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ABSTRACT

Prediction of splice sites in non-coding regions of
genes is one of the most challenging aspects of
gene structure recognition. We perform a rigorous
analysis of such splice sites embedded in human 5’
untranslated regions (UTRs), and investigate correl-
ations between this class of splice sites and other
features found in the adjacent exons and introns. By
restricting the training of neural network algorithms
to ‘pure’ UTRs (not extending partially into protein
coding regions), we for the first time investigate the
predictive power of the splicing signal proper, in
contrast to conventional splice site prediction,
which typically relies on the change in sequence at
the transition from protein coding to non-coding. By
doing so, the algorithms were able to pick up sub-
tler splicing signals that were otherwise masked by
‘coding’ noise, thus enhancing significantly the
prediction of 5° UTR splice sites. For example, the
non-coding splice site predicting networks pick up
compositional and positional bias in the 3’ ends of
non-coding exons and 5 non-coding intron ends,
where cytosine and guanine are over-represented.
This compositional bias at the true UTR donor sites
is also visible in the synaptic weights of the neural
networks trained to identify UTR donor sites.
Conventional splice site prediction methods
perform poorly in UTRs because the reading frame
pattern is absent. The NetUTR method presented
here performs 2-3-fold better compared with
NetGene2 and GenScan in 5° UTRs. We also tested
the 5° UTR trained method on protein coding
regions, and discovered, surprisingly, that it works
quite well (although it cannot compete with
NetGene2). This indicates that the local splicing pat-
tern in UTRs and coding regions is largely the same.
The NetUTR method is made publicly available at
www.cbs.dtu.dk/services/NetUTR.

INTRODUCTION

After the completion of human genome sequencing, more and
more effort is being put into understanding the regulatory
untranslated regions (UTRs) of genes. Various features of
UTRs in general and 5° UTRs in particular have been
investigated (1-3). Among the important features are the
characteristics of intron splice sites that reside in the 5 UTRs.

Although programs for splice site and gene structure
recognition [including GeneSplicer (4), NetGene2 (5),
TWINSCAN (6), GenScan (7)] have reached a high level of
performance on internal coding exons, with specificity and
sensitivity above 90% at the nucleotide level (8) [~45% at the
exon level (9)], predicting splice sites in 5 UTRs still remains
a challenge (9-11).

One of the major difficulties of splice site recognition in 5
UTRs, as compared with internal exon splice site recognition,
is that one cannot rely on the change in sequence when going
from protein coding to non-coding. Irrespective of how the
intron cuts the reading frame, the transition from protein
coding to non-coding DNA is not that difficult to pick up by
most methodologies, and it therefore eases the identification of
the splice site location (5,12). This transition is of course
absent in the 5" UTR thus reducing the predictive performance
of all methods that rely on differences between coding reading
frames and non-coding sequence. Furthermore, alignment-
based algorithms that exploit sequence similarity between a
DNA sequence and a target protein cannot be applied when
detecting UTR embedded splice sites either (10).

FIRSTEF, a new powerful tool for finding promoters and
first exons, both coding and non-coding, was recently
developed (8) with 86% accuracy for true positives and 17%
for false positives. This method is novel in the sense that it
exploits conserved non-coding patterns in the UTR, e.g. the
CpG level in the region from —500 to +500 around the
transcriptional start site. However, while FIRSTEF deals with
the prediction of the first donor site, it does not predict the
location of the first acceptor site, and since at least 40% of the
5" UTRs cover more than one exon (8), these first acceptor
sites are not well predicted using the currently available splice
site prediction tools. Furthermore, our data show that of these
40% of 5" UTRs, at least 9% have a second non-coding exon
and 3% a third non-coding exon [we also found one case,
AF135187, with a fourth completely non-coding exon (13)].
In all these cases both the donor and the acceptor splice sites
are placed at the transition between introns and non-coding
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exons making the task of identifying them much harder than
for conventional translated region splice sites.

To deal with this problem we present a new data driven
algorithm, NetUTR, for the prediction of all splice sites in the
5" UTR. Using experimentally validated data extracted from
GenBank, we created a high quality data set of 5 UTRs, which
extends through more than one exon. A large part of the
available data was discarded due to conflicting splice site
assignments and other errors (12). We then made a rigorous
analysis of 5 UTR splice sites and compared them with
internal region splice sites. Based on this analysis we designed
the neural networks training scheme, which was restricted not
to contain any coding region sequence. The performance of
NetUTR was then compared with that of other splice site
predictors. Finally, we tested NetUTR on the coding gene
regions. It was interesting to find that a method trained on
local splice site information not contaminated by translated
sequence was able to recognize splice sites embedded in the
coding parts of pre-mRNA with only a small reduction in
predictive power.

MATERIALS AND METHODS
Characteristics of the data set

Since the success of the neural network prediction is highly
dependent on the size and quality of the data set, a significant
effort was devoted to the creation of a high quality data set.
Initially, 589 genes were extracted from GenBank version
128.0. We were interested in examining 5° UTR embedded
splice sites; it follows that the criterion for extraction was the
existence of at least one 5’ end, entirely non-coding exon.
Genes containing known alternative splicing were discarded.

The following ‘sanity’ checks were performed in order to
validate the correctness of the data and omit possible GenBank
errors (12,14): (i) the reading frame did not lack a start codon
at the beginning or a stop codon at the end; (ii) the reading
frame did not contain an abnormal number of stop codons, that
is no more than one (the entry AL137800 contained no fewer
then 19 stop codons in the reading frame); (iii) the reading
frame size should modulo 3 give 0; (iv) introns did have a
minimal functional length of 58 (12); (v) no logical conflicts
existed, e.g. donor/acceptor site in the middle of an intron,
genes with no coding region. As a result of the above checks
we discarded 25 genes.

The non-consensus introns, i.e. those that differ from the
canonical dinucleotides GT for donor sites and AG for
acceptor sites, were extracted and manually inspected. Out of
the 34 non-consensus introns that were found, eight were GC-
AG introns and one was a CT-AG intron. No AT-AC introns
were found. Taking into account the size of the data set and the
frequency of the rest of the non-consensus introns (14), i.e.
those that are non-GC-AG, -CT-AG or -AT-AC, it is highly
unlikely that these introns had correct splice sites and they
were therefore discarded. For four of the GC-AG introns as
well as the CT-AG intron we found shifts of +3 and -3 in the
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reading frame that transformed the non-consensus introns into
a perfect consensus GT-AG intron. These corrective shifts in
frame might suggest an interpretation shift or typing error; to
be on the safe side we discarded these genes as well. After the
removal of the ‘suspicious’ non-consensus introns, four GC-
AG introns remained. The percentage and type of the non-
consensus introns in our 5" UTR data set is in agreement with
the non-consensus frequency for internal regions (8,14).

Redundancy reduction

In order to assess the predictive capability of the neural
network it is paramount to ensure that the training and test sets
are sufficiently different. Therefore, redundancy reduction
was performed on the remaining 530 genes. Using BLAST
local alignment at the amino acid level and a 1079 threshold for
random match a match list was created [low complexity
regions were filtered out using the SEG package (15)]. The
Hobohm algorithm (16) was then applied to assign a cutoff
similarity value, and to select a maximal set of non-similar
sequences (data not shown). As a result, more than half the
data set was discarded resulting in the final data set, Set I,
consisting of 233 genes containing 274 splice sites of each

type.
Data set division

Set I was divided into two subsets. (i) A training set consisting
of the first 194 genes with 232 splice sites of each type, used as
positive learning examples for the neural networks. We used
all the GT and AG dinucleotides that reside in the 5" UTR and
are not annotated donor and acceptor splice sites, as negative
examples. The training set contained 46 125 negative GT
examples and 62 231 negative AG examples. (ii) A test set
consisting of the remaining 39 genes with 42 splice sites of
each type, 10 060 negative GTs and 12 944 negative AGs, was
used for the evaluation of the neural network prediction
performance. Data Set I was also used to perform cross-
validation runs where the set was divided into five parts. To
enable comparison with coding embedded splice sites, an
additional data set, Set II, was extracted from GenBank
version 128.0, containing 2590 genes, which had a 5" UTR that
resided entirely in the first exon. Potentially faulty entries were
discarded as for Set L.

Architecture of neural networks

The networks used in this study were of the multi-layer error
back propagation type (17). The networks consisted of three
layers: an input layer, one hidden layer and an output layer, all
fully connected. The sequence input encoded using the sparse
encoding scheme that has been described elsewhere (17). The
output layer consisted of one neuron, giving a value between
0.0 and 1.0, interpreted as category assignment for either the
central nucleotide in symmetrical input windows or a
predefined nucleotide in unsymmetrical windows. In most
cases a cutoff value of 0.5 was chosen. A value larger than 0.5
was interpreted as a splice site prediction, while a value lower
than 0.5 was interpreted as non-splice site prediction.

Figure 1. Single nucleotide, dinucleotide and trinucleotide logo plots for donor splice sites that reside in the 5" UTR (a, ¢ and e) compared with the
corresponding coding region donor sites (b, d and f). Only slight differences are found suggesting a dominance of the splice site signals at the nucleotide

level over the amino acid coding constraints.
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The maximal correlation coeffcient, C, for the test set was
used in order to quantify the neural network performance
using early stopping (17):

(PxNx) — (NJ)‘CPJ;)
VN NN+ PL(PL+ NP+ P)

C(x) =

where X can be the categories I? (intron donor splice sites) or
I (intron acceptor splice sites). Py are correctly predicted
positives, i.e. annotated splice sites, while Ny are the correctly
predicted negatives, i.e. GT and AG dinucleotides that are not
annotated as donor and acceptor splice sites, respectively.
Similarly, Py/ and Ny are the incorrectly predicted positives
and negatives. A perfect prediction gives C (X) = 1, whereas a
truly imperfect one gives C (X) = —1. We used the sensitivity:

S, = P./(P, +N%) 2

and the specificity

S, = P./(P, + PY) 3

as means of quantifying and comparing the neural network
performance with other prediction methods.

RESULTS

Comparison of UTR donor and acceptor sites with
coding region splice sites

Correlations in the 5 UTR donor splice sites were analyzed
qualitatively and visualized using sequence logos (18) made at
the single nucleotide, dinucleotide and trinucleotide levels and
compared with that of translated region splice sites (Fig. 1a—f).
We found a striking similarity between the 5 UTR donor
consensus patterns and the patterns in translated region donor
sites, the only difference being an increased tendency for G
and C at positions —6 to —10 and 7 to 9, respectively, at the 5
UTR donor sites. As expected, both types of splice sites are
complementary to the 5" end of the U1 snRNA. This similarity
in local splice signal indicates that the constraints on splicing
at the nucleotide level dominate entirely over the amino acid
coding constraints at exon—exon junctions.

The 5" UTR acceptor splice sites were also visualized using
logos (Fig. 2a—f). In addition to the strong well known human
consensus at the acceptor site, the 5° UTR acceptor site
pyrimidine tract typically extends through position -3 and
gradually fades until position —26, where it stops. It has a
weaker bias for cytosine at position —3 and slightly stronger
bias at position —4 and 4 than that of coding region acceptor
splice sites. The bias for thymine is stronger at several
positions including -5, -6 and —12.

Exon and intron length distributions

The length distributions of 5 UTR exons (Table 1) and introns
(Table 2) embedded in non-coding sequence were compared
with those of translated regions. Entirely non-coding exons
seem to be slightly shorter than internal coding exons. Among

all the exon categories in the data set, the entirely non-coding
exons had the lowest average length of 130 nt, against the
average for the fully coding exons of 145 nt. Partially coding
exons were significantly larger with an average of 232 nt.
These numbers are in agreement with the data from Davuluri
et al. (8). For the introns the median is a more appropriate
means of comparison than the average because introns lengths
vary considerably and therefore a few particularly large
introns may increase the average significantly. The 5° UTR
introns have a higher median (1368 nt) than introns embedded
in coding regions (929 nt). The initial coding introns,
contained in the coding region, were also examined and
were found to have a median (1035 nt) shorter than 5 UTR
introns, but higher than coding region introns.

The average length of the 5 UTRs in data set I is 296 nt. A
division of the 5 UTRs into three classes according to the
number of non-coding exons that reside within them revealed
a substantial difference in the length. The 5 UTRs that
extended through two exons (an entirely non-coding and a
partially coding) had an average of 215 with a 789 SD. Those
that extended through three exons had an average of 377 with
a 181 SD and those that extended through four exons had an
average of 420 with a 243 SD.

Nucleotide composition

We compared the nucleotide distribution of 5* UTR exons and
introns with exons and introns embedded in coding regions
(Table 3). The base distribution in the two types of introns is
quite similar, while the bias for C and G over A and T in the 5’
UTR exons is stronger than the bias in coding region exons.
Exons in coding regions have a lower percentage of observed
stop codons than the percentage expected by mere single
nucleotide frequencies. This is caused by the suppression of
the stop codons in the reading frame. One would not expect
such suppression in 5" UTR exons. We analyzed the data to
test if the situation is the same here (Table 3). This was done
by calculating the stop codon trinucleotide frequency in all
three reading frames and comparing it with the expected stop
codon percentage, which was calculated by multiplying the
three single nucleotide frequencies. We used the ratio between
expected and observed to quantify the degree of stop codon
suppression. Introns from both coding and non-coding regions
had the same suppression ratio with an observed stop codon
frequency close to the expected. As anticipated, the coding
region exons had a considerable suppression of stop codons.
However, it was interesting to find that 5* UTR exons also had
some suppression of stop codons, stronger than the one found
in introns, yet weaker than the one found in coding exons. This
may be explained by the fact that some of the sequence regions
currently annotated as non-coding are in fact alternatively
spliced and actually coding. We report further evidence to
support this claim in the next section. We checked the non-
consensus splice site percentage (0.4%) and composition in
our data set and found them to be identical to that of the
internal introns (14,19) (for details see Materials and
Methods).

Splice sites predicting networks

UTR donor sites. In order to find the optimal neural network
which can extract the local splice site sequence pattern,
various training methods were tested including a sliding
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window that scans the entire sequence and searches for splice
sites at every position in the 5" UTR as well as a window that
only inspects the environment around GT dinucleotides that
constitute splice site candidates. We used a balanced training
scheme where true positives were introduced at the same
frequency as true negatives. Since our data set contains more
negative examples than positive examples, in each epoch the
neural network was shown all the positive examples and the
same number of randomly selected negative examples. Other
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unbalanced training schemes were tested as well. Note that the
balancing only affects the training and the presentation of the
training data to the network, and not the test data, and hence
not the evaluation of the predictive performance.

The inspection of GT splice site candidates using a balanced
training scheme yielded far better results. We then tested a
wide range of architectures with symmetrical input windows
ranging from 5 to 43 nt, and hidden units ranging from O to 25.
An architecture with a 21 nt window size and 20 hidden units
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Figure 2. Single nucleotide, dinucleotide and trinucleotide logo plots for acceptor splice sites that reside in the 5* UTR (a, ¢ and e) compared with the corres-
ponding coding region acceptor sites (b, d and f). The 5" UTR embedded acceptor splice sites have weaker bias for cytosine at position —3 and slightly stron-
ger bias at positions —4 and 4 than that of coding region acceptor splice sites. The bias for thymine is stronger at several positions including -5, —6 and —12.

gave the highest correlation coefficient (Fig. 3). This window
size is 6 nt larger than the optimal 15 nt window size proposed
in earlier work (5) for recognition of internal donor sites in
human pre-mRNA.

This increase in window size is interesting (the performance
is better by ~25% in terms of correlation coefficient). The
absence of the otherwise dominant coding to non-coding
transition pattern apparently enables the NetUTR network to
pick up more remote and subtle signals correlated to splicing.
A combination with a network with an even larger window of
35 enhanced the performance further and yielded a 0.45
correlation coefficient with 68% sensitivity and 30% specifi-
city (ROC curve not shown). The results were similar when
performing a 5-fold cross validation, training on 80%
(randomly selected) of the redundancy reduced data set and
testing on the remaining 20%.

An analysis of the nucleotide frequency of the false
negatives and true positives assigned by the neural network
was made (data not shown). The false negatives context had a
[G; A] | GT [G; A]X [G; T ] consensus while that of the true
positives was G | GT [G; AJAG, the main difference being
preference for adenine at position +4 and a preference for
guanine at position —1 and +5, in the true positives.
Furthermore, we found that the majority of the true positives
were embedded in a C/G-rich environment that stretched more
than 20 nt both up- and downstream of the donor splice sites,
while the majority of the false negatives were embedded in a
context with a bias for thymine. This observation is discussed
in the section ‘CpG-specific splice site prediction’ below.

It is interesting to ask what precisely the network is picking
up in the 21 nt (-10, +10) window extending three ‘extra
positions’ nucleotides up- and downstream from the conven-
tional 15 (-7, +7) nt window earlier found to be optimal in
coding regions (5). By analyzing the weights of the trained
neural networks it became clear that the network picks up
additional signal both in the exon and intron parts of the local
donor site region. In Figure 4 the weights connecting the input
layer and the hidden layer are displayed as a so-called weight
logo (21). The size of the symbols reflects the size and sign of
the input-to-hidden weights weighted (multiplied) by the
corresponding hidden-to-output weights. If negative, the
letters are shown upside-down. The weight logo can be used
to identify features which may influence the network to make a
positive UTR donor site prediction. The central GT is upside-
down reflecting the fact that the true GT donor sites are
outnumbered by non-true GT sites—a GT in itself is therefore
given a negative influence on a positive prediction. A true
donor GT should therefore contain sequence context that will
train the network into making a positive prediction. We
analyzed in particular the additional signal in the outermost
three positions (left and right) in the weight logo shown in
Figure 4. The main trend in these six positions is that the
presence of T and A inhibits a donor site prediction, while C
and G mostly have the opposite effect. These preferences
reflect a positional bias in favor of G/C and against A/T
nucleotides at the corresponding positions in the 5* UTR donor
site context (see the logo in Fig. 1a and b). For example, at
position 9, A and T inhibit and C excites. Interestingly, the
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strength of the compositional bias in terms of information
content upstream of the non-coding exon/non-coding intron
junction is comparable with the strength of the bias generated
by the protein coding reading frame upstream of the conven-
tional donor site (when all three reading frame interruption
modes are combined in one 1ogo).

UTR acceptor sites. As for donor sites, various training
schemes were tested and again the inspection of the environ-
ment around AG dinucleotides that constitutes acceptor splice
site candidates using a balanced training scheme proved to be
the most efficient. When designing the network architecture
we had to take into consideration the following limitations.
The training should be ‘clean’ in the sense that the network
should not be influenced by coding region sequence, i.e. the
sliding window should halt before it penetrated into the coding
region. At the same time the segment of the window extending
downstream of the acceptor site had to be large enough in
order to capture splicing signals that reside within the exon (of
course no constraints existed on the upstream segment of the
window since there was no fear it would penetrate the coding
region). These two limitations are conflicting in cases where
the 3’-most acceptor site resides close to the start codon. In
these cases we had to decide whether to stop the training
upstream of the most 3" end acceptor site without the network
being trained on that acceptor site as a classification position
or let the network window partially overlap with the coding
region. In order to decide on a distance from the start codon
where the training should halt (a distance which fulfills the
above constraints in most cases, and at the same time does not
result in losing too a large portion of the data), we examined
the distance distribution between the 3’-most acceptor site and
the beginning of translation (20). This distance had an average
of 41.4 nt with 61.9 SD. By restricting the distance upstream
of the start codon to at least 8 nt, we were able to create a
‘safety’ zone that would substantially reduce the cases where
the sliding window would partially penetrate into the coding
region and at the same time only resulted in 24% loss of
positive examples of acceptor sites and 0.23% loss of the
negative AG examples.

We then tested many network architectures with symmet-
rical and unsymmetrical window sizes ranging from 19 to 81
nt and 5 to 25 hidden units. An architecture with a 53 nt
window (=26, +26) and 20 hidden units produced the highest
correlation coefficient (Fig. 5). Once again, the fact that the
optimal window size extended 6 nt further upstream than the
optimal window size of 41 nt found in previous work (5), may
suggest that the network detects more subtle splicing signals,
when trained in the absence of the strong non-coding/coding
transition patterns. The final performance was enhanced by a
linear combination of the above network with a 26 nt
unsymmetrical window network (-17, +8)—the classification
nucleotide being at position 0 (20 hidden units), resulting in a
correlation coefficient of 0.36 with 59% sensitivity and 23%
specificity.

The false negatives were characterized by a low cytosine
frequency in the pyrimidine tract and a very weak pyrimidine
signal in positions —5 to —8 upstream of the acceptor site.
Given the big difference in ratio between true positives and
true negatives (1:309) it was interesting to find that in 41%
of the cases where the network combination missed one

annotated acceptor site it assigned exactly one false acceptor
site. In the Discussion we elaborate on this issue in relation to
alternative splicing, which seems to be much more frequent in
the 5" UTR.

CpG-specific splice site prediction. It has been suggested that
promoters and first exons fall into two classes: CpG related
and non-CpG related (8). We tested whether this assertion
holds for splice sites embedded in the 5" UTR and, if so,
whether our prediction method could benefit from a segrega-
tion into two CpG categories.

For each of the 5 UTRs in our data set we calculated the
CpG score using the Zhang method (8) in the following way:
we used a 201 nt long window starting 500 nt upstream of the
5" UTR and sliding 1 nt at a time until it reaches the 3’ end of
the 5" UTR (the window does not penetrate at all into the
coding region). At each window position the CpG dinucleotide
percentage was calculated and the window with the highest
CpG percentage was defined as the CpG score of that 5 UTR.
In Figure 6 we show a histogram of the CpG scores in 5’
UTRs. The distribution is somewhat different from the earlier
reported score distribution, as high CpG scores are more rare
in 5" UTRs (8). The difference may be explained by the fact
that the earlier CpG score calculation was influenced by
coding region nucleotide composition, i.e. the human coding
region codons have a bias for C/G at the last codon position
and a preference for G at the first (17) which significantly
increases the sum of the CpG scores for regions with many
subsequent codons.

In order to examine a CpG-specific prediction approach, the
data set was then divided into two: CpG-related 5° UTRs
(UTRs with a CpG score <5%) and non-CpG-related 5" UTRs
(UTRs with a CpG score >7%) containing 70 and 121 genes,
respectively.

We retrained the neural networks on the (smaller) CpG-
specific data set. The prediction correlation coefficient for
donor sites was ~0.4, lower than the performance of the neural
networks trained on the original data set. After further
analysis, we concluded that this decrease in predictive
performance is caused by the reduction in data set size. We
compared the decrease in prediction with the decrease that
occurs when training a network on a random subset of the
original data set with the same size as the CpG-related data
subset. The result was a reduced prediction correlation
coefficient of 0.37, caused once again by the data set
reduction, only this time the decrease in performance was
even higher. This means that, provided the data sets are large
enough, the CpG-specific prediction approach may eventually
outperform the approach we present here. This is not an
uncommon situation in machine learning bioinformatics
applications, where, for example, an organism-specific pre-
diction method may be outperformed by a method trained on a
broader set of sequences, where the larger data set then plays
an essential role (22).

Comparison of NetUTR with NetGene2 and GenScan

We tested the performance of NetGene2 (5) on the entire UTR
data set (Set I) and found that NetUTR was 2-3-fold better in
terms of correlation coefficient (Table 4). The correlation
coefficient for the donor site prediction of NetGene2 was only
0.274 with a sensitivity of 81% and a specificity of 1%. The



acceptor site prediction of NetGene2 resulted in a correlation
coefficient of 0.112 with a sensitivity of 46% and a specificity
of 3%. The big difference in performance of NetUTR over
NetGene2 is due to the difference in the level of false
positives. While NetGene?2 predicts 8.3 false positives for each
true positive donor site, NetUTR predicts only 2.3 false
positives for each true positive. The difference in performance
is even bigger for acceptor sites, where NetGene2 predicts 32
false positives for each true one, while NetUTR predicts 3.2
false positives for each true positive. We think the reason for
this high rate of false positive predictions in NetGene2 is the
following. NetGene2 was trained to predict coding region
splice sites, where the local splice site networks (correspond-
ing to the NetUTR networks) are combined with a global
coding exon/coding intron network, that changes the assign-
ment threshold for each potential splice site. The hidden units
in the conventional NetGene2 coding exon/coding intron
predictor are strongly influenced by the compositional jump at
the intron/exon and exon/intron boundaries. In fact, such
feature detectors develop automatically in the hidden layer (in
addition to reading frame feature detectors). It turns out that
while coding and non-coding introns are quite similar in
nucleotide composition (as reported in the section above on
nucleotide composition), the UTR exons have a stronger
nucleotide bias in the same direction as coding exons that
makes the jump much stronger. This strong bias is not
compatible with the threshold of the local NetGene2 network
predictor in the vicinity of the exon—intron junctions and is
therefore likely to trigger many NetGene?2 splice site predic-
tions, both true and false, in UTRs.

GenScan was run on the 5 UTR data set using default
parameters. It received entire genes as input (which is the
normal input for GenScan). Only the splice site predictions in

Table 1. Lengths of entirely non-coding exons, partially coding exons and
coding exons

Non-coding Partially coding Coding

exons exons exons
Average 130 232 145
Standard deviation 197 266 140

Table 2. Length characteristics of introns embedded in the 5* UTR and in
coding regions

5" UTR Initial introns in Coding region
introns coding region introns
Median 1368 1035 929
Average 3679 2862 1875
Standard deviation 6411 6045 3486
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the 5" UTR, both true and false, were taken into account in the
comparison. The general performance was similar to
NetGene2, with NetUTR having a donor site sensitivity a
factor of 8.5 better, and a factor of 4 better for acceptor sites.
As for NetGene2, it is not surprising that GenScan performs
poorly, as during training, it only has been shown each UTR as
one single non-coding region. It is perhaps surprising that
GenScan does detect some true splice sites in the UTR. This
mostly occurs when GenScan wrongly predicts a false start
codon upstream of the real start codon and then it actually
predicts some of the correct splice sites downstream and
annotates them as if they were flanking coding exons (possibly
for the same compositional reasons as described above).
Another explanation may be unannotated alternative splicing
in the 5" UTR.

Translated region testing

No experimental evidence suggests that the biological splicing
mechanism in the 5" UTR is any different from that of the
translated region. We tested NetUTR on introns within coding
regions (data set II, as described in Materials and Methods) in
order to examine whether or not our method supports this
assumption. The performance of the combined neural net-
works for donor site predication yielded a 0.4 correlation
coefficient with 44% sensitivity and 37% specificity. The
results for acceptor sites were a 0.27 correlation coefficient
with 28% sensitivity and 25% specificity. For both donor and
acceptor sites prediction we noticed a decrease in sensitivity
and an increase in specificity relative to prediction in 5" UTR.
The fact that the neural network performance only slightly
decreased when predicting splice sites in the translated
region—although it was trained on splice sites in the 5’
UTR—supports the claim that the splicing mechanism is
similar in both types of regions and that it in the same way
relies on local sequence information.

DISCUSSION

We analyzed splice sites embedded in 5 UTRs and compared
them with splice sites embedded in translated regions. Besides
some minor differences in base frequencies both classes of
splice sites were similar. By examining the 5" UTR donor sites
we were able to study splicing signals that were not
constrained by reading frame patterns. The fact that we
found the splicing signals in the 5 UTR donor sites to be
highly similar to the translated region donor sites means that
the splicing signals are not altered when put in a coding
context, thus indicating the dominance of splicing over that of
amino acid coding.

Artificial neural networks were then trained to predict splice
sites embedded in the 5 UTR. To ensure a conservative

Table 3. The nucleotide composition of 5* UTR exons and introns versus coding region exons and introns

A C G T Observed stop Expected stop Ratio
codon codon
5" UTR introns 25.17 22.49 24.09 28.25 4.50 5.21 0.86
5" UTR exons 21.44 28.89 28.98 20.70 2.88 3.52 0.81
Coding region introns 26.48 21.51 22.46 20.70 4.87 5.59 0.87
Coding region introns 25.05 26.07 26.65 22.23 3.09 4.36 0.71

The ratio between the expected and observed percentage of stop codons is used as a means of evaluating the stop codon suppression.
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Figure 3. The maximal correlation coefficient for the prediction of 5" UTR donor sites in the test set as a function of the neural network window size.
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Figure 4. Visualization of the relative size and sign of weights in a neural
network trained to identify donor sites in 5° UTRs. The network window
has 21 positions, and the symbol sizes in the weight logo indicate the
position-specific sizes and signs of the input-to-hidden weights weighted
(multiplied) by the corresponding hidden-to-output weights. If negative, the
symbols are shown upside-down. The weight logo shows the ‘contrast’
between true GT UTR donor sites and other UTR GTs. The numbering in
the window has been replaced by e and i indicating where the corresponding
signal is found in the actual sequence.

estimation of our method’s performance we used nearly 20%
of the data for testing, and made sure that the sequence
similarity of the training and test sets was low. Our motivation
for restraining the neural network training to the 5° UTR only
was dual: first, we wanted to make sure that the neural network
did not rely on the transition between coding and non-coding
patterns, which is inherent to conventional methods that train
on translated region splice sites; secondly, by eliminating the
coding/non-coding ‘noise’ the neural network was apparently
able to pick up subtler signals that may be involved in the
biological splicing mechanism. This may explain the fact that
our optimal window sizes both for donor and acceptor sites are

larger than those described in earlier work, indicating the
existence of splicing signals, which are remoter from the
cleavage site. Our combined neural networks performed better
on the 5 UTR embedded donor sites than on the 5 UTR
embedded acceptor sites, yielding the final result of a
correlation coefficient of 0.45 with 68% sensitivity and 30%
specificity for the donor sites and a 0.36 correlation coefficient
with 59% sensitivity and 23% specificity for acceptor sites.

Comparison with the NetGene2 method showed that the
approach presented here is 2—3-fold better mainly due to a
substantially lower amount of false positives. When inspecting
the true positives and the false negatives it did appear that the
true positives had a tendency to be embedded in more GC-rich
regions, in contrast to the false negatives. This observation is
in agreement with the work of the Zhang group, where
promoters and first exons are classified as CpG related and
non-CpG related, with the last category being hardest to detect
(8). This would suggest that a UTR splice site prediction
method could potentially benefit from a segregation of the data
into two classes leading to two different types of predictors.
However, when testing this idea it became clear that the
reduction in data set size ‘eats up’ the gain when training CpG-
specific networks. With more data this is most likely an easy
way to enhance the performance.

Given the big difference in ratio between true positives and
true negatives (1:309) it was interesting to find that in 41% of
the cases, where the network combination missed one true
acceptor site, it did instead assign exactly one false acceptor
site. This could indicate that alternative splicing could be more
common in UTRs. A number of papers confirm that this
seems to be true (23-25). It has been suggested that alterna-
tive splicing in the 5 UTR is coupled to differences in
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Figure 5. The maximal correlation coefficient for the prediction of 5" UTR acceptor sites in the test set as a function of neural network window size.
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Figure 6. A histogram of CpG scores for 5° UTRs. The CpG score was calculated using a 201 nt long sliding window that starts 500 nt upstream of the 5
UTR. The window slided 1 nt at a time and for each window the CpG percentage was calculated. The CpG window with the maximal percentage was defined
as the CpG score of that 5" UTR.
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Table 4. The predictions of 5" UTR embedded splice sites were compared
between NetUTR, NetGene2 and GenScan

NetUTR NetGene2 GenScan

Donor site

Correlation coefficient 0.45 0.27 0.15
Sensitivity 0.68 0.80 0.08
Specificity 0.30 0.01 0.27
Acceptor site

Correlation coefficient 0.36 0.11 0.18
Sensitivity 0.59 0.46 0.13
Specificity 0.23 0.03 0.25

The quantitative results are given at the nucleotide level.

transcriptional initiation points and a mechanism that allows
cells to use several differently regulated promoters for the
same gene (23). In other work (24) it was also found that
alternative splicing seemed to be more frequent in the UTR
than in the coding region, and that alternative splicing often
skips the known 5" or 3’ terminal by inserting a new intron or
by expanding an existing intron (24). A UTR reconstruction
algorithm based on EST data was able to reconstruct 3’ UTRs
with a 72% success; however, it encountered significant
problems in 5" UTR reconstruction, where only 15% of the
regions were successfully reconstructed (25). This decrease in
performance is attributed to low EST coverage as well as to
the high frequency of alternative splicing occurring in the 5’
UTR (23-25).

The pattern in the false positive predictions from NetGene2
in 5" UTRs indicates that the NetUTR method (that is based on
local splice site information) would benefit from a combin-
ation with a global predictor discriminating between non-
coding exons and non-coding introns. This approach reduces
the threshold for splice site assignment near exon—intron
boundaries and increases it otherwise in regions of no, or small
change, in ‘exon-ness’ (5). Such a network would then, as in
NetGene2, be able to control the threshold for splice site
assignment, thereby substantially reducing the level of false
positives produced by NetUTR. We are currently working on
an extension of the method along these lines.

Finally, the test of the NetUTR method in translated regions
yielded a slight decrease in the overall performance that was
characterized by a decrease in sensitivity and a balancing
increase in specificity; the neural networks predicted more
negatives, both true and false. The fact that the method did not
lose much of its predictive performance when tested in the
translated region, although it was trained only on 5" UTRs,
suggests that the splicing mechanism is similar in both regions
and does not depend differently on the local splice site pattern.

Internet access

The prediction method can be accessed at www.cbs.dtu.dk/
services/NetUTR or via email by sending the word ‘help’ to
NetUTR @cbs.dtu.dk.
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