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Abstract

Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution
baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in
remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining
species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we
combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high
resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications.
Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution
of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie
Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation
accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately
and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline
for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the
threats this species is currently facing under altering environmental conditions. The method presented here has
applications to monitoring a range of species, particularly in remote and isolated environments.
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Introduction

There is increasing interest in monitoring landscape-scale
changes in the distributions of plants caused by impacts
including climate change, species invasions, and management
actions [1,2]. Monitoring changes in the distribution of individual
species or communities often requires the creation of accurate
high-resolution maps. Such maps can be used to monitor
responses to environmental changes at regional or landscape
scales, and hence complement plot-level studies. The
production of these maps is time-consuming and expensive,
and extensive research has been directed at improving
mapping methods [3,4]. The field of remote sensing has
produced a wide range of semi-automated image interpretation
methods to improve the repeatability and objectivity of the

resulting maps [4]. As part of efforts to improve accuracy, these
methods are expanding rapidly on a number of fronts, including
the development of object-based image analysis techniques
[5], the merging of terrain and spectral data in image
classifications (e.g. [6]), the use of texture measures to provide
contextual information (e.g. [7–9]), and sophisticated
classification algorithms such as random forests (RF) [10–12].
Incorporating environmental variables into satellite image
classification (e.g. [6,8,13]) has the potential to improve the
classification by pairing structural and disturbance information
from the satellite imagery with the potential habitat information
for individual species from species distribution modelling.

A major division exists between pixel- and object-based
image analysis in remotely sensed image classification
techniques. Pixel-based classification retains maximum spatial
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resolution, but has limited ability to incorporate information from
neighbouring pixels; although the inclusion of texture measures
provides some contextual information [9]. When applied to very
high resolution imagery, the variability of the pixels often results
in speckled classification results [5,8]. In contrast, geographic
object-based image analysis (GEOBIA) starts by segmenting
the image into objects made up of contiguous, spectrally similar
pixels and the classification is then applied to the objects rather
than the pixels. GEOBIA is becoming increasingly popular as a
method for managing very high resolution satellite imagery,
because the pixels are often smaller than the individual entities
to be mapped [5]. However, it is not always obvious a priori
which level of analysis would be most appropriate for a given
mapping application. Where the pixel size is consistently
smaller than the entities being mapped, as often occurs with
very high resolution imagery, there are clear advantages to an
object-based approach, which are lost when the entities being
mapped are typically smaller than an individual pixel [5]. It is
less clear which of the two approaches is likely to be most
useful for mapping entities that vary in size from smaller than a
single pixel to larger than multiple contiguous pixels [14].

To improve the interpretation of such data, researchers have
begun using tools from the field of machine learning, including
RF classification [12]. RF is an ensemble classifier that builds a
forest of classification trees, using a different bootstrapped
training sample and randomly selected set of predictor
variables for each tree. Unweighted voting is then used to
produce an overall prediction for each site in the sample
[10,15]. RF has been used to classify vegetation with very high
accuracy in a number of mapping applications, including
mountain forest communities [16], cropping [11], invasive
species [12,17,18], and predicting rare species distributions
[12]. It has also been shown to perform well in comparison to
decision trees and other ensemble classifiers [11] and is able
to capture complex, non-linear interactions among noisy, non-
normal predictor variables [12,16]. In addition, RF provides
measures of variable importance that can be used for
exploratory ecological interpretation [11,12,16].

In this study, we examine the capacity of RF for mapping a
sub-Antarctic cushion plant species using pixel- and object-
based classification of environmental and spectral variables.
Our aim is to map the distribution of a critically endangered
cushion plant that is endemic to sub-Antarctic Macquarie
Island. Azorella macquariensis Orchard (APIACEAE) was listed
as Critically Endangered under the Environment Protection and
Biodiversity Conservation Act 1999, Australia after we
discovered widespread dieback in late 2008 [19]. To monitor
changes in the distribution of Azorella on the island, the first
step was to produce a high-accuracy fine-scale map of its
distribution at the time the dieback was first discovered and
when many of the first wave of dead cushion plants were still
largely intact, to approximate the distribution pre-dieback
distribution. Investigations into the cause of the dieback are
continuing.

To produce the map, we extracted a vegetation index and
several texture measures from very high resolution
WorldView-2 satellite imagery and derived several
environmental variables from a fine-resolution digital elevation

model (DEM). We then examined the effect of pixel- and
object-based analysis on the accuracy of the image
classifications and tested how well these classifications were
able to predict both the presence and the degree of Azorella
cover at the landscape scale.

Methods

Study Site
Macquarie Island (54°30’ S, 158°57’ E) is 12,390 ha in area

and dominated by a plateau at 200–400 m altitude, with
Azorella macquariensis occupying the highest parts of the
island. The cover of Azorella in the landscape is highly
variable. It occurs as small cushions on the fringes of mid-
altitude plateau grasslands, forms extensive cushions on east-
facing higher slopes, with the cushions becoming progressively
smaller and sparser in feldmark (vegetation with less than 50%
cover) and polar desert zones (Figure 1). In feldmark and polar
desert, Azorella is usually the dominant vascular plant species,
with other species occurring as epiphytes or between cushions.
The distribution of cushions tends to be patchy at all spatial
scales ranging from tens of centimetres to the entire plateau.
There is therefore no ‘natural’ scale of analysis, and both
image pixels and objects are likely to contain mixtures of
Azorella and other species. Thus, the entity being mapped is a
patch that contains Azorella, and the minimum size of that
entity is uncertain and variable.

Field data
Macquarie Island was visited over two summers (November–

February) in 2008/9 and in 2009/10, with access granted
through permits issued by Tasmania’s Parks and Wildlife
Service and the Macquarie Island Research Advisory
Committee. During these visits 349 sites were examined, of
which 201 were in the cloud-free portion of the available
satellite image (Figure 2). Most sites (179) were located using
a geographically stratified random sampling design (GeoStrat),
with some additional sampling (29 sites) utilising existing sites
located in homogeneous patches of plant communities, which
are part of an ongoing study [20]. GeoStrat used an
unsupervised fuzzy c-means classification of the island based
on six terrain variables that were anticipated to affect
microclimate (elevation, slope, solar radiation, surface
curvature, topographic wetness index, and topographically-
deflected mean wind speed) and a normalised difference
vegetation index (NDVI) derived from QuickBird satellite
imagery.

At each site, a 10 x 10 m plot was laid out and an 8.75 m2

(2.5 x 3.5 m) photograph was taken at each corner of the plot
(i.e. four photographs per plot) using an elevated camera
system with a 14 mm lens suspended 2.6 m above the plots.
Point-intercept analysis was used to estimate the cover of all
vascular plant species and broad categories of other cover
classes, including bryophytes and lichens using Coral ,Point
Count software [21] by identifying the cover class underlying
100 randomly located points placed over each photograph. The
results were averaged for each plot. Azorella occurred in one-
third of the plots, ranging from 0.25–26.6% cover at those sites
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(Table 1). The field plot size was chosen to ensure that the
sampled area on the ground represented the pixel at the centre
of the plot, regardless of errors in GPS positioning (especially
in steep coastal areas where GPS accuracy was reduced) and
registration of the image.

Initial attempts to apply regression models to the cover data
proved unsuccessful, as evidenced by a random forest multiple
regression where using all input variables only explained 29%
of the variance. We subsequently classified the data into two
and three classes. The binary classification divided the sites
into present (65 sites) and absent (135 sites). The ternary
classification divided the sites into absent (135 sites), sparse

(44 sites), and moderate cover (21 sites), with the boundary
between the sparse and moderate classes set at 5% cover.
The binary classification was the primary outcome of this
analysis, but if it is possible to accurately distinguish very
sparse and moderate cover of Azorella, then it will likely be
possible to monitor a decrease in Azorella cover, as well as
contraction of its range. In addition, we believed that it was
important to explore the nature of the errors of classification -
i.e. whether the strongest separation was between presence/
absence or between sparse/moderate cover of Azorella.

Due to the reduction in sample size caused by the extensive
cloud cover in the available satellite imagery, we were unable

Figure 1.  Azorella growth patterns.  Azorella exhibits a range of growth patterns on Macquarie Island, from sparse polar desert
(top left) to dense herbfields (bottom right). This variability increases the challenges involved in modelling its distribution.
doi: 10.1371/journal.pone.0072093.g001
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Figure 2.  Study area.  Field sites on northern Macquarie Island, showing the observed cover class of Azorella. Panel (a) shows the
location of Macquarie Island in the Southern Ocean; (b) shows the extent of the island; and (c) shows the extent of the WorldView-2
image and location of the training samples. Those field plots in areas obscured by cloud in the image were excluded from the
analysis.
doi: 10.1371/journal.pone.0072093.g002

Mapping Sub-Antarctic Cushion Plants

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e72093



to divide the field data into training and test datasets. To
validate the classifications, we therefore used data on Azorella
presence and absence acquired for other ongoing vegetation
studies on the island [22]. This dataset comprised 187
randomly located sites, of which 108 contained Azorella and 79
did not. These data could not be divided into moderate and
sparse classes comparable to the data used for training the
ternary classifications.

Satellite imagery
For northern Macquarie Island, two recent very high

resolution satellite images were available for analysis. A cloud-
free QuickBird image of the entire island with 2.4 m pixels
obtained in March 2005 was used for the GeoStrat sampling
design. A mostly cloud-free (88.9%) WorldView-2 image of the
northern half of the island, with 2 m multispectral pixels and
eight spectral bands, was obtained in December 2009.
Atmospheric correction was trialled using the algorithms in
ENVI FLAASH; however, the resulting spectra did not meet
expectations. This is probably due to poor parameterisation of
the atmospheric correction model given unreliable optical
thickness parameters. We therefore chose to work with the DN-
values of the WorldView-2 image. Given the focus on
classification of a single image we did not worry too much
about the absolute values. The relative differences between the
classes were most important for the classification. From this
image, we calculated an NDVI layer and a set of texture
measures, which have been shown elsewhere to improve the
accuracy of image classification [18,23]. NDVI is a widely used
index that captures the relative proportions of red and near
infrared (NIR) reflectance in a satellite image, as a proxy for the
amount of live vegetation in a pixel [24]. Texture measures
provide information about the spatial context of a pixel [23].
Here, we used grey-level co-occurrence matrix (GLCM) texture
measures [25,26]. The GLCM was calculated for the NDVI
image using an 11 x 11 cell kernel. GLCM computes a matrix
that compares the greyscale values of neighbouring cells in a
moving window. From the GLCM, we calculated eight texture
measures: mean, variance, homogeneity, contrast,
dissimilarity, entropy, angular second moment, and correlation
[25].

Table 1. Descriptive statistics of Azorella cover in the 200
field sites used to train the image classifications.

Statistic Present Class Total
Count 135 201
Mean Cover (%) 4.8 1.5
St Dev Cover (%) 5.5 3.8
Median Cover (%) 2.4 0
Minimum (%) 0.3 0
Maximum (%) 26.6 26.6
Skewness 1.9 3.6
Kurtosis 4.1 15.2

Terrain data
To explore the controlling environmental parameters

influencing the distribution of Azorella we incorporated a suite
of terrain variables (elevation, wetness, mean topographically-
deflected wind speed, curvature, solar radiation, distance from
coast, topographic position [27–31]) as proxies for direct
environmental variables (see 26) in the analysis (Table 2). We
did not include measures of climate variability, despite their
popularity in the species distribution modelling literature [33],
because Macquarie Island is small and isolated enough to
have only a single meteorology station. It is hence not possible
to interpolate climate variables across the island, although a
lapse rate of around 0.8°C per 100 m altitude has been
recorded [34] and this is included by proxy in the elevation
data.

Elevation values were taken from a 5 m resolution DEM of
Macquarie Island derived from Airborne Synthetic Aperture
RADAR data acquired in 2000 by the NASA PACRIM Mission
2, with heights accurate to 5 m [35,36]. From this DEM, we
derived the slope, aspect, mean topographically-deflected wind
speed, solar radiation, topographic wetness index, surface

Table 2. Terrain variables incorporated in the random forest
analyses of Azorella distribution on Macquarie Island.

Variable Description

Elevation
The vegetation on Macquarie Island exhibits strong altitudinal
gradients, although elevation only indirectly affects plant
physiology [33,42].

Curvature
Spatial data on precipitation were unavailable due to the
small size of the island, but surface curvature is known to
affect water flow patterns [27].

Wetness index

Topographic wetness index models potential areas of water
accumulation. Here, a Monte Carlo simulation with an error
term of 5 m and 1000 simulations was used to reduce the
effect of DEM errors on the resulting surface [28].

Topographically-
deflected wind
speed

The prevailing wind on Macquarie Island comes from the
west and north west, at a mean speed of 35.1 km/h [51], and
we used a topographically-deflected wind speed model to
estimate the wind speed across the island [29,30].

Solar radiation

Solar radiation, as the source of energy for photosynthesis, is
likely to have a direct impact on vegetation distributions. This
was calculated using the solar radiation function in ArcGIS
9.3, for the period of one year.

Distance from
coast

Distance from the coast corresponds with the distributions of
several plant species on Macquarie Island, including
Azorella. To incorporate this, we calculated the surface (not
planar) distance from the coastline [44].

Ridgeness/
valleyness

Azorella is observed to be more common in higher, more
exposed sites than in gullies, even at high elevations. We
calculated two multi-scale measures of topographic position,
namely ridgeness and valleyness, using the multi-scale
landform classification algorithm in the LandSerf package
[52]. This calculated the proportion of scales at which each
cell occurred in a ridge or valley for neighbourhood sizes
ranging from 3 x 3 to 49 x 49 cell neighbourhoods.
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curvature (including planar and profile curvature), ridgeness,
valleyness, and distance from the coast variables.

Random Forest Classification
Random forest classification (RF) was used to predict the

presence of Azorella on the basis of high resolution terrain and
spectral data. In these analyses, only two user-determined
variables were required: the number of variables in the random
subset at each node, and the number of trees in the forest.
Some studies suggest that RF can be insensitive to the first of
these (e.g. Liaw and Wiener 2002). We used the randomForest
package in R [15] to construct 5000 trees per classification,
and plotted the error rates as a function of the number of trees.
As the error rate stabilised by 2000 trees at 0.05 for the absent
class and 0.15 for the present class, all the classifications were
hence constructed using 2000 trees. The number of input
variables for each forest varied, but for all forests, a random
subset of three input variables was used to split the data at
each node of each tree. When the classes in an RF
classification are unbalanced, the error rates are highest in the
rarest classes [37]. Although techniques have been suggested
to correct for this (e.g. [9,15,39]), we chose not to apply them,
as our dataset was only moderately unbalanced. Instead, we
chose to use the predictive accuracy for the less common
‘present’ class as the primary measure of model performance.

RF produces multiple outputs to aid in interpreting the
results. In addition to the class predictions, it calculates the
probability of membership for each class, out-of-bag (OOB)
accuracy estimates, variable importance measures, and partial
dependence plots. OOB errors are calculated in random forest
classifications as an alternative to cross-validation. For each
tree in the forest, a random third of all observations are held
out from the training set, and are referred to as "out-of-bag".
The OOB error is, thus, the proportion of these observations
that is misclassified. To calculate the variable importance, the
mean decrease in accuracy is calculated according to the
increase in prediction error when OOB data (cases left out of
the bootstrap sample) for that variable are permuted and all
other variables are left unchanged [15]. We used partial
dependence plots to show the relationships between individual
predictor variables and the predicted probability of the
presence of Azorella and the variable importance measures to
guide the selection of variables for inclusion in the final
classifications.

Improving the classification
Three analytical approaches to improve the accuracy of RF

classification for mapping the distribution of Azorella were
assessed:

1 Pixel- versus object-based image analysis
2 A hypothesis-driven subset of available input variables

versus a subset of input variables selected according to the
random forest variable importance measures

3 The number of classes: a two-class (binary) classification
versus a three-class (ternary) classification (presence-absence
versus moderate-sparse-absent)

A total of 27 input variables were available for the
classifications, including 10 terrain variables and 17 spectral
variables (eight spectral bands, eight texture measures, and an
NDVI layer). To choose the subset of variables on statistical
grounds, a forest was first built using all available input
variables. The variable importance plots were used to indicate
which variables contributed most to the classification. A
heuristic approach was applied to find a minimum set of input
variables that maintained the accuracy of the full-model
classification. This process showed that including variables
with lower importance often decreased the model accuracy by
introducing noise. In addition to the improvement of model
accuracy, reduced models simplify ecological interpretation of
classifications [37].

For the hypothesis-driven subset of input variables, we
selected those most likely to maximise the ecological and
spectral separation of Azorella from other vegetation on
spectral and ecological grounds. These variables were the
blue, green, yellow, red edge, and near-infrared 2 spectral
bands; NDVI; the mean, homogeneity and entropy GLCM
texture measures; and the terrain variables.

The most appropriate scale of analysis can be difficult to
discern in advance, especially for a species where individuals
range in diameter from a few centimetres to several metres,
and which is patchy at multiple spatial scales. We therefore
repeated all classifications for both individual pixels and for
objects. For the pixel-based modelling approach, we extracted
values for each image pixel that intersected with the plot
boundaries at each site. This approach captured the variability
of spectral values within a plot, at increased risk of erroneously
including pixels from outside the plot boundaries. This
approach is also vulnerable to spatial autocorrelation, but is
commonly used in remote sensing applications [38].

For the object-based classifications, the WorldView-2 image
was divided into objects using the multi-resolution
segmentation algorithm in eCognition Developer 8 software.
This segmentation algorithm divides an image into
homogeneous regions by grouping neighbouring pixels based
on their Euclidean distance in multivariate attribute space. The
size of the objects is determined by the scale parameter, which
sets the threshold for homogeneity within each object. The
value of the scale parameter is generally determined by trial-
and-error, because there are no objective methods available to
choose an appropriate value [39]. Here, we used the pixel
values in the eight spectral bands of the WV-2 image to identify
image objects. We set the scale parameter to 35 and the shape
parameter to 0 so that the objects could take any shape.
Although most Azorella cushions are ovoid in shape, they often
grow in dense colonies, interspersed with mosses and grasses,
with the clumps forming a wide variety of shapes, from almost
circular to long, thin, inter-connected terraces. The objects
visible in the satellite imagery are these dense clumps, rather
than individual cushions. At this scale, objects were observed
to follow the edges of these terraces, and had a mean area of
208.4 m2. The mean values for the terrain derivatives, spectral
bands, NDVI, and texture measures were calculated for each
object. These mean values were then subjected to the same
RF classification procedure as the pixels.
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As the major purpose of this study was to develop a baseline
map for change detection, it was important to test whether
these classifications simply identified the high elevation, bare
areas of the island or whether they could distinguish these from
areas that contain small amounts of Azorella. We therefore
repeated the classifications using three classes – absent,
sparse and moderate cover of Azorella – and repeated the
classifications.

Model Validation and Accuracy Assessment
Once the classifications had been finalised, we applied them

to all pixels/objects in the image to produce predictive maps.
We assessed the classification accuracy using the independent
validation samples to determine producer’s and user’s
accuracy measures. Producer’s accuracy refers to the
probability that a patch on the ground is mapped as the
appropriate class, while the user’s accuracy refers to the
converse - that a patch on the map exists in the real world. As
validation accuracy tends to be lowest for the least common
class [9], the primary measure of interest was the producer’s
accuracy for the present class in the binary classification. It
was not possible to separate the moderate and sparse cover
classes in the independent dataset, so we grouped these for
the validation. We also used expert knowledge and field
photographs to informally assess the accuracy of all maps.
Finally we calculated kappa statistics of classification accuracy.

Results

Binary classifications
Random forest classifications based on a combination of

terrain and spectral input variables accurately predicted the
presence of Azorella with very high accuracy, regardless of
which classification was used (κ = 0.848–0.924; Figure 3).
There were two major trends in the accuracy scores for the
binary classifications: object-based classifications were more
accurate than pixel-based classifications, and the statistically-
driven subsets of input variables produced more accurate
classifications than the hypothesis-driven subsets. Kappa
scores showed that the statistically-chosen subset of input
variables for the object-based classification was most accurate
(κ = 0.924) and the least accurate used a hypothesis-driven
subset of variables and pixel-based classification (κ = 0.848).
The differences in accuracies were slight, but consistent
(Figure 3). Although still high, the accuracy was lowest for the
present class in all classifications (90.7–94.4%, compared with
94.9–98.7% for the absent class), probably because it was the
smallest class in the training dataset.

Differences among the maps produced by all binary
classifications were subtle, though the object-based
classifications produced a slightly more fragmented pattern of
Azorella distribution than the pixel-based ones, and the
hypothesis-driven subsets of input variables produced slightly
more fragmented maps than the statistically-driven subsets
(Figure 4). There was obvious spatial structure to the errors in
classification, with all misclassifications occurring close to the

Figure 3.  Accuracy of the classifications.  The validation producer’s accuracy measures for all classes in all classifications. For
the binary classifications (A), object-based models were slightly more accurate than the pixel-based classifications, and the
classifications based on statistically-selected subsets of input variables produced slightly higher accuracies than those using a
hypothesis-driven subset. For the ternary models (B), the overall accuracies were similar for all models, though they were more
variable between classes in the object-based classifications.
doi: 10.1371/journal.pone.0072093.g003
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class boundaries. All validation sites were within 22 m of the
class boundary, and all except five were within 10 m of the
boundary.

After inspection of the variable importance plots for the
binary classifications, the statistically-driven pixel-based
classification was based on elevation, solar radiation, coast

distance, ridgeness, red edge, NDVI and the GLCM mean
texture measure. The object-based classification required six of
the same variables, but replaced ridgeness with the NIR 1 and
NIR 2 spectral bands.

The partial dependence plots (Figure 5) showed that Azorella
typically grows at elevations above 200 m, with NIR 1

Figure 4.  Binary classified map of Azorella distribution.  Predicted Azorella presence on northern Macquarie Island based on
binary classifications, showing (A) the entire mapping region, as predicted by hypothesis-driven pixel-based classification. Panels
B–D demonstrate the variation in maps in the central part of the mapped area, as predicted by pixel-based classification of a
statistically-selected subset of input variables (B); object-based classification of a statistically-selected subset of input variables (C);
pixel-based classification of a hypothesis-driven subset of input variables (D); and object-based classification of a hypothesis-driven
subset of input variables (E). The stippled area indicates cloud cover.
doi: 10.1371/journal.pone.0072093.g004
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reflectance values below 550, NDVI values below 0.55, GLCM
mean values less than 50, distances from the coast greater
than 600 m, the highest values for solar radiation (> 5.6
MWh/m2), red edge reflectance below 650, and NIR 2
reflectance less than 850 (out of 2048 DN values). On
Macquarie Island, Azorella typically grows on the highest parts
of the island (i.e. those areas with high elevation, high
modelled solar radiation, and far from the coast); and is most
common in feldmark. Feldmark is characterised by a mosaic of
patches of plants interspersed with gravel. This results in pixels
with comparatively low reflectance in the NIR and red-edge
portions of the spectrum, which results in lower values for NDVI
and the mean values of the GLCM matrix based on the NDVI
layer. The exception is in lower-altitude grasslands where
Azorella grows interspersed with grasses and herbs. These are
the areas where the classification errors were highest, due to
the difficulty in distinguishing Azorella from other species. The
slope, shape of the terrain, topographic position, and wetness
index had little effect on the classifications, as shown by low
variable importance values. Excluding them from reduced
classification models did not decrease the accuracy of the
classifications, and often increased the accuracy marginally.
Spikes in several of the partial dependence plots (e.g. Figure 5
– coast distance) appear to be caused by small clusters of
plots that contain Azorella, but are growing in an unusual
location along that environmental gradient.

Relying on the variable importance measures to select the
variables for inclusion in the reduced model showed that terrain
variables were most important to the classification, with the role
of spectral data largely being confined to locating areas with
sparse vegetation. Spearman rank correlation coefficients
showed that the spectral variables incorporated into these
models (GLCM mean, red edge, NIR-1, and NIR-2) were
strongly correlated with NDVI (Correlation = 0.82–0.94)
indicating that the major role of spectral variables in these
classifications was to select areas with sparse vegetation.

Ternary classifications
The ternary classifications resulted in very unequal class

sizes in the training dataset. Azorella was absent from 136 of
the training sites, the sparse class (< 5% cover) was found at
another 44 sites, and the moderate class (> 5% cover)
occurred at 21 sites. Accuracy levels remained high, however,
when validated against the independent presence/absence
dataset, with overall accuracies ranging between 91.6% and
92.6% (κ = 0.849–0.871; Figure 4). The pixel-based
classifications minimised the variation between the accuracies
of the present and absent classes (range: 89.8–96.2%)
compared with the object-based classifications (range: 86.5–
98.7%). There was no obvious trend in the accuracies of the
classifications based on hypothesis- or statistically-driven
subsets of input variables. While still high, the validation
accuracies were lowest for the two classes that collectively
made up the present class in the validation data (86.5–89.9%)
compared with the absent class (96.2–98.7%). There was
some spatial structure to the misclassifications. Of the
misclassified validation sites, all but two were within 10 m of
the boundary between the absent class and the two presence

classes. One exception was a site containing Azorella, located
21–23 m from the boundary in all classifications. The other
exception was site in which Azorella was absent but was
located 81 m from the edge of the mapped Azorella distribution
in a single classification (statistically-driven, pixel-based). This
point was either correctly classified or within 10 m of the
boundary for all other classifications.

Inspection of the resulting maps (Figure 6) showed wide
variation in the predicted distributions of the moderate and
sparse classes among the four classifications, but all
classifications accurately and consistently predicted the
distribution of the absent class. Classification accuracy can be
expected to drop as the number of classes increases [40].
Here, the increased errors were concentrated in the sparse and
moderate categories, in contrast to a slight decrease in errors
for the absence class. Thus, it appears that there is a
considerable divide between presence and absence, but it is
more difficult to separate the two classes where Azorella is
present.

In general, the maps showed that the moderate cover class
was largely restricted to east-facing slopes and sheltered
depressions on the plateau. Both of the statistically-driven
subsets of input variables predicted a solid band of moderate
Azorella cover running down the centre of the bottom third of
the map. This appeared to be partly an artefact and largely
influenced by distance from the coastline. Although there was a
large amount of moderate cover Azorella in this area, field
observations showed that it did not form a solid area of the
form seen in the map. The sparse cover class included both
extremely exposed west-facing slopes and areas where the
feldmark meets with surrounding short grasslands,
corresponding with field observations.

Inspection of the maps based on the hypothesis-driven
subset of variables showed that areas of moderate Azorella
coverage predicted with these classifications were more
fragmented than in the statistically chosen set of inputs, though
the moderate class was again more likely to occur on the
eastern flanks of the island’s peaks and in depressions on the
highest parts of the island (Figure 6). The predictions of both
hypothesis-driven classifications more closely corresponded
with field observations and inspection of landscape
photographs than the statistically-driven classifications.

The input variables chosen on the basis of variable
importance measures for both the pixel- and object-based
classification were elevation, NDVI, distance from the coast
and GLCM mean. In addition, the pixel-based classification
used topographically-deflected wind speed, aspect, ridgeness,
and wetness index. The object-based classification also
included NIR-1, NIR-2, red edge, solar radiation, GLCM
homogeneity, and GLCM variance. This suggests that the
object-based approach was more reliant on satellite variables,
while the pixel-based approach depended more heavily on
terrain variables. The partial dependence plots for the
moderate cover class in the statistically-driven pixel-based
classification (Figure 7) showed that this class was most likely
at altitudes above 250 m, with a slight dip in likelihood above
300 m elevation; at sites more than 1500 m from the coast; at
higher wind speeds; in areas with sparse vegetation (NDVI
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Figure 5.  Partial dependence plots for the binary classification.  Partial dependence plots for the variables selected for the
pixel-based classification of Azorella presence/absence on a statistically-selected subset of input variables. The variables included
were chosen on the basis of the variable importance measures. Azorella presence is associated with high values for elevation,
distance from coast, ridgeness, and solar radiation; and with low values for GLCM mean, NDVI and red edge reflectance.
doi: 10.1371/journal.pone.0072093.g005
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values below 0.6); at GLCM mean values less than 50; and in
moderately dry areas (wetness index scores below seven). The

Figure 6.  Ternary classified map of Azorella distribution.  Predicted moderate (green) and sparse (orange) Azorella presence
on northern Macquarie Island based on ternary classifications, showing the entire mapping region, as predicted by hypothesis-
driven pixel-based classification (A). Panels B–D demonstrate the variation in maps in the central part of the mapped area, as
predicted by pixel-based classification of a statistically-selected subset of input variables (B), object-based classification of a
statistically-selected subset of input variables (C), pixel-based classification of a hypothesis-driven subset of input variables (D), and
object-based classification of a hypothesis-driven subset of input variables (E). In general, the sparse class occurred on the highest
and most exposed western-facing sites, and the moderate class occurred on east-facing flanks of the mountains, and in protected
hollows, in line with current understanding of the species’ ecology, though the variation among the maps indicates that these
classes could not be reliably distinguished from each other. In all classifications, both the moderate and sparse classes were clearly
distinguished from the absent class.
doi: 10.1371/journal.pone.0072093.g006
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relationships with aspect and ridgeness were unclear. This
indicated that higher Azorella cover was associated with high,
dry, highly exposed sites with sparse vegetation.

Discussion

This study explored the effectiveness of several emerging
tools in the field of vegetation mapping to produce high-
resolution maps of the distribution of a critically endangered
sub-Antarctic cushion plant. All classifications produced highly
accurate maps, but in the binary classifications, the accuracies
were slightly, though consistently, improved by using object-
based classifications, and by using statistical measures of
variable importance to choose the input variables for the
classifications. These benefits disappeared in the ternary
classifications. Visual inspections of the ternary classification
maps indicated that the statistically-driven maps included
obvious artefacts in the division between the moderate and
sparse classes, though all models could reliably separate
Azorella presence from absence.

RF classification proved to be a useful tool for mapping the
distribution of Azorella, despite a relatively small sample size of
201 field sites; collinear input variables that made weak
contributions to the classification; complex and non-linear
interactions between the input variables; and noisy, non-
normally distributed data. The accuracies of the classifications
in this study are on a par with those found in other image
classification mapping applications using a range of input data
(e.g. [12,16,39]). There are three characteristics of Azorella
that may make it better suited to mapping from satellite
imagery than other species: Azorella has a clearly defined
ecological range on the island; it is located in sparsely
vegetated areas, which have a distinct spectral response; and
it is often the dominant species in a structurally simple
vegetation type. The strong spatial structure in the
misclassification errors, with all but eight validation sites within
10 m of the boundaries for all classifications, indicates that
further improvements in classification must focus on boundary
detection.

One of the limitations of RF in comparison to regression-
based classification methods is that it does not produce an
equation with slope and intercept coefficients that can be used
for direct ecological interpretation [41], though this is of
secondary importance for studies such as ours in which the
primary tasks are classification and production of a distribution
map. The variable importance measures can be combined with
visualisation tools to provide basic post-hoc ecological
interpretation, though such interpretation must be considered
hypothesis-generating rather than hypothesis-testing. The
ecology of Azorella is already quite well described [42], but the
spatial associations revealed in the partial dependence plots
from these classifications quantify, for the first time, the
distribution of this species in relation to landscape-scale
environmental parameters. To date, discussions on the
distribution of Azorella have been limited to general verbal
descriptions, very coarse resolution maps of vegetation
structure [42,43], or coarse maps based on field surveys [44].
The quantification presented here may enable future analysis

of the relationships between Azorella dieback and topographic
position as part of a multidisciplinary effort to understand the
decline of this critically endangered species.

The use of GEOBIA techniques has increased in response to
the availability of very high resolution satellite imagery, and
researchers’ need to extract objects that were often larger than
the pixels in the image [5]. To date, there has been limited
testing of the relative merits of pixel- and object-based
approaches when the entities being mapped do not have a
granularity that obviously favours one approach or the other
[14]. Here, we demonstrate very high accuracies for both
approaches, when the entity being mapped ranges in size from
a part of a pixel to several contiguous pixels. GEOBIA was
slightly more accurate in the binary classifications, but this
advantage disappeared in the ternary classifications. At such
scales, there does not appear to be a clear advantage to
choosing either approach.

This study highlighted some major challenges in mapping
vegetation in high-latitude areas. Spatial data on environmental
variables that are likely to affect plant habitat, such as soil
composition, are often missing. On Macquarie Island, the
presence or absence of peat is likely to be a significant
predictor of the distribution of Azorella, but spatial data on peat
distribution were not available. Furthermore, there is inherent
uncertainty in attempting to collect contemporaneous field data
and satellite imagery. This is particularly true in the sub-
Antarctic where cloud cover often interferes with image
acquisition, increasing the risk that field sites will be obscured.
In this study, the exclusion of 42% of field sites left us with
insufficient data to divide into training and test datasets.
However, by including independent validation data from other
vegetation studies we were able to mitigate these issues.
Nevertheless, this approach was not optimal because the
validation data could not be divided into absent, sparse and
moderate classes to match the training data.

This study is part of a small but growing body of work using
semi-automated image interpretation to monitor vegetation in
isolated high-latitude areas. Satellite image interpretation has
particular potential for examining vegetation changes where
field access is limited, and this study demonstrates the high
degree of accuracy possible in such areas. We are not aware
of any other high-latitude remote sensing projects that have
attempted to map a single species, although a few have
focussed on plant communities at similar spatial resolutions, on
Macquarie Island and elsewhere (e.g. [22,44,45]). In contrast,
the majority of remotely sensed mapping of high latitude
vegetation has examined broad vegetation types or used
vegetation indices to capture general vegetation patterns
[47–50]. The methods presented here demonstrate that semi-
automated classification of satellite imagery can be used for
vegetation mapping at much finer spatial and thematic
resolution than is common in high-latitude remote sensing.

Conclusions

Despite the limitations on the available environmental data
and the reduced number of field sites that could be used to
train the classifications, the classifications presented here
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Figure 7.  Partial dependence plots for the ternary classification.  Partial dependence plots for the moderate cover class of the
pixel-based classification of Azorella cover based on a statistically-chosen subset of input variables. The moderate cover class was
associated with high values for elevation, distance from the coast, and wind speed; with low values for the GLCM mean, wetness
index, and NDVI; and with mixed values for aspect and ridgeness.
doi: 10.1371/journal.pone.0072093.g007
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provided highly accurate maps of Azorella distribution, in either
two or three classes. This study has demonstrated that a
critically endangered plant species can be reliably mapped
using random forest classification to combine very high
resolution satellite imagery and terrain modelling. Accuracies
may be slightly improved by using variable importance
measures to select input variables, and by using object-based
classification, even for entities that are not consistently larger
than the available pixel size. These maps provide a reliable
baseline for monitoring expected changes in the distribution of
Azorella on Macquarie Island. Accurate monitoring of these
changes may in turn help to improve understanding of the
causes of the die-back. The methods presented here are likely
applicable for environmental monitoring in other areas, where a
species or community occupies a relatively distinct topographic
niche or is comparatively spectrally distinct.
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