score)

Markov chain method +31.00 (926) ±32.43 (2)
Random genomic method +357.83 (0) ±54.37 (0)

aWeb queries available at http://www.ncbi.nlm.nih.gov/CBBresearch/
Spouge/Articles/.
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We developed a web interface to perform queries for words
of length 2±8 and obtain the statistics described here in
addition to the PPRs or TRANSFAC sites that contain a
particular eight-letter word. The interface is available at the
following URL: http://www.ncbi.nlm.nih.gov/CBBresearch/
Landsman/HRSE/. The complete list of z-scores and their
random controls can be found at http://www.ncbi.nlm.nih.gov/
CBBresearch/Spouge/Articles/.

DISCUSSION

Using 5756 representative full-length cDNAs from the
DBTSS, we identi®ed PPRs for 4737 RefSeq transcripts.
The distribution and location of the PPRs in the human
genome indicate that they are a representative sample of the
reviewed RefSeq transcripts present in NCBI build 33 (Fig. 1).

We found that dinucleotides containing C or G are over-
represented in the PPRs, whereas dinucleotides containing T
or A are under-represented (Table 1 and Fig. 2). In addition,
76% of the PPRs overlapped at least one CpG island. Despite
our stringent de®nition of a CpG island, the percentage of
PPRs present in or containing CpG islands is somewhat higher
than the usual 40±50% given in previous studies (23,28),
suggesting a tight association between CpG islands and
regions surrounding the TSS. The CpG frequency generally
increased with proximity to the TSS (Fig. 2), but dropped
dramatically at positions ±29 to ±24 and ±1. Probably, the
presence of TATA boxes in this region causes the drop,
because they increase the frequency of the dinucleotides TpA,
ApT and ApA at those positions. Our characterization of
dinucleotide compositions near the TSS is in general agree-
ment with previous observations (5).

Figures 3 and 4 show that many TFBSs such as the TATA,
GC and CAAT boxes often occur near the TSS (23). We found
that most known TFBSs in TRANSFAC have preferred
locations between ±300 and +50 bp relative to the TSS. This
®nding suggests that the basal promoter and nearby upstream
regulatory elements are found in the region between ±300 and
+50 bp, in accord with a recent study from the Myers
laboratory, where 91% of 152 DNA fragments containing
regions ±550 to +50 relative to the TSS were active as
promoters in at least one of four cell types evaluated (8).

A statistical analysis of over-represented words using
z-scores yielded a ranked list of eight-letter words with
possible transcription factor binding activity (Table 2). Some
of these words contain mostly the bases a and t, which pair
weakly, with only two hydrogen bonds. These words therefore
might be facilitating the transcriptional unzipping of the DNA
double helix or might con®gure the DNA, and thus the
chromatin, in a higher order conformation which facilitates
transcription regulation. For example, the transcription bubble
found at DNA polymerase III transcribed gene initiation sites
requires the binding of a complex of several proteins,
including RNA polymerase III and transcription initiation
factor IIIB, to regions of open chromatin containing pro-
moters, and the opening up of 3±5 bp of DNA before ef®cient
transcription can be achieved (30). Interestingly, the words
aaaaaaaa and tttttttt in particular are over-represented relative
to the GC-rich background of the PPRs.

On a methodological note, extreme caution should be
exercised when interpreting the signi®cance of a z-score for an

eight-letter word. Much to our surprise, randomly selected
genomic DNA data sets yielded generally higher z-scores than
the experimentally selected PPR data set. In fact, theoreticians
have cautioned that the z-score is inaccurate as a normal
approximation to the corresponding extreme value distribution
(25). Our simulation of the Markov chain underlying the
z-score con®rmed the inaccuracy, showing that the normal
approximation was excessively optimistic as an estimate of
statistical signi®cance. Random genomic DNA should there-
fore be used as a statistical control on z-scores, whenever
appropriate and feasible.

Despite sounding this cautionary note on z-scores, we have
indeed found many eight-letter words at the top of our ranked
list which correspond to TFBSs in the TRANSFAC database.
Moreover, many of these words showed positional preferences
with respect to the TSS, suggesting a speci®c role in
transcriptional regulation. We are planning to explore the
positional preferences of eight-letter words with statistical
tests similar to the one described by Wolfsberg and collab-
orators (13).

ACKNOWLEDGEMENTS

We are grateful to Yutaka Suzuki and Riu Yamashita for
providing the full-length cDNAs from DBTSS, and Philip
Johnson for providing the code used for CpG island identi-
®cation. This study utilized the computing facilities at the
NCBI and the high-performance computational capabilities of
the Biowulf/LoBoS3 cluster at the National Institutes of
Health, Bethesda, MD.

REFERENCES

1. Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D.,
Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F.
et al. (2002) Generation and initial analysis of more than 15,000 full-
length human and mouse cDNA sequences. Proc. Natl Acad. Sci. USA,
99, 16899±16903.

2. Carninci,P., Waki,K., Shiraki,T., Konno,H., Shibata,K., Itoh,M.,
Aizawa,K., Arakawa,T., Ishii,Y., Sasaki,D. et al. (2003) Targeting a
complex transcriptome: the construction of the mouse full-length cDNA
encyclopedia. Genome Res., 13, 1273±1289.

3. Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C.,
Baldwin,J., Devon,K., Dewar,K., Doyle,M., FitzHugh,W. et al. (2001)
Initial sequencing and analysis of the human genome. Nature, 409,
860±921.

4. Ohler,U. and Niemann,H. (2001) Identi®cation and analysis of
eukaryotic promoters: recent computational approaches. Trends Genet.,
17, 56±60.

5. Down,T.A. and Hubbard,T.J. (2002) Computational detection and
location of transcription start sites in mammalian genomic DNA.
Genome Res., 12, 458±461.

6. Davuluri,R.V., Grosse,I. and Zhang,M.Q. (2001) Computational
identi®cation of promoters and ®rst exons in the human genome. Nature
Genet., 29, 412±417.

7. Bajic,V.B. and Seah,S.H. (2003) Dragon gene start ®nder: an advanced
system for ®nding approximate locations of the start of gene
transcriptional units. Genome Res., 13, 1923±1929.

8. Trinklein,N.D., Aldred,S.J., Saldanha,A.J. and Myers,R.M. (2003)
Identi®cation and functional analysis of human transcriptional promoters.
Genome Res., 13, 308±312.

9. Suzuki,Y., Yamashita,R., Nakai,K. and Sugano,S. (2002) DBTSS:
DataBase of human Transcriptional Start Sites and full-length cDNAs.
Nucleic Acids Res., 30, 328±331.

10. Wingender,E., Dietze,P., Karas,H. and Knuppel,R. (1996) TRANSFAC:
a database on transcription factors and their DNA binding sites. Nucleic
Acids Res., 24, 238±241.

Nucleic Acids Research, 2004, Vol. 32, No. 3 957



11. Cliften,P., Sudarsanam,P., Desikan,A., Fulton,L., Fulton,B., Majors,J.,
Waterston,R., Cohen,B.A. and Johnston,M. (2003) Finding functional
features in Saccharomyces genomes by phylogenetic footprinting.
Science, 301, 71±76.

12. Blanchette,M. and Tompa,M. (2002) Discovery of regulatory elements
by a computational method for phylogenetic footprinting. Genome Res.,
12, 739±748.

13. Wolfsberg,T.G., Gabrielian,A.E., Campbell,M.J., Cho,R.J., Spouge,J.L.
and Landsman,D. (1999) Candidate regulatory sequence elements for cell
cycle-dependent transcription in Saccharomyces cerevisiae. Genome
Res., 9, 775±792.

14. vanHelden,J., Aandre,B. and Collado-Vides,J. (1998) Extracting
regulatory sites from the upstream region of yeast genes by
computational analysis of oligonucleotide frequencies. J. Mol. Biol., 281,
827±842.

15. Brazma,A., Jonassen,I., Vilo,J. and Ukkonen,E. (1998) Predicting gene
regulatory elements in silico on a genomic scale. Genome Res., 8, 1202±
1215.

16. Sinha,S. and Tompa,M. (2002) Discovery of novel transcription factor
binding sites by statistical overrepresentation. Nucleic Acids Res., 30,
5549±5560.

17. Zhang,Z., Schwartz,S., Wagner,L. and Miller,W. (2000) A greedy
algorithm for aligning DNA sequences. J. Comput. Biol., 7, 203±214.

18. Takai,D. and Jones,P.A. (2002) Comprehensive analysis of CpG islands
in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA, 99, 3740±
3745.

19. Gardiner-Garden,M. and Frommer,M. (1987) CpG islands in vertebrate
genomes. J. Mol. Biol., 196, 261±282.

20. Matys,V., Fricke,E., Geffers,R., Gossling,E., Haubrock,M., Hehl,R.,
Hornischer,K., Karas,D., Kel,A.E., Kel-Margoulis,O.V. et al. (2003)
TRANSFAC: transcriptional regulation, from patterns to pro®les.
Nucleic Acids Res., 31, 374±378.

21. Lenhard,B. and Wasserman,W.W. (2002) TFBS: computational
framework for transcription factor binding site analysis. Bioinformatics,
18, 1135±1136.

22. Tsunoda,T. and Takagi,T. (1999) Estimating transcription factor
bindability on DNA. Bioinformatics, 15, 622±630.

23. Suzuki,Y., Tsunoda,T., Sese,J., Taira,H., Mizushima-Sugano,J., Hata,H.,
Ota,T., Isogai,T., Tanaka,T., Nakamura,Y. et al. (2001) Identi®cation and
characterization of the potential promoter regions of 1031 kinds of
human genes. Genome Res., 11, 677±684.

24. Schbath,S. (1997) An ef®cient statistic to detect over- and under-
represented words in DNA sequences. J. Comput. Biol., 4, 189±192.

25. Prum,B., Rodolphe,F. and de Turckheim,E. (1995) Finding words with
unexpected frequencies in DNA sequences. J. R. Stat. Soc. Ser. B,
Methodol., 57, 205±220.

26. Schbath,S., Prum,B. and de Turckheim,E. (1995) Exceptional motifs in
different Markov chain models for a statistical analysis of DNA
sequences. J. Comput. Biol., 2, 417±437.

27. Pruitt,K.D. and Maglott,D.R. (2001) RefSeq and LocusLink: NCBI gene-
centered resources. Nucleic Acids Res., 29, 137±140.

28. Larsen,F., Gundersen,G., Lopez,R. and Prydz,H. (1992) CpG islands as
gene markers in the human genome. Genomics, 13, 1095±1107.

29. Kemler,I., Schreiber,E., Muller,M.M., Matthias,P. and Schaffner,W.
(1989) Octamer transcription factors bind to two different sequence
motifs of the immunoglobulin heavy chain promoter. EMBO J., 8, 2001±
2008.

30. Kassavetis,G.A., Letts,G.A. and Geiduschek,E.P. (2001) The RNA
polymerase III transcription initiation factor TFIIIB participates in two
steps of promoter opening. EMBO J., 20, 2823±2834.

31. Schneider,T.D. and Stephens,R.M. (1990) Sequence logos: a new way to
display consensus sequences. Nucleic Acids Res., 18, 6097±6100.

958 Nucleic Acids Research, 2004, Vol. 32, No. 3


