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Abstract

The goal of this study was to examine and predict antiviral peptides. Although antiviral peptides hold great potential in
antiviral drug discovery, little is done in antiviral peptide prediction. In this study, we demonstrate that a physicochemical
model using random forests outperform in distinguishing antiviral peptides. On the experimental benchmark, our
physicochemical model aided with aggregation and secondary structural features reaches 90% accuracy and 0.79 Matthew’s
correlation coefficient, which exceeds the previous models. The results suggest that aggregation could be an important
feature for identifying antiviral peptides. In addition, our analysis reveals the characteristics of the antiviral peptides such as
the importance of lysine and the abundance of a-helical secondary structures.
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Background

Antiviral peptides (AVPs) are an unconventional perspective for

treating viral infections. Antiviral researches have undergone for

more than half a century [1–3]. Although the traditional trial-and-

error biochemical approach has led to the discovery of several

antiviral nucleoside and non-nucleoside analogues such as

brivudine against varicella-zoster virus [4], acyclovir against

herpes simplex virus (HSV) [5], and azidothymidine (AZT) [6],

stavudine [7–9] and efavirenz [10] against human immunodefi-

ciency virus (HIV), the process is costly and time-consuming.

Besides, severe toxicity is often a problem [11]. Instead, lower

toxicity of antiviral peptides or proteins such as enfuvirtide against

HIV virus [12] and DRACO [13], a potential panacea for all

viruses, become an appealing alternative [14].

AVPs are known to fight against various viruses. All of the AVPs

are derived from either synthetic combinatorial libraries or

segments of natural proteins and their homologues. A list of

highly effective antiviral peptides against HIV [15], HSV [16],

hepatitis C virus [17], influenza virus [18–20], rabies virus [21],

and west nile virus [22] has been compiled into an online database

AVPpred [23]. Recently, there is an dedicated AVP database

HIPdb for HIV, comprehensively collecting the experimentally

validated HIV inhibiting peptides [24].

Several mechanisms are available for AVPs to fight against

viruses. Antiviral therapeutics agents are known to block the

attachment of viruses, prevent from the fusion of viruses to host

cells, interrupt the signaling process of viruses, or inhibit the

replication of viruses in host cells which may involve DNA

polymerase, reverse transcriptase, integrase, and protease [14].

Currently studies have shown that AVPs inhibited the fusion of

viruses to the cells [25,26]; others have shown that AVPs interfered

the replication of viruses [27–29].

Little is done in predicting and examining antiviral peptides.

Broadly speaking, antiviral peptides should be a part of

antimicrobial peptides, which fight against bacteria, fungi,

parasites, and viruses. Several studies have been done in

antimicrobial peptides [30–35], but a recent study by Thakur

et al. demonstrated that antimicrobial peptide predictors are not

suitable to assess AVPs [23]. In addition, this study was the first to

explore four different approaches to predict effective AVPs: motif,

sequence alignment, amino acid composition, and physicochem-

ical features. Their results demonstrated that a support vector

machine (SVM) approach using physiochemical features was a

powerful method to identify AVPs. However, it is not clear

whether key residues exist in AVPs and whether other methods

can outperform SVM in predicting AVPs.

In this study, we demonstrate that our random forests (RF)

model based on physiochemical properties works better for

identifying AVPs. Physicochemical properties of peptides are a

useful means to identify AVPs. A previous study demonstrated that

predicting antimicrobial peptides (AMP) could depend on

sequence-derived physicochemical properties and this study also

suggested that aggregation could be important for classifying

AMPs [33]; A recent study indeed showed that identifying AVPs

using physicochemical properties of peptides worked [23]. Here

we further investigated this finding.

Materials and Methods

Training, validation, and test data sets
The data sets were obtained from the study by Thakur et al.

[23]. 1,056 peptides were validated experimentally, containing 604

highly effective AVPs and 452 non-effective peptides; another 604

peptides without experimental validation were non-effective from
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the study by Lata et al. [32]. Each of the peptides in the data sets

was different from one another.

Two training sample sets and two independent test sets were

established based on the data described above. Here we followed

the same nomenclature used in the study by Thakur et al. [23]. 10-

fold cross-validation was performed in our analysis, where the

training and validation sets came from either of the two sample

sets T544P+407N and T544P+544N*. T544P+407N consisted of 544

highly effective AVPs and 407 non-effective experimental

peptides; T544P+544N* contained the same 544 positive AVPs but

different 544 non-experimental negative peptides. The indepen-

dent test sets V60P+45N and V60P+60N* were used for the

benchmark. V60P+45N consisted of 60 highly effective AVPs and

45 non-effective peptides; V60P+60N* contained 60 positive peptides

and 60 non-experimental negative peptides.

Viral proteomes
The viral proteins were obtained from the viral genome

database at the NCBI Entrez (January 2013), which consisted of

3251 viral genomes and viroids. All the 41316 viral proteins

expressed by these genomes and viroids were retrieved. Non-

standard amino acids such as ‘B’, ‘J’, ‘U’ and ‘X’ in the viral

proteins, which were less than 0.01% of the overall residues, were

eliminated during the analysis. The viral proteomes were treated

as non-effective antiviral peptides under a simple assumption that

the viral proteins would not discourage themselves to develop.

RF classifier
RF is a classification method using an ensemble of unpruned

decision trees with randomly selected features. The RF algorithm

integrates random subspace method [36] into the concept of

bootstrap aggregating or bagging [37] to generate an ensemble of

decision trees. Independently each decision tree is best split by a

small fraction of randomly selected features, trained on cases

chosen by random sampling with replacement to all the available

data. The aggregated decision trees then determine which class the

predicted case belongs. The RF classifier known to avoid

overfitting is a highly accurate method in many classification

problems [38,39]. In this study, the randomForest R package

version 4.6–7 was utilized [40], which was based on Breiman and

Figure 1. Statistical distribution of the amino acid composition of AVPs and non-AVPs. The blue and red bars represent the amino acid
composition of 604 antiviral peptides and 452 non-antiviral peptides.
doi:10.1371/journal.pone.0070166.g001

Figure 2. Statistical distribution of the amino acid composition of AVPs and viral proteomes. The blue and green bars represent the
amino acid composition of 604 antiviral peptides and 41316 viral proteins.
doi:10.1371/journal.pone.0070166.g002
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Cutler’s algorithm [39]. Two parameters the number of ntree

decision trees and the number of mtry selected features were set as

follows: ntree = 100 and mtry~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of features

p
as recom-

mended [39]. One additional advantage of the RF model is that

the model is possible to interpret the importance of the features

using measures such as decrease mean accuracy or Gini

importance.

Artificial Neural Network (ANN) classifier
In this study, ANN was trained by the backpropagation

algorithm. Its learning rate and momentum rate were equal to

0.3 and 0.2 respectively. The number of hidden units was set to

half of the number of features and the number of classes.

Linear Discriminant Analysis (LDA) classifier
The MASS R package version 7.3–26 was utilized to build the

LDA models in this study. The LDA models seek the best linear

combination of the features to separate AVPs from others.

Gini importance
Gini importance or the mean decrease of Gini index (MDGI) is

a robust quantity to measure variable importance in the RF model

[41]. Gini index is an impurity quantity defined as follows:

G~1{
P

i

Pi
2

where i contains all the classes and Pi is the fraction of class i. In

our case there are two classes: AVPs and non-AVPs. The Gini

index ranges from 0 to 1 and the index is closer to 0 if the sample is

purer. The decrease of Gini index in a tree model refers to the

difference between the Gini index of a parent node and the

weighted Gini index of its descending nodes. Given a particular

variable, the MDGI is the sum of the decrease of Gini index over

the number of the decision trees in the RF. The larger the MDGI

is, the more important the variable is.

Amino Acid Composition (AAC)
Amino acid composition is the ratio of each amino acid in a

peptide. The ratio of an amino acid with type T in a peptide X is

calculated as follows:

AAC(XT )~
NT

L

where NT is the number of the amino acid with type T and L is the

length of peptide X.

Physicochemical properties
In the first attempt, 544 physicochemical indices in amino acid

index database (AAindex version 9.1) [42] were examined. Each

index contains 20 numerical values to represent the specific

physicochemical properties of 20 amino acids. A simple linear

addition model, the scalar product of each of the 544 indices and

each of the amino acid composition of peptides, was used for the

evaluation. Since the number of the parameters generated by these

544 indices was much larger than the number of the training cases,

identifying crucial indices using feature selection was recom-

mended. We tested few feature selection methods such as

minimum Redundancy Maximum Relevance to identify the

crucial indices [43]. However, neither the top-ranked indices

from our study nor those by Thakur et al. [23] provided a

satisfactory predictive performance in the RF models. In fact, our

results suggested that the RF models with more indices performed

worst (data not shown), which followed similar trends as indicated

in the previous finding [34].

In the next attempt, the following physicochemical properties

were selected: length, net charges, instability index, aliphatic

index, and hydropathicity. Our basic physicochemical models

were built by utilizing the five properties combined with amino

acid composition. The advanced features such as secondary

structures of peptides described below were considered.

The instability index, an estimate of peptide stability, is

calculated as follows:

II~
10

L

Xi~L{1

i~1

DIWV (Xi,Xiz1)

where L is the length of peptide and DIWV from the study by

Guruprasad et al. is an instability weight value of a dipeptide

starting at position i [44]. Peptides with II values greater than 40

are considered to be unstable.

The aliphatic index, the relative volume of aliphatic residues in

a peptide, is calculated as follows:

AI~XAlaza � XValzb � (XLeuzXIle)

where a and b are the constants, which represent the relative

volume of valine and leucine or isoleucine to alanine. XAla, XVal,

XLeu, and XIle are the fractions of alanine, valine, leucine and

isoleucine multiplied by 100, respectively [45].

Grand average of hydropathicity index (GRAVY) is used to

represent the hydrophobicity value of a peptide, which calculates

the sum of the hydropathy values of all the amino acids divided by

the sequence length. GRAVY was calculated using the hydropathy

values from Kyte and Doolittle [46]. Positive GRAVY values

indicate hydrophobic; negative values mean hydrophilic. All these

physicochemical values could be obtained directly from the

ExPASy website (http://www.expasy.org) [47].

Aggregation
AGGRESCAN was utilized to estimate the aggregation

tendencies of a peptide [48]. AGGRESCAN, which applied

aggregation propensities of amino acids derived from the

experimental data of b-amyloid peptides, is a good indicator of

in vivo aggregation.

Secondary Structure
Protein secondary structure prediction (PSSpred version 2.0),

which was a neural network classifier integrated into the famous I-

TASSER server [49], was utilized to predict the secondary

structure of a peptide [50]. Each amino acid on the peptide was

classified into a-helix, b-sheet, or random coil. The number of

each type of secondary structure was then recorded.

Figure 3. Statistical distribution of the physicochemical properties of AVPs and non-AVPs. 604 antiviral peptides and 452 non-antiviral
peptides in the AVPpred study are compared, including (A) length, (B) aliphatic index, (C) instability index, (D) net charge, (E) hydropathy, (F)
aggregation, (G) random coil, (H) a-helix, and (I) b-sheet.
doi:10.1371/journal.pone.0070166.g003
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Figure 4. Statistical distribution of the physicochemical properties of AVPs and viral proteomes. 604 antiviral peptides and 41316 viral
proteins are compared, including (A) length, (B) aliphatic index, (C) instability index, (D) net charge, (E) hydropathy, (F) aggregation, (G) random coil, (H)
a-helix, and (I) b-sheet. Due to intense computing, the viral data at (F-I) were based on randomly selected 604 proteins instead of 41316 viral proteins.
doi:10.1371/journal.pone.0070166.g004
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Validation
The performance characteristics of the models such as

sensitivity, specificity, accuracy, and MCC are defined as follows:

Sensitivity~
TP

TPzFN

Specificity~
TN

FPzTN

Accuracy~
TPzTN

TPzTNzFPzFN

MCC~
TP � TN{FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

TP, TN, FP, and FN represent true positives, true negatives,

false positives, and false negative, respectively. Sensitivity, speci-

ficity, and accuracy are the percentage of the correct predictions

on positive data, negative data, and all of the data, respectively.

MCC is used to evaluate the performance of the binary classifier.

It works even when the sizes of classification classes differ. The

value of MCC is between 21 and 1. The larger the MCC value,

the better the classifier.

Results

Amino acid composition of the AVPs
The comparison of amino acid composition of AVPs was shown

in Fig. 1 and Fig. 2. The viral proteomes were chosen to be an

optional baseline. Compared to the non-effective experimental

peptides and the viral proteomes, the AVPs consistently showed

higher percentages of leucine and lysine, but lower percentages of

threonin, proline, and valine. Leucine, medium-sized hydrophobic

residue, was the most abundant residues in the AVPs. In addition,

a clear preference was shown for a basic residue lysine, which was

also known as the key characteristics for anti-microbial peptides.

Physicochemical properties, aggregation, and secondary
structures of the AVPs

The statistical analysis of the physicochemical properties of the

AVPs was done (Fig. 3 and Fig. 4). The following properties were

examined, including length, aliphatic index, instability, net charge,

hydropathy, aggregation, and secondary structure. The lengths of

the 604 AVPs ranged from 6 to 45 amino-acid residue, with an

average length of 24.2 residues; the 452 non-effective AVPs had

similar range with an average length of 18.2 residues; the viral

proteins were longer with an average length over 200 residues.

The AVPs had the strongest aliphatic tendency among them all

(Fig. 3B and Fig. 4B). Indeed, the AVPs had the largest portions of

aliphatic residues such as leucine, isoleucine, and valine (Fig. 1 and

Fig. 2). Besides, only the AVPs had an average instability value

over 40, which considered to be unstable; both the non-effective

AVPs and viral proteins had an instability value less than 40

(Fig. 3C and Fig. 4C). In terms of residue charge, the AVPs had

higher tendency to be charged positively than the non-effective

peptides; the viral proteins preferred negative net charges (Fig. 3D

and Fig 4D). The AVPs had a slightly negative GRAVY score, but

higher than both the non-effective peptides and the viral proteins

(Fig. 3E and Fig. 4E). In the aggregation analysis, the AVP also

had a slightly negative AGGRESCAN score on average, but

higher than the non-effective peptides and the viral proteins

Figure 5. Feature importance of amino acid composition. The
importance of each amino acid is measured using the mean decrease of
Gini index (MDGI) of the 20 amino acids ranked by the RF model built
for the AVPs and non-AVPs. The larger the MDGI value, the more
important the residue.
doi:10.1371/journal.pone.0070166.g005

Table 1. Performance of the random forests models using 10-
fold cross-validation.

Data Model
Sensi
tivity

Speci
ficity

Accu
racy MCC

T544P+407N RFcompo 85.3 82.6 84.1 0.68

RFcompo+agg 86.4 82.8 84.9 0.69

RFcompo+structure 86.8 81.8 84.6 0.69

RFcompo+structure
+agg

86.6 83.0 85.1 0.70

RFphysico 85.9 81.8 84.2 0.69

RFphysico+agg 85.5 81.6 83.8 0.67

RFphysico+structure 86.6 82.1 84.6 0.69

RFphysico+structure
+agg

86.6 81.6 84.4 0.68

T544P+544N* RFcompo# 89.5 92.6 91.1 0.82

RFcompo+agg# 89.5 92.6 91.1 0.82

RFcompo+structure# 89.0 94.1 91.5 0.83

RFcompo+structure
+agg#

89.0 94.1 91.5 0.83

RFphysico# 88.1 93.8 90.0 0.82

RFphysico+agg# 88.1 93.8 90.0 0.82

RFphysico+structure# 89.0 93.9 91.5 0.83

RFphysico+structure
+agg#

89.0 93.9 91.5 0.83

T544P+544N* contained non-experimental peptides. The models trained by
T544P+544N* were marked by the number sign #.
doi:10.1371/journal.pone.0070166.t001
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(Fig. 3F and Fig 4F).

Each residue of the peptides was classified into a-helix, b-sheet,

or coil according to the secondary structure prediction. More than

half of all the residues of the AVPs were a-helix (Fig. 3H), but the

AVPs had lower portions of coil than the non-effective peptides

and the viral proteins (Fig. 3G and Fig. 4G). b-sheet propensity

was less clear, for few residues were classified into b-sheet (Fig. 3I

and Fig 4I).

Feature importance of amino acid composition
The analysis of Gini importance on the RF model built with

amino acid composition was performed. Lysine, a positively

charged molecule, was the most important residue among the 20

amino acids for classifying AVPs. The result was consistent with

those evaluated by different methods, which ranked the impor-

tance of amino acid similarly albeit slightly different (Table S1).

Medium-size hydrophobic residues such as leucine and isoleucine

also played a role in distinguishing AVPs from non-AVPs. Besides,

the importance of threonine was also identified (Fig. 5).

In addition, the same Gini analysis of a RF model on an AMP

database was performed. Although both lysine and arginine were

abundant in the AMPs, the Gini analysis showed that neither

lysine nor arginine was the most effective residue to tell apart

AMPs from non-AMPs (Fig. S1). Our results indicated relatively

less abundant residues in the AMPs such as methionine, aspartic

acid, glutamic acid, and threonine are important to distinguish

AMPs (Fig. S1). This differs from what we have seen in the AVPs,

where lysine was the most effective residue.

Performance analysis on the training samples
All eight RF models were examined using 10-fold cross-

validation trained by either T544P+407N or T544P+544N* as

summarized in Table 1. Those models trained by T544P+544N*

were marked with the number sign #; those trained by T544P+407N

were without the sign. In order to easily compare AVPpred, our

models named similarly after the models of AVPpred. The

abbreviations compo, physico, structure, and agg represented

amino acid composition, the amino acid composition plus five

basic physicochemical properties, secondary structure, and aggre-

gation respectively. For example, RFphysico was a RF model

based on five basic physicochemical properties and amino acid

Table 2. Performance of the standard models by different
learning methods on validation sets V60P+45N and V60P+60N*.

Data Model Sensitivity Specificity Accuracy MCC

V60P+45N AVPcompo 83.3 88.9 85.7 0.72

AVPphysico 88.3 82.2 85.7 0.71

ANNcompo 76.7 75.6 76.2 0.52

ANNphysico 85.0 80.0 82.9 0.65

LDAcompo 85.0 44.4 67.6 0.33

LDAphysico 88.3 53.3 73.3 0.45

RFcompo 86.7 80.0 83.8 0.67

RFphysico 93.3 77.8 86.7 0.73

V60P+60N* AVPcompo# 83.3 98.3 90.8 0.83

AVPphysico# 93.3 91.7 92.5 0.85

ANNcompo# 81.7 93.3 87.5 0.76

ANNphysico# 91.7 90.0 90.8 0.82

LDAcompo# 78.3 66.7 72.5 0.45

LDAphysico# 81.7 75.0 78.3 0.57

RFcompo# 93.3 93.3 93.3 0.87

RFphysico# 90.0 95.0 92.5 0.85

V60P+60N* contained non-experimental peptides. The models trained by
T544P+544N* were marked by the number sign #; the models trained by
T544P+407N had no marks. All the AVP models here were built using SVM [23].
doi:10.1371/journal.pone.0070166.t002

Table 3. Performance of the random forests models on
validation sets V60P+45N and V60P+60N*.

Data Model
Sensi
tivity

Speci
ficity

Accu
racy MCC

V60P+45N RFcompo 86.7 80.0 83.8 0.67

RFcompo+agg 88.3 82.2 85.7 0.71

RFcompo+structure 90.0 86.7 88.6 0.77

RFcompo+structure
+agg

91.7 86.7 89.5 0.79

RFcompo# 93.3 48.9 74.3 0.48

RFcompo+agg# 91.7 51.1 74.3 0.48

RFcompo+structure# 93.3 42.2 71.4 0.43

RFcompo+structure
+agg# 93.3 48.9 74.3 0.48

RFphysico 93.3 77.8 86.7 0.73

RFphysico+agg 90.0 82.2 86.7 0.73

RFphysico+structure 91.7 82.2 87.6 0.75

RFphysico+structure
+agg

91.7 82.2 87.6 0.75

RFphysico# 90.0 53.3 74.3 0.48

RFphysico+agg# 88.3 53.3 73.3 0.45

RFphysico+structure# 90.0 40.0 68.6 0.35

RFphysico+structure
+agg# 95.0 48.9 75.2 0.51

V60P+60N* RFcompo 86.7 56.7 71.7 0.45

RFcompo+agg 88.3 56.7 72.5 0.47

RFcompo+structure 90.0 60.0 75.0 0.52

RFcompo+structure
+agg

91.7 56.7 74.2 0.52

RFcompo# 93.3 93.3 93.3 0.87

RFcompo+agg# 91.7 95.0 93.3 0.87

RFcompo+structure# 93.3 88.3 90.8 0.82

RFcompo+structure
+agg# 93.3 86.7 90.0 0.80

RFphysico 91.7 41.7 66.7 0.39

RFphysico+agg 90.0 45.0 67.5 0.39

RFphysico+structure 91.7 48.3 70.0 0.44

RFphysico+structure
+agg

91.7 48.3 70.0 0.44

RFphysico# 90.0 95.0 92.5 0.85

RFphysico+agg# 88.3 91.7 90.0 0.80

RFphysico+structure# 90.0 88.3 89.2 0.78

RFphysico+structure
+agg# 95.0 86.7 90.8 0.82

V60P+60N* contained non-experimental peptides. The models trained by
T544P+544N* were marked by the number sign #; the models trained by
T544P+407N had no marks.
doi:10.1371/journal.pone.0070166.t003
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composition. RFcompo+structure+agg was based on amino acid

composition, secondary structure, and aggregation.

In the 10-fold cross-validation, the performances of the eight RF

models were close. In the T544P+407N training data, the best model

RFcompo+structure+agg had an accuracy of 92% and 0.83 MCC.

Both RFcompo+structure and RFphysico+structure reached a

slightly higher accuracy of 85% and 0.69 MCC than RFcompo

and RFphysico. In the T544P+544N* training data, similar trends

were found. Four models RFcompo+structure#,

RFcompo+structure+agg#, RFphysico+structure#, and

RFphysico+structure+agg# achieved a high accuracy of 92%

and 0.83 MCC. As suggested before, different levels of the

performances on the two training data sets might be due to

T544P+544N* containing non-experimental peptides [23]. Those

non-experimental peptides were retrieved from non-secreted

proteins, for the original study assumed antimicrobial peptides to

be naturally secreted proteins [32]. The non-secreted proteins

might be very different from the AVPs, thus distinguishing AVPs

from those non-experimental peptides would be easy.

Performance evaluation on the independent test sets
Table 2 shows the performances of four learning methods with

the standard models. The models using ANN, LDA, and RF were

built on the same datasets. Two best SVM models of AVPpred,

the only other tool available for predicting AVPs, were also

included. All these models were evaluated on the two test sets

V60P+45N and V60P+60N*. V60P+45N had only experimentally

verified peptides, but V60P+60N* contained non-experimental

peptides. As seen in Table 2, the LDA models performed fairly,

the ANN models gave a satisfactory prediction, and the SVM or

RF models were very good in distinguishing AVPs. In general, the

comparison results demonstrated that the RF models were

superior to the other models in this problem.

On the V60P+45N test set, the RF models performed well

(Table 2). The best RF models consistently outperformed the best

models of AVPpred. For example, RFphysico surpassed AVP-

physico, which was the performance indicator of AVPpred with an

accuracy of 86% and 0.71 MCC, while both models utilized only

25 physicochemical properties.

On the V60P+60N* test set containing non-experimental peptides,

similar results were seen. For this test set, the two best models of

AVPpred trained by T544P+544N*, AVPcompo# and

AVPphysico#, were included. Our best model RFcompo#
achieved the maximal accuracy of 93% and the highest 0.87

MCC. RFcompo# outperformed AVPcompo# while RFphysico

and AVPphysico were comparable.

Whether additional features such as aggregation and secondary

structure could improve the prediction was examined. Table 3

shows a performance comparison among the eight RF models.

Generally speaking, adding aggregation to the RF models tended

to improve the performance slightly. For example, on both test

sets, RFcompo+agg surpassed RFcompo while RFcompo+agg#
and RFcompo# were comparable. Adding secondary structure

could also improve the RF models. For example, RFcompo+s-

tructure outperformed RFcompo. In addition, on the V60P+45N test

set, our best model RFcompo+structure+agg achieved the

maximal accuracy of 90% and the highest 0.79 MCC. On the

V60P+60N* test set, our best model RFcompo# and

RFcompo+agg# achieved the maximal accuracy of 93% and

the highest 0.87 MCC. The overall results demonstrated that these

features could be useful for identifying the AVPs.

Discussion

This was the first study to apply RF into AVP prediction. Our

RF models were based on size, amino acid composition, net

charge, aliphaticity, instability, hydrophobicity, and secondary

structure. The results demonstrated that predicting AVPs by the

RF models through the basic physicochemical properties worked.

On the independent test data provided by AVPpred, our

evaluation indicated that RF worked better than SVM in

distinguishing AVPs using these physiochemical properties. Our

result supports that RF, a robust classifier, excels in many

problems [38].

In order to reach optimal performances, several training designs

for the RF models were explored. One option was to remove

highly similar sequences from the training cases. The performance

dropped as the RF models were trained by the non-redundant

cases, which were generated by removing highly similar cases over

80% identities, leaving out more than one-third of the entire

training cases. Additional analyses on the model attributes were

also done such as increasing the number of attributes by AAindex

and replacing the secondary-structure counts with the secondary-

structure percentages. However, none enhanced performance.

This suggests that improving AVP prediction is not a trivial task.

To compare AVPpred fully, the effects of different training sets

on the RF models were examined. One set had the experimental

data; the other contained the negatives without experimental

verification. This led to different levels of specificity. Since true

negatives in biological context are often limited and difficult to

obtain, hypothetical negatives or negatives without experimental

verification are the substitutes. However, ideally all true negatives

for building the models should be verified experimentally to avoid

performance errors. More attention, therefore, should be paid to

the models with the experimental data. Our RF models

outperformed the previous ones in either training set, but more

obvious in the experimental training data.

Feature importance of amino acid composition of the AVPs was

analyzed using the experimental data. Lysine, also known as a key

residue in antimicrobial peptides, was the most important residue

in distinguish AVPs. The residues with great importance need not

to be the abundant residues. Our analyses showed that the AVPs

were abundant in leucine, lysine, alanine, and glutamic acid (Fig. 1

and Fig. 2), which supports the previous finding by HIPdb [24].

Several other interesting properties were found in our analysis, but

we only emphasized lysine, for this finding was supported by

various feature ranking methods. However, why the AVPs were

biased toward lysine is not clear. One possible explanation is that

the positively charged AVPs might interact with enveloped viruses

like HIV [30], inhibiting the entry of the viruses into the cells.

The aggregation propensities of the AVPs were revealed. Our

results suggested that the AVPs had higher tendencies to be

aggregated in vivo than the non-effective peptides and the viral

proteins. Our RF models also indicated that aggregation could be

an important feature for classifying the AVPs. It is not clear how

aggregation affects the AVPs to restrain the viruses. However,

aggregation has been suggested to be an important feature of

AMPs, for accumulating and clumping peptides together could

affect the peptide availability [33].

In addition, the abundance of a-helix secondary structures in

the AVPs was discovered in this study. What role the secondary-

structure preference plays in fighting viral infection is not

understood. It has been suggested that the a-helical structures

are an common element for protein-protein interactions [51] and

the a-helical structures of antimicrobial peptides are linked to the

permeability to the membranes to abrupt the cell membranes of
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bacteria [35]. Whether the a-helical structures of the AVPs, a

subset of antimicrobial peptides, interact with the enzymes in the

virus replication or have similar impact on host cell membranes

still need to be investigated. However, given secondary structure

information, the performance of the RF models could further

improve. On the experimental benchmark, our model trained by

amino acid composition, aggregation, and secondary structure

achieved the optimal performances. The importance of secondary

structure was also supported by the previous study–several top

physiochemical indices were related to secondary structure [23].

Supporting Information

Figure S1 Feature importance of amino acid composition of

AMPs. The importance of each amino acid is measured using the

mean decrease of Gini index (MDGI) of the 20 amino acids

ranked by the RF model built for the AMPs and non-AMPs. The

larger the MDGI value, the more important the residue.

(TIF)

Table S1 Feature importance of amino acid composition

measured by different methods.

(DOCX)

Text S1 Supplementary Information for Figure S1.

(DOCX)
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