
Diabetic retinopathy is a major microvascular compli-
cation of diabetes mellitus [1].Vascular endothelial growth 
factor (VEGF) induces retinal intercellular adhesion mole-
cule-1 (ICAM‑1) expression and initiates retinal leukocyte 
adhesion, which in turn leads to early blood- retinal barrier 
breakdown, capillary non-perfusion, and endothelial cell 
injury and death [2]. Diabetic retinopathy is also known to 
cause disruption of the external limiting membrane (ELM) 
and the photoreceptor inner segment-outer segment (IS-OS) 
junction, which in turn affects visual acuity [3,4].

ICAM-1 is a member of the immunoglobulin superfamily 
necessary for the adhesion of leucocytes to the capillary endo-
thelium [5]. ICAM-1 has been implicated in the development 
of leukostasis, a prominent feature of diabetic retinopathy 
[6]. Leukocytes adhere to the retinal vascular endothelium 
before any clinical pathology is apparent [7]. The expression 
of ICAM-1 is increased in diabetes, and its specific inhibi-
tion prevents diabetic retinal leukocyte adhesion and blood-
retinal barrier breakdown [8]. ICAM-1 is shed by the cell 

and detected in plasma as sICAM-1 [5]. ICAM-1 is the key 
mediator of the effect of VEGFs on retinal leukostasis [9].

VEGFs are crucial regulators of vascular development 
during vasculogenesis and angiogenesis [10]. Hypoxia is a 
key regulator of VEGF-induced ocular neovascularization 
[11]. The balance between VEGF and angiogenic inhibitors 
determines the proliferation of angiogenesis in diabetic reti-
nopathy [12]. VEGF is involved in the initiation of retinal 
vascular leakage and non-perfusion in diabetes [6].

The ELM and IS-OS junction can be observed by 
spectral domain optical coherence tomography (SD-OCT). 
The ELM separates the layers of rods and cones from the 
overlying outer nuclear layer and is a linear confluence of 
junctional complexes between Muller cells and photorecep-
tors [13,14]. The subcellular compartment of the photorecep-
tors includes an outer segment that absorbs light and converts 
it into electrical signals and an inner segment that has the 
metabolic functions of generating energy and proteins [15]. 
Retinal ELM and IS-OS junction integrity is essential for 
the maintenance of normal vision [16]. The current study 
was undertaken to correlate the serum levels of VEGF and 
ICAM-1 with the level of retinopathy and the grade of ELM 
and inner segment-outer segment (IS-OS) junction disruption 
in type 2 DM.
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Purpose: To correlate the serum levels of vascular endothelial growth factor (VEGF) and intercellular adhesion mol-
ecule-1 (ICAM-1) with the severity of retinopathy and disruption of the external limiting membrane (ELM) and inner 
segment-outer segment (IS-OS) junction in type 2 diabetes mellitus (DM).
Methods: Study subjects included patients with type 2 DM [diabetes mellitus with no retinopathy (No DR; n=19); non-
proliferative diabetic retinopathy (NPDR; n=19); proliferative diabetic retinopathy (PDR; n=20)] and healthy controls 
(n=19) between the ages of 40 and 65 years. Disruption of the ELM and the IS-OS junction was graded by spectral 
domain optical coherence tomography as follows: grade 0—no disruption of ELM and IS-OS junction; grade 1—ELM 
disrupted, inner segment-outer segment (IS-OS) junction intact; grade 2—both ELM and IS-OS junction disrupted. The 
serum levels of VEGF and ICAM-1were analyzed using the standard protocol.
Results: A significant difference was found between the serum levels of VEGF and ICAM-1 and the various study groups 
(p<0.001). A positive correlation was found between the grade of disruption and the levels of VEGF (r=0.45, p<0.0001) 
and ICAM-1 (r=0.40, p=0.0003). A significant positive correlation was found between logMAR visual acuity and grade 
of disruption (r=0.85, p<0.0001).
Conclusions: An increase in serum VEGF and ICAM-1 levels is associated with an increase in the severity of diabetic 
retinopathy and the grade of ELM and IS-OS junction disruption.

Correspondence to: Sandeep Saxena, Department of Ophthalmology, 
King George’s Medical University, Lucknow, India; Phone: +91 
9415160528; FAX: +91 9415160528; email: sandeepsaxena2020@
yahoo.com

http://www.molvis.org/molvis/v19/1760


Molecular Vision 2013; 19:1760-1768 <http://www.molvis.org/molvis/v19/1760> © 2013 Molecular Vision 

1761

METHODS

The authors confirm adherence to the tenets of the Declara-
tion of Helsinki. An institutional review board clearance was 
obtained. A written informed voluntary consent was received 
from all the study subjects.

The study was a tertiary-care-center–based cross-
sectional study of cases of type 2 diabetes mellitus and 
healthy controls. Consecutive cases of diabetes mellitus in 
the 40–65age group were included. Subjects with any of the 
following conditions were not enrolled in the study: other 
ocular or systemic diseases affecting the retinal vascular 
pathology, previous intravitreal injection(s), ophthalmic 
surgical or laser interventions, vitreous hemorrhage and 
tractional retinal detachment, media haze at any level giving 
signal strength of less than 5 on OCT, systemic diseases 
that may affect ICAM‑1and VEGF levels such as malignan-
cies, inflammatory disorders (e.g., asthma and rheumatoid 
arthritis), ischemic heart disease, or current or planned 
dialysis. The best-corrected visual acuity was recorded on 
the logMAR scale. Information regarding the patient’s age, 
gender, and disease duration was also recorded.

All the study subjects underwent detailed fundus evalu-
ation using stereoscopic slit-lamp biomicroscopy and indirect 
ophthalmoscopy. Digital fundus photography and flourescein 
angiography were done using a Zeiss fundus camera FF 
450 Plus with a pixel width of 0.0054 and an image size of 
2588×1958. Based on the fundus photography and fluorescein 
angiography, cases were divided into three groups: diabetes 
patients without retinopathy (n=19), with non-proliferative 
diabetic retinopathy (n=19), and with proliferative diabetic 
retinopathy (n=20) according to the early treatment of diabetic 
retinopathy study (ETDRS) classification [17]. Healthy 
controls (n=19) with no diabetes mellitus were also studied.

Subsequently, ELM and IS-OS junction integrity was 
evaluated using three-dimensional SD-OCT (Cirrus High 
Definition OCT from Carl Zeiss Meditec Inc., CA) with 
scans passing through the fovea. Every patient underwent 
macular thickness analysis using the macular cube 512 ×128 
feature. Two experienced observers masked to the status of 
diabetic retinopathy graded the disruption of the ELM and 
IS-OS junction as follows: grade 0—no disruption of ELM 
and IS-OS junction; grade 1—ELM disrupted, IS-OS junc-
tion intact; grade 2—both ELM and IS-OS junction disrupted 
(Figure 1).

Blood samples of 7 ml were collected from the study 
subjects. Blood was transferred to glass tubes for separation 
of serum. The tubes containing blood were set on a stand 
and left for 30 min to allow the blood to clot. Soon after, 

the samples were centrifuged at 1000 × g for 10 min, and 
the serum was carefully poured into other tubes. All samples 
were stored at −80 °C till assay of sICAM-1 and VEGF.

Assay of VEGF was performed using the Human VEGF 
enzyme linked immunosorbent assay (ELISA) kit procured 
from Invitrogen (Carlsbad, CA). The reagents in the kit were 
prepared following the standard protocol provided with 
the kit. Briefly, an incubation buffer (50 µl) was added to 
the multiwell plates precoated with a monoclonal antibody 
specific for the VEFG protein. The VEGF standard provided 
with the kit was reconstituted with the standard diluent buffer. 
Serial dilutions of the VEGF standard (0, 23.4, 46.9, 93.8, 188, 
375, 750, 1500 pg/ml) were done following the instructions 
and run in parallel. The standard amount (100 µl) was added 
to the appropriate microtiter wells. Diluent buffer (50 µl) and 
a serum sample (50 µl) were added to the well. Following 
this, the plate was incubated at room temperature for 2 h. 
The contents of the plate were removed using multichannel 
pipettes soon after the incubation was over. The plate was 
washed with the washing buffer four times to remove any 
unbound antigens (proteins). Biotinylated Hu VEGF (Biotin 
Conjugate, 100 µl) was added to each well, and the plate was 
incubated again for 1 h at room temperature. The contents 
were removed from the plate, which was then washed four 
times. Following this, a substrate of 100 µl of a streptavidin-
HRP working solution was added to each well, and the plate 
was incubated for 30 min at room temperature. The contents 
were removed from the plate, which was again washed four 
times. A chromogen solution (100 µl) was added to each 
well to stabilize the chromogen that turned blue. Following 
this, the plate was incubated for 30 min at room temperature 
in the dark. The reaction was stopped by adding 100 µl of 
the solution provided in the kit to each well. The blue color 
that developed earlier then turned yellow. The intensity of 
the color was read with an ELISA plate reader (Synergy HT, 
Biotech, Winooski, VT) at 450 nm. The calibration curve 
of the standard VEGF was plotted against the VEGF with 
absorbance on the x‑axis and concentration on the y‑axis. The 
concentration of VEGF in the serum sample was calculated 
based on the standard curve. The values were expressed as 
pg/ml.

Assay of sICAM-1 in the serum was performed using 
the Human sICAM-1 ELISA kit procured from Invitrogen. 
The reagents were prepared following the standard protocol 
provided with the kit. Briefly, an incubation buffer (50 µl) 
was added to the multiwell plate precoated with a monoclonal 
antibody, specific for the sICAM-1protein. The sICAM-1 
standard provided with the kit was reconstituted with the 
standard diluent buffer. Serial dilutions of the sICAM-1 

http://www.molvis.org/molvis/v19/1760


Molecular Vision 2013; 19:1760-1768 <http://www.molvis.org/molvis/v19/1760> © 2013 Molecular Vision 

1762

Figure 1. Spectral domain optical 
coherence tomography (OCT) 
showing grades of external 
limiting membrane (ELM) and 
inner segment-outer segment 
(IS-OS) junction disruption. Spec-
tral domain OCT in A, B, and C 
showing no disruption of ELM 
(arrowhead) and IS-OS (arrow) , 
only ELM disruption with intact 
IS-OS and both ELM and IS-OS 
disruption respectively. A: grade 
0—no disruption of ELM (arrow-
head) and IS-OS junction (arrow); 
B: grade 1—ELM disrupted, IS-OS 
junction intact; C: grade 2—both 
ELM and IS-OS junction disrupted.
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standard (0, 0.625, 1.25, 2.5, 5, 10 ng/ml) were done following 
the instructions and run in parallel. The standard amount (100 
µl) was added to the appropriate microtiter wells. A sample of 
100 µl diluted to 1:100 with the diluent buffer of the controls 
and the cases was added to these wells, and diluted HRP-
Conjugate (50 µl) was added to each well. Following this, the 
plate was incubated at room temperature for 2 h. The contents 
of the plate were removed using multichannel pipettes after 
the incubation was over. The plate was washed with the 
washing buffer three times to remove any unbound antigens 
(proteins). When TMB Substrate Solution (100 µl) was added 
to each well, the well solution began to turn blue. Following 
this, the plate was incubated for 10 min at room temperature 
in the dark. The reaction was stopped by adding the stop 
solution (100 µl) to each well. The blue color that developed 
earlier then turned yellow. The intensity of the color was 
read with an ELISA plate reader (Synergy HT, Biotech) at 
450 nm. The calibration curve of the standard sICAM-1 was 
plotted against the sICAM-1with absorbance on the x-axis and 
concentration on the y-axis. The concentration of sICAM-1in 
the serum sample was calculated based on the standard curve. 
The values were expressed as ng/ml.

Statistics: The control, No DR, and NPDR groups each 
included 19 cases. Twenty cases were included in the PDR 
group. The VEGF and ICAM-1 levels in the study groups 
were compared by single-factor analysis of variance 
(ANOVA). For pairwise comparison between the groups, 
Tukey’s test for multiple comparisons was used. Spearman’s 
and Pearson’s correlation analysis was used to assess the 
association between the variables. The association of VEGF 

and ICAM-1 with severity of retinopathy was analyzed by 
using multiple regression analysis. Interobserver correlation 
was calculated using Pearson’s correlation analysis with 
p<0.05 being considered statistically significant.

RESULTS

Table 1 shows the distribution of age, sex, duration of 
diabetes, and blood glucose levels in the study groups. 
On comparing the mean age of the four groups, ANOVA 
revealed no significant difference (p>0.05). The χ2 test 
revealed a similar sex proportion among all the four groups 
(χ2=7.1; p=0.068). On comparing the duration of diabetes, 
ANOVA revealed a significant difference among the study 
groups (F=17.79, p<0.0001). The level of diabetic retinopathy 
increased as the duration of the disease increased. In the 
NPDR group, 16 patients had diabetic macular edema. All 
20 patients in the PDR group had diabetic macular edema. 
Mean macular thickness in µm as measured by SD-OCT was 
243.31±13.40 in the control group, 261.52±18.10 in the No DR 
group, 304.57±53.42 in the NPDR group, and 321.31±72.65 in 
the DR group.

Mean logMAR visual acuity was 0.05 for control, 0.27 
for No DR, 0.65 for NPDR, and 1.16 for PDR. One-way 
ANOVA revealed a significant difference in visual acuity in 
each group (F=43.75, p<0.0001). Visual acuity decreased as 
the level of retinopathy increased. Interobserver agreement in 
the grading of the ELM and IS-OS junction disruption was 
0.96. Figure 2 shows the distribution of visual acuity for the 
different grades of disruption of the ELM and IS-OS junction. 
The mean logMAR visual acuity was 0.018 for grade 0, 0.47 

Table 1. Distribution of age, sex, duration of diabetes, blood glucose 
and glycosylated hemoglobin levels in the study groups.

Variable
Group

Control No DR NPDR PDR
Age (years) Mean ± SD 52.63±8.04 52.00±6.07 57.21±4.84 53.35±7.14

Sex
Male 6 12 13 13

Female 13 7 6 7
Duration of diabetes mellitus 

(years) Mean ± SD Not applicable 7.16±6.12 10.26±5.89 11.08±4.61

Blood 
glucose (mg/
dl) Mean ± 

SD

Fasting 94.35±8.22 115.95±31.39 133.95±65.56 134.60±46.99

Postprandial 139.20±17.17 184.89±61.89 193.16±74.38 208.15±62.13

Glycosylated hemoglobin (% 
of total hemoglobin) Mean 

± SD
6.18±1.04, 6.46±0.55, 7.19±1.51, 7.89±1.81,

No DR: no diabetic retinopathy; NPDR: non proliferative diabetic retinopathy; PDR: proliferative diabetic 
retinopathy.
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for grade 1, and 1.06 for grade 2. A significant positive corre-
lation was found between logMAR visual acuity and grade of 
disruption (r=0.85, p<0.0001). Visual acuity decreased as the 
grade of ELM and IS-OS junction disruption increased. Table 
2 shows the distribution of the grade of disruption in various 
study groups. ANOVA revealed that the grade of disruption 
increased significantly as the level of retinopathy increased 
(p<0.0001). The grade of disruption correlated significantly 
with the level of retinopathy (r=0.726; p<0.001)

The mean levels of VEGF and ICAM-1 in each group are 
shown in Table 3. ANOVA revealed that VEGF and ICAM-1 
were significantly different between the study groups 
(p<0.001). Tukey’s multiple comparisons showed that VEGF 
and ICAM-1 were significantly different between controls 

and NPDR, between controls and PDR, and between No DR 
and PDR (p<0.001). For other pairs of groups, no significant 
difference was observed. The association of VEGF and 
ICAM-1 with severity of retinopathy was analyzed using 
multiple regression analysis (Table 4). The odds ratio (OR) 
was adjusted for confounding factor HbA1c. A significant 
association was found between the severity of retinopathy 
and VEGF (OR=3.91, 95% CI 1.023–14.97, p<0.05) and 
ICAM-1 (OR=3.98, 95% CI 1.04–15.27, p<0.05). Figure 3 
and Figure 4 show the distribution of VEGF and ICAM-1 
levels in the different grades of disruption, respectively. The 
levels of VEGF and ICAM-1 increased as grade of disruption 
increased. One-way ANOVA revealed a significant differ-
ence between VEGF levels and different grades of disruption 
(p=0.0001). From Tukey’s multiple comparison, a significant 
difference was found between VEGF levels in grade 0 and 
grade 2 disruption (p<0.05). No significant difference was 
found between grade 1 and 2 disruption. One-way ANOVA 
showed a significant difference between ICAM-1 levels and 
different grades of disruption (p=0.0005). From Tukey’s 
multiple comparison, a significant difference was found 
between ICAM-1 levels in grade 0 and grade 2 disruption 
(p<0.001). No significant difference was found between grade 
1 and 2 disruption.

A positive correlation was found between the grade 
of disruption and the levels of VEGF (r=0.45, p<0.0001) 
and ICAM-1 (r=0.40, p=0.0003). A significant positive 

Figure 2. Visual acuity in different grades of external limiting 
membrane (ELM) and inner segment-outer segment (IS-OS) junc-
tion disruption in the different study groups. 27. Box and whisker 
plot showing visual acuity in the three grades of ELM and IS-OS 
junction disruption in the study groups. A significant positive 
correlation was found between logMAR visual acuity and grade 
of disruption (r=0.85, p<0.0001). Visual acuity decreased with 
increase in the grade of disruption of ELM and IS-OS junction. 
Data are shown as upper and lower quartile, median and range. 
Grade 0: No Disruption; Grade 1: ELM disrupted IS-OS junction 
intact; Grade 2: Both ELM and IS-OS junction disrupted; Q1: upper 
quartile; Q3: lower quartile. 

Table 2. Distribution of grade of ELM and IS-OS 
junction disruption in the study groups.

Group
Grade of disruption

Grade 0 Grade 1 Grade 2
Control 19 0 0
No DR 15 4 0
NPDR 4 6 9
PDR 1 2 17

Grade 0: No Disruption; Grade 1: ELM disrupted IS-OS junc-
tion intact; Grade 2: both ELM and IS-OS junction disrupted; 
No DR: no diabetic retinopathy; NPDR: non proliferative dia-
betic retinopathy; PDR: proliferative diabetic retinopathy.

Table 3. Mean ± SD of serum VEGF and 
ICAM-1 levels in the study groups.

Group VEGF ± SD (pg/
ml)

ICAM-1 ± SD (ng/
ml)

Control 138.73±64.38 484.11±78.41
No DR 210.7±120.2 592.6±119.3
NPDR 307.0±125.9 643.7±108.0
PDR 404.7±192.5 742.8±175.8

No DR: no diabetic retinopathy; NPDR: non proliferative 
diabetic retinopathy; PDR: proliferative diabetic retinopathy; 
VEGF: vascular endothelial growth factor; ICAM-1: intercel-
lular adhesion molecule-1.

Table 4. Association of VEGF and ICAM-1 
with severity of retinopathy (non prolifera-
tive and proliferative diabetic retinopathy).

Variables Odds Ratio 95% CI p
VEGF 3.91 1.023–14.97 <0.05

ICAM-1 3.98 1.04–15.27 <0.05

Odds ratio has been adjusted for glycosylated hemoglobin.
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correlation was also found between levels of VEGF and 
ICAM-1 (r=0.361, p=0.001).

DISCUSSION

This study evaluated the status of serum VEGF and ICAM-1 
levels and their association with ELM and photoreceptor 
IS-OS junction disruption in different stages of diabetic 
retinopathy. The present study also allowed a direct in-vivo 
comparison of ELM and photoreceptor IS-OS junction 
disruption with the level of retinopathy and visual acuity.

Several authors have postulated the importance of VEGF 
and ICAM-1 in the development of diabetic complications. 
Increased concentration of VEGF in diabetic retinopathy has 
been described in previous studies [12,18,19]. Baharivand 
et al. [20] found that the vitreous and serum VEGF levels 
were significantly higher in PDR. Significant correlation was 
observed between vitreous and serum VEGF levels. Increased 
ICAM-1 concentration in diabetic retinopathy has also been 
previously reported [21,22]. Elevated levels of ICAM-1, in 
serum and vitreous, have been found in PDR by Mroczek et 
al. [23]. However, vitreous VEGF and ICAM-1 levels appear 
to be more important than serum VEGF levels in the patho-
genesis of the disease. Hernandez et al. [24] demonstrated a 

correlation between VCAM-1 and VEGF in the vitreous fluid 
of diabetic patients. Similarly, the effect of VEGF on retinal 
vascular ICAM-1 expression was determined with retinal flat 
mounts by Lu Ming et al. [25]. VEGF increased capillary 
endothelial cell ICAM-1 levels in a dose- and time-dependent 
manner. The concentration of VEGF required to increase 
ICAM-1 in vitro was comparable to that measured in the 
vitreous of eyes with retinal ischemia and neovascularization.

Our study demonstrated that serum levels of VEGF and 
ICAM-1 increased significantly as the level of retinopathy 
increased from diabetes with no retinopathy to proliferative 
retinopathy (p<0.001). Increased levels of ICAM-1 caused 
vascular endothelial damage with formation of acellular 
capillaries. This leads to retinal ischemia and upregulation 
of VEGF. High levels of VEGF lead to retinal neovasculariza-
tion. The amount and duration of VEGF exposure required 
for blood-retina barrier breakdown is less than that required 
for neovascularization [26].Thus, elevated levels of ICAM-1 
and VEGF come into play even before the signs of PDR have 
set in. The damage caused by them increases as the duration 
of the disease increases. The ability of VEGF to increase the 
expression of ICAM-1 has been studied using animal models 
[2,9,27,28]. In the present study also, VEGF significantly 
correlated with ICAM-1 levels (r=0.36; p<0.001).

Figure 3. Vascular endothelial growth factor (VEGF) levels in 
different grades of external limiting membrane (ELM) and inner 
segment-outer segment (IS-OS) junction disruption in the study 
groups. Box and whisker plot showing the distribution of serum 
levels of VEGF in the three grades of ELM and IS-OS junction 
disruption in the study groups There was an increase in the levels 
of VEGF with increase in the grade of disruption. A significant 
difference was found between VEGF levels and different grades of 
disruption (p=0.0001). A significant difference was found between 
VEGF levels in the grade 0 and grade 2 disruption (p<0.05). No 
significant difference was found between grade 1 and 2 disruption. 
Data are shown as upper and lower quartile, median and range. 
Grade 0: No Disruption; Grade 1: ELM disrupted IS-OS junction 
intact; Grade 2: both ELM and IS-OS junction disrupted; Q1: upper 
quartile; Q3: lower quartileICAM-1 in different grades of ELM and 
IS-OS junction disruption in the study groups. 

Figure 4. Intercellular adhesion molecule-1 (ICAM-1) in different 
grades of external limiting membrane (ELM) and inner segment-
outer segment (IS-OS) junction disruption in the study groups. 
Box and whisker plot showing the distribution of ICAM-1 levels 
in the three grades of ELM and IS-OS junction disruption in the 
study groups. There was an increase in the levels of ICAM-1 with 
increase in the grade of disruption. A significant difference was 
found between ICAM-1 levels and different grades of disruption 
(p=0.0005). A significant difference was found between ICAM-1 
levels in the grade 0 and grade 2 disruption (p<0.001). No signifi-
cant difference was found between grade 1 and 2 disruption. Data 
are shown as upper and lower quartile, median and range. Grade 
0: No Disruption; Grade 1: ELM disrupted IS-OS junction intact; 
Grade 2: both ELM and IS-OS junction disrupted; Q1: upper quar-
tile; Q3: lower quartile.
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There have been no previous studies comparing levels of 
VEGF and ICAM-1 with ELM and IS-OS junction disruption. 
Using an adult-mouse model, Yamada et al. [29] highlighted 
the association of photoreceptor degeneration and increased 
expression of VEGF in RPE cells. This may explain the asso-
ciation of photoreceptor degeneration and neovascularization 
with the progression of the severity of retinopathy. An asso-
ciation between photoreceptor degeneration and ICAM-1 has 
not been reported yet.

The novel grading system of ELM and IS-OS junction 
disruption that was developed showed excellent reproduc-
ibility. This grading system was an important predictor of 
disease level and visual outcome in patients with diabetic 
retinopathy. Our study showed for the first time that disrup-
tion of the ELM occurred even before disruption of the photo-
receptor IS-OS junction. The ELM can be considered part of 
the retinal barrier that can be disrupted by pathological condi-
tions contributing to fluid accumulation in the macula [30]. 
The shortening of the photoreceptor inner segment might be 
a secondary consequence of the fragmented ELM [31]. This 
could be the reason why disruption of the ELM was noted 
earlier than IS-OS junction disruption. As the disease level 
increased, ELM and IS-OS junction disruption increased 
(r=0.81; p<0.001).The disruption scale correlated significantly 
with logMAR visual acuity (r=0.85; p<0.001). Several studies 
have concluded that the status of ELM and IS-OS junction is 
closely associated with visual acuity in diabetic retinopathy 
[3,4,32-34]. Yamauchi et al. [35] studied the ELM and IS-OS 
in brown Norwegian rats and found that the IS-OS and ELM 
disappeared after euthanasia. The authors thus proposed 
that the origin of the IS-OS and ELM, as identified in OCT 
images, was related to the biological activities of the photo-
receptor cells. In the present study, increases in the level of 
diabetic retinopathy resulted in decreased biological activity 
of the ELM and IS-OS junction, which in turn resulted in 
the disruption of these layers and a decrease in visual acuity.

A statistically significant positive correlation was found 
between disruption of the ELM and IS-OS junction with 
VEGF (r=0.45; p<0.0001) and ICAM-1 (r=0.42; p<0.0001). 
Increased levels of VEGF and ICAM-1 are involved in the 
initiation of the disease process. Disruption of the ELM and 
IS-OS junction is a later consequence of this increase in 
levels of VEGF and ICAM-1.
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