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Abstract

Lack of understanding of endocrine resistance remains one of the major challenges for breast
cancer researchers, clinicians, and patients. Current reductionist approaches to understanding the
molecular signaling driving resistance have offered mostly incremental progress over the past 10
years. As the field of systems biology has begun to mature, the approaches and network modeling
tools being developed and applied therein offer a different way to think about how molecular
signaling and the regulation of critical cellular functions are integrated. To gain novel insights, we
first describe some of the key challenges facing network modeling of endocrine resistance, many
of which arise from the properties of the data spaces being studied. We then use activation of the
unfolded protein response (UPR) following induction of endoplasmic reticulum stress in breast
cancer cells by antiestrogens, to illustrate our approaches to computational modeling. Activation
of UPR is a key determinant of cell fate decision making and regulation of autophagy and
apoptosis. These initial studies provide insight into a small subnetwork topology obtained using
differential dependency network analysis and focused on the UPR gene XBP1. The XBP1
subnetwork topology incorporates BCAR3, BCL2, BIK, NFxB, and other genes as nodes; the
connecting edges represent the dependency structures amongst these nodes. As data from ongoing
cellular and molecular studies become available, we will build detailed mathematical models of
this XBP1-UPR network.
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Introduction

Despite over 30 years of relatively safe and effective endocrine therapies, from the advent of
Tamoxifen and antiestrogens (AE) to the more recent application of third generation
aromatase inhibitors (Al), many estrogen receptor-alpha (ER) positive breast cancers either
fail to respond (de novo resistance) or eventually recur on or after endocrine therapy
(acquired resistance) (1, 2). The major reductions in the risks of recurrence and death that
women with an ER+ breast cancer derive from these therapies represent a major
achievement. Nonetheless, our lack of understanding of endocrine resistance remains one of
the major challenges for breast cancer researchers, clinicians, and patients (3, 4). While
resistance to hormonal therapies is an active area of research, and several genes and signal
transduction pathways have been implicated in the underlying processes (5-7), our
understanding of the fundamental molecular regulatory networks that drive cell survival and
proliferation in this phenotype (or phenotypes) is clearly inadequate. Recent advances in the
molecular classification of breast cancers (8, 9) have done little to change routine clinical
practice for the management of ER+ breast cancers, which represent 70% of all newly
diagnosed breast cancer each year. Unfortunately, few effective new strategies to treat
advanced, endocrine resistant, ER+ breast cancer have emerged in recent years. Indeed,
metastatic breast cancer remains largely an incurable disease.

To create new opportunities for drug discovery and therapeutic interventions, we believe it
is essential to acquire first an adequate understanding of the true nature of the molecular
interactions responsible for the endocrine resistance phenotype (6). Current approaches to
understanding molecular signaling appear limited and have offered somewhat slow and
incremental progress over the past 10 years. As the field of systems biology has begun to
mature, the approaches and tools being developed therein may provide a different way to
think about how molecular signaling and the regulation of critical cellular functions are
integrated. One key difference in a systems approach, compared with the more common
reductionist approach, is the application of computational and mathematical modeling to
represent dynamic system function. These modeling tools are often applied to the high
dimensional data sets obtained from microarray, proteomic, and sequencing technologies.
However, there are often poorly understood challenges in the analysis of such large data sets
that reflect unique properties of high dimensional data spaces (10, 11).

Network modeling and endocrine responsiveness

A primary reductionist focus on individual genes and/or simple signal transduction pathways
is likely one limitation of our ability to derive fundamentally new insights into the molecular
underpinning of the phenotype (or perhaps phenotypes) that is resistance (and often
crossresistance) to AEs and Als. These types of signaling-based studies are frequently based
on hypotheses framed in the context of the limitations of transduction pathways as
understood from largely static models, such as those represented in the KEGG or Biocarta
databases, or as constructed de novo from modeling tools such as Ingenuity Pathway
Analysis or Ariadne Pathway Studio (6). Many of these tools have their uses but they are
limited by the frequent inability to account for cellular context and molecular dynamics.
Moreover, the true complexity of molecular signaling is probably affected by biological
properties, rules, or functions that we do not yet fully understand. For example, the existence
and potentially powerful regulatory influences of miRNAs have been only relatively
recently discovered. We have long advocated for a more network-based approach (12) but
the tools to achieve this have only recently begun to become widely available (6).

Any individual protein or signal transduction pathway exists within a hugely complex and
high-dimensional cellular context as defined by the patterns and interactions among all the

Horm Mol Biol Clin Investig. Author manuscript; available in PMC 2013 August 06.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Clarke et al.

Page 3

other proteins, metabolites, RNA, DNA, and cellular functions, operating concurrently and
dynamically in the same cell. While each cell likely contains approximately 30,000 genes,
estimates of the size of the human interactome vary considerably. Stumpf et a/. estimate the
human interactome (entire set of protein interactions) to be ~650,000 interactions, a sparse
network of only ~0.2% of all pairwise connections (13). However, this estimate does not
consider context-specific interactions or the dynamic nature of the system (13). The latter
could substantially increase the number of interactions responsible for maintaining cellular
function across time and in response to changing extracellular and intracellular
environments. The contributions of protein-DNA, protein-RNA, and protein-metabolite/
ligand interactions may not be adequately captured in this estimate and these could further
increase the dimensionality of the edges in the overall signaling network regulating cellular
function.

Understanding the properties of networks of this size and complexity offer remarkable
challenges, not least of which are the unique properties of high dimensional spaces (10). For
example, in such large networks it is estimated that the shortest distance between any two
nodes (usually a gene or protein) is no longer than 6 connections (14, 15); likely a major
contributor to the signaling redundancy and degeneracy that can confer apparent plasticity
on network topology. Multiple inputs to the human interactome are occurring concurrently
and the network is dynamically responding to each of these inputs — many of which modify
the function of other regions of the interactome. This level of interconnectivity and
dynamism is fundamentally lacking in most current approaches to gene network modeling.
Moreover, in all likelihood, we do not yet fully understand the properties of such large
networks or their implications for building fully accurate and robust models of their
function.

Precisely because the human protein interactome is dynamic and adaptable, building a
model of how it works has many characteristics of a “wicked problem” (16, 17). Amongst
several criteria, a wicked problem is one where there is incomplete, and sometimes
contradictory information, and the changing nature of the requirements of the network (in
the case of a cellular system in response to stress, external signaling that may change the
function or differentiation status of the cell, or other factors) that are difficult to recognize.
Moreover, there may be more than one solution - what explains how the interactome works
for endocrine resistance in ER+ breast cancers may not explain how it works in any other
cancer resistance problems. While perhaps not all of the criteria apply, getting the scientific
community to engineer an agreed solution could well be a wicked problem in the original
social planning sense.

While it might be tempting to assume that these various challenges do not apply to the study
of endocrine resistance, it is not immediately clear that this is a reasonable assumption (6).
ER- mediated responses can encompass coordinating functions from complex organism-
level sexual, aggressive and reproductive behaviors, down to the subcellular level as might
be represented by coordinating the subcellular functions that are required to execute the
decision of a breast cancer cell to exit G1 and enter S-phase of the cell cycle. Perhaps these
functions are provided by very different ER-regulated genes in neurons, for example, than in
mammary epithelial cells (the network nodes - and so also the edges - could be very
different). However, nature is often parsimonious, and the possibility that many of the same
molecular players in breast cells also operate in brain cells cannot be discounted. If this is
the case, then it is not so much the nodes (genes/proteins) that are different in brain and
breast cells, it is the edges (connections) that link them. At some level, the ER-regulated
network could broadly retain its overall topology, adapting primarily (but not exclusively)
by locally modifying how some of its nodes are interconnected. The same may be true for
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the differences between endocrine sensitive and resistant topologies of the ER-regulated
network.

The current state of knowledge in biology, mathematics, statistics, and signaling
transduction probably limit our ability to fundamentally address modeling of any complex
biological network in a single approach. Pragmatically, we must make some general
assumptions and work with the acknowledged limitations of current knowledge and existing
tools. Thus, we propose that the endocrine resistance phenotype(s) is primarily controlled by
a large and complex subnetwork that exists within the context of the much larger human
interactome. From this starting point, a simple, linear thought process allows us to derive
other reasonable but possibly incomplete assumptions about this subnetwork

In sensitive breast cancer cells, endocrine therapies initially induce a profound Go/G; cell
cycle arrest. Clearly, one of the regulatory functions of our hypothetical subnetwork is the
decision to enter or exit the proliferative phases of the cell cycle, and a coordinated
regulation of the attendant cellular functions required to provide the energy and nutrients
needed to make a duplicate copy of the existing cell. This latter series of events follows
where the decision is to remain cycling and so exit G1 and enter S; as would be the case in
treating resistant cells, or providing estrogen to estrogen-dependent cells.

Since endocrine therapies can lead to improvements in overall survival, at some point each
breast cancer cell will make and then execute a decision to live or die. A further component
of our subnetwork must govern the cell survival decision and the attendant functions that
allow the cell to survive. Such functions include blocking induction of apoptotic cell death
and providing for the integrity of those subcellular functions required for prolonged cell
survival, such as maintaining adequate energy levels for basic metabolic functions.

ER can regulate (or at least influence) both cell proliferation and cell survival decisions, and
so it must also arrange for coordinating the cellular functions required to execute these
decisions. Thus, ER must be a central node in the subnetwork. Indeed, most ER+ breast
cancers that acquire a resistant phenotype remain ER+ (18), and siRNA targeting ER in
antiestrogen resistant cells is growth inhibitory (19). Much is known about how ER
functions and of various growth factors and other signaling molecules that, in the context of
endocrine regulation of breast cancer cells, can influence ER functions and endocrine
responsiveness (5-7). Thus, we can begin with a simple list of genes that will become initial
seed genes (nodes) around which we can build out a more complete network model (20).

Individual modules for the functional execution of the cell cycle decision are well known
and these appear to have significant components maintained by evolution across multiple
species. One example is the execution network that enables cells to complete a turn of the
cell cycle, which was initially modeled in yeast cells (21, 22). Components of the unfolded
protein response (UPR) are also conserved across species and these include homologues of
X-Box binding protein-1 (XBP1). Thus, we can separate our subnetwork into a series of
modules that perform specific functions, and a series of (presumably) interconnected
decision signaling networks that make the determination of which execution modules to
activate or repress and the timing of these execution/repression decisions. Modules would
then include, at the very least, cell cycle, UPR, apoptosis, autophagy.

How we approach construction of the mathematical models and control signaling is
described elsewhere (23). Overall, we apply an integrated approach where we use
computational modeling tools and high dimensional data to extract local topological
information of the relationships among the genes and functions we believe to be of most
initial relevance. For the purposes of this review, computational modeling uses tools mostly
from the field of computational statistics such as artificial neural networks and support
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vector machines; these tools are used to learn the key features of the data as they relate to
phenotype. By mathematical modeling we mean the process of deriving a mathematical
description that captures the relevant mechanistic details of the system and can be simulated
to predict how the system evolves in time. Such descriptions may, for example, use
differential equations or stochastic reaction networks to model gene expression and protein
interactions relevant to the phenotypes being studied. Both computational and mathematical
models can generate simulations and make predictions of how the systems they are
modeling responds when perturbed.

Once validated experimentally, we integrate this knowledge with preliminary mathematical
models for each module and/or control function. In an iterative approach, using both
computational and mathematical modeling, we begin to learn how the system may function
— mostly from the failure of the initial models to recapitulate experimental data and the
subsequent predictions of what functions are required to allow the models to work.

In this review, we will focus on the potential role of one module for regulating key survival
functions that we have implicated in acquired endocrine resistance. Specifically, we will
review evidence implicating activation of the unfolded protein response as a critical
subcellular function and follow through on early computational modeling of what appears to
be prosurvival signaling out from the UPR as regulated by controlling the expression and
unconventional splicing of XBP1. Of necessity, these initial representations are largely static
wiring diagrams. However in the longer term, we will use our experimental data and that
available in the literature to guide the construction of initial mathematical models of the
UPR and its role in governing prosurvival signaling in the context of endocrine
responsiveness in breast cancer.

Endoplasmic reticulum stress and the unfolded protein response in normal
and neoplastic breast tissues

The folding of proteins within the endoplasmic reticulum (EnR) is an energy-dependent
function, which in the absence of sufficient energy or other nutrient limitations can result in
the accumulation of unfolded proteins within the EnR lumen. Normally, these proteins are
detected and additional energy is consumed as the cell attempts to fold (or unfold and refold)
them into their correct form(s). However, as unfolded proteins accumulate, the cell may
have less and less energy available to meet this increased demand, particularly if it is
experiencing external stressors and the resources to fold correctly these proteins are
inadequate. The accumulation of these unfolded proteins creates a condition known as
endoplasmic reticulum stress, which ultimately initiates an attempt to restore balance
through several means including lowering energy/nutrient demands by reducing the rates of
mMRNA transcription and protein translation, and removing for degradation (rather than
refolding) inappropriately folded or unfolded proteins. Degradation usually occurs through
the endoplasmic reticulum-associated degradation pathway (ERAD) (24). Prolonged EnR
stress may activate more substantive prosurvival processes, such as a prosurvival autophagy.

Three forms of autophagy exist: microautophagy, chaperone-mediated autophagy, and
macroautophagy (25) (here we use the term “autophagy” to denote macroautophagy). A
lysosomal process, autophagy occurs when the cell begins to self-digest its subcellular
organelles; these are usually defective organelles, perhaps rendered such by an excessive
and unmet total energy/nutrient demand within the entire cell. Autophagy can be either
prodeath (autophagic cell death) and act as an alternative cell death pathway to apoptosis
(26), or prosurvival when extracellular nutrients or growth factors are limited (27). The
primary goal of this prosurvival autophagic process appears to be to recover sufficient
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energy and nutrients from the unnecessary/damaged organelles to meet the demands of more
fundamental cell processes.

Prolonged unresolved EnR stress often causes cell death, which may include an autophagic
cell death driven by autophagy cannibalizing subcellular organelles to a point beyond which
the cell can no longer survive. Whether the ultimate cell death is a consequence of induction
of an energy dependent cell death process such as apoptosis, or one less dependent upon
available energy sources such as necrosis, is an area of considerable interest and
investigation.

The initial coordinated response to EnR stress is a process called the unfolded protein
response (UPR). Since there are several excellent reviews available that describe the UPR in
detail (28, 29), we here provide only a brief overview. The UPR has three primary arms,
each initiated by a specific sensor, respectively PERK, ATF6, and IRE1a (Figure 1). Under
normal conditions, each sensor is maintained in an inactive state through its association with
the molecular chaperone HSP5A - also known as glucose-regulated protein 78 (GRP78) or
immunoglobulin heavy chain-binding protein (BiP). In the presence of unfolded proteins,
HSP5A disassociates from the molecular sensors and binds to the misfolded proteins in an
attempt to activate their repair (30), thus activating the sensors.

It seems likely that the normal mammary epithelium has a particularly well-coordinated and
active UPR. For example, the prolonged production of substantial amounts of secretory
proteins is essential during lactation, when the mammary epithelial cells must balance the
need to apply energy resources to translate, fold, and secrete proteins with those of the basic
cell survival functions. Furthermore, it would make strong biological sense for the cell to
coordinate the fulfillment of its nutrient and energy demands with this protein production
requirement, so as not to induce a prolonged and potentially fatal EnR stress. Since the
stimuli to regulate milk production are under the regulation of the lactogenic hormones
(prolactin, insulin, and the glucocorticoids), it is reasonable to assume that these hormones
also assist in initiating and/or maintaining the coordinated functions required to balance a
high rate of protein production, and the potentially associated EnR stress, with cell survival.
Thus, normal breast epithelial cells are likely well primed to adapt to prolonged EnR stress,
and the recruitment of these strategies by neoplastic breast cells as a primary survival
mechanism in the face of the stress of endocrine therapy (or other therapies) would seem
predictable. Since ER-mediated activities in breast cancer cells appear to regulate multiple
functions, including general cellular metabolism and the highly energy/nutrient demanding
functions required to execute a decision to enter the cell cycle, it is reasonable to expect
activation of ER to play a central role in affecting UPR-associated activities in breast cancer
cells.

XBP1 transcription and splicing, and its interactions with ER

The application of stress to cells results in several changes in metabolism and can induce
various stress response functions. A reduction in access to adequate oxygen, nutrients, or
energy can cause cells to redirect their available resources to perform basic functions in
order to survive. Inadequate vascularization places many tumor cells under some level of
hypoxic stress and nutrient deprivation, stressors known to induce EnR stress (31).
Inhibition of ER activity in estrogen-dependent breast cancers by AEs or Als likely
exacerbates these problems and further activates endoplasmic reticulum stress. Thus, the
UPR is a primary candidate for one survival mechanism that, if successfully activated, could
allow cells to survive the stress of endocrine therapies and confer a resistance phenotype.

Gu et al. first implicated UPR signaling in antiestrogen resistance and estrogen
independence, reporting the increased expression of XBP1 and its associated CAMP-
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response element-driven transcriptional activity and that of other UPR related proteins
(NFxB; HSP27) in LCC9 breast cancer cells (32). The functional relevance of the role of
XBP1 was established when the full length XBP1 cDNA was overexpressed in both the
MCF-7 and T47D human breast cancer cell lines by Gomez et al. (33), data also consistent
with the ability of the upstream UPR regulator HSP5A to protect cells from estrogen
withdrawal (34). Interestingly, the primary form of XBP1 protein present is the spliced form
XBP1(s), indicating that, at least in these cell models, transcriptional regulation of XBP1
may be rate limiting and not the rate of its unconventional splicing by the endonuclease
activity of IRE1la. XBP1 splicing is unconventional because it occurs predominantly in the
cytosol (35). While IREla can splice multiple RNAs, it is the only enzyme known to splice
XBP1. Splicing removes a short 25 basepair sequence from XBP1 that deletes a stop codon
and creates a longer mRNA reading frame.

Translation of the XBP1(s) RNA template results in the production of a larger protein that
can acts as a transcription factor. Regulation of transcription by XBP1(s) is a consequence of
its homodimers activating specific cCAMP response elements (CRES) with a conserved
ACGT core sequence GATGACGTG(T/G) NNN(A/T)T; sometimes called the UPR
element (36, 37). In marked contrast, translation of the unspliced XBP(u) generates a shorter
protein that cannot act as a transcription factor but can act as an endogenous dominant
negative inhibitor of XBP1(s) (38, 39). Thus, consistent with the critical nature of the
functions it regulates, control of XBP1 activity is multifactorial, for example, (i) rate of
transcription (includes regulation by cleaved ATF6 and ER), (ii) rate of splicing by IREla
(perhaps not a common mechanism in breast cancer), (iii) ratio of XBP(1u):XBP1(s).

Of particular relevance to breast cancer is the observation that XBP1 is a major estrogen
induced gene, being rapidly induced in response to E2-stimulation (40, 41). Expression of
XBP1 is a key component in the molecular classification scheme that defines luminal, basal,
HER2+, and normal-like breast cancers (8), being associated with the ER+ phenotype (42).
Furthermore, XBP1 protein can act as a coactivator of ER, forming ligand-independent
XBP1:ER heterodimers that are more effective in driving transcription from an estrogen
responsive element (43). These observations suggest that the XBP1-ER interactions may be
used to “fine-tune” some critical UPR functions.

Modeling XBP1 signaling in breast cancer cells

The evidence implicating XBP1 expression in acquired resistance (32, 33) and our
hypothesis of its potentially central role during lactation, led us to explore possible new
predictive models of XBP1 signaling. As a precursor to developing mathematical models,
we have begun to develop computational modeling tools and apply these to existing data
sets to try to uncover new topological knowledge of XBP1 signaling (20, 44-47). The
primary goal is to discover topological features of an XBP1-associated signaling module in
the context of endocrine responsiveness, with a particular focus on an initial series of genes
we believe are likely to contribute to the regulation and/or execution of proliferation or cell
death/survival decisions. Subsequently, we perform wet laboratory experiments to validate
and extend these topological features and to explore more fully how signaling flows to affect
endocrine responsiveness. Initial models are necessarily simplistic and static in their
representations of what is definitively a dynamic and adaptable process. Nonetheless, these
representations should allows us to eventually build truly dynamic models that can more
accurately predict the most important signaling that affects key subcellular functions
relevant to the endocrine resistant phenotype. The dynamic nature of the process is captured
by the models allowing changes to be made in the input values for specific nodes or edges.
The model will then calculate how the signaling is perturbed as a consequence these
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changed values, leading to predictions about signal transduction and the altered regulation of
the relevant cellular function(s).

In our work to develop new methods for computational network modeling, we have recently
developed a powerful new approach called differential dependency network (DDN) analysis
(20, 48). DDN was derived specifically to model statistically significant topological changes
between two conditions and was initially applied to transcriptome data from gene expression
microarrays. Local dependency models decompose the whole network, as represented by the
entire data set, into a series of local networks. Rather than look at 2-wise or 3-wise
interrelationships, the local dependency models are applied with a Lasso technique (least
absolute shrinkage and selection operator; a least squares regression method with an L1
norm constraint) that can select the optimum number of dependent variables and help ease
the risk of overfitting (20, 49). To detect statistically significant network topological
changes, DDN applies permutation tests under the two conditions and estimates a p-value
for each of the local structures. Ultimately, local topological features are represented by a set
of conditional probabilities, and each node can be assigned more than one conditional
probability distribution. The latter can allow nodes to “belong” to more than one local
dependency network and/or acquire multiple edges. Edges in DDN reflect the dependency
structures among genes that are learned by the Lasso method. Since DDN characterizes the
statistically significant network changes between two biological conditions, the dashed and
solid edges in Fig 2 represent the condition-specific dependencies. For instance, if gene A is
a good predictor of gene B under condition 1, but shows no such relationship under
condition 2, then in the DDN we will expect there is a condition-specific edge between gene
A and gene B under condition 1. A key goal of DDN modeling is to find “hot spots”, which
are those genes that exhibit statistically significant network changes between two conditions
given a predetermined significance level. The assumption with respect to these “hot spots” is
that robust topological changes likely reflect important or meaningful biological events.
Greater detail on the derivation of this method can be found elsewhere (20, 48).

In our initial studies, we selected 55 genes associated with antiestrogen responsiveness,
including XBP1, and applied DDN to a publicly accessible gene expression microarray data
set from T47D human breast cancer cells treated with 17p-estradiol + Fulvestrant (Faslodex;
ICI 182780). Fulvestant is an ER antagonist antiestrogen that does not exhibit partial
agonism and normally targets the ER for degradation (50). The study from which the data
were obtained was reported in detail by Lin ef a/. (51), and incorporates time course
experimental design of 16 time points over a 24 hr period. Thus, we used DDN to look for
topological features in the data set that could reflect “early” estrogen regulated signaling that
is perturbed by the antiestrogen.

Initial representation of XBP1-associated signaling

The results of these initial studies using DDN are shown in Figure 2; this is a general
representation of one small area of the overall subnetwork regulating the cell fate decision
and provides a series of seed nodes and edges for validation in wet laboratory experiments
(20, 48). The edges are coded to reflect those present with E2 treatment (solid lines) and
those present with estradiol and Fulvestrant co-treatment (dashed lines). Hence, solid lines
are implied to disappear when the antiestrogen is added. From the perspective of XBP1,
proposed connections with BCL2 and NFkB would be present only with estrogens and lost
with the addition of Fulvestrant. BCL2 is a key determinant for maintaining cell survival
with the UPR (28), and we now know that BCL2 is overexpressed in antiestrogen resistant
cells that also overexpress the endogenous XBP1(s) (52). Estrogenic induction of BCL2 is
well known, and we have shown that XBP1 is also a likely regulator of BCL2, which is
overexpressed in cells that have been transfected with XBP1 (33). The BCL2 promoter
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contains at least three XBP1-CRE sites that could drive a direct transcriptional activation of
BCL2 by XBP1 (Figure 3A). When considered together, these data strongly suggest that
some breast cancer cells may use the cooperation between ER and XBP1 to provide
redundant signaling and increase the likelihood of cell survival despite any concurrent EnR
stress (Figure 3B). Importantly, antiestrogen resistant cells that overexpress BCL2 are more
sensitive to growth inhibition by small molecule inhibitors of BCL2 (52).

The DDN model already correctly incorporates known knowledge of the relationship
between XBP1 and BCL2. New relationships are predicted including potential roles for ERP
(ESR2), BCARS, and NFkB. Data implicating each of these genes /ndividually in
antiestrogen responsiveness is already available. For example, NFKB2 is associated with
estrogen independence and may be selectively activated in breast tumors (53). BCAR3
activity is strongly associated with estrogen independence, and antiestrogen resistance (54—
56). This small topological representation includes two MAPK family members (MAPKS;
MAKZ13), suggesting that it also may begin to explain coordinated signaling for the
regulation of both proliferation and survival. Most of the edges represented in Figure 2
remain to be experimentally validated, and whether there are intervening latent variables is
unknown at this time. Nonetheless, the model provides further evidence implicating UPR
associated genes in endocrine responsiveness and offers some novel hypotheses as to how
these genes may further interact.

The implication that BCL2 is a key player may represent more than this single gene - the
model could also be read as implicating its function; as such, the role of BCL2 in Figure 2
could reflect a role for several members of this family. We have recently shown that the full
effect of the small molecule BCL2 inhibitors is mimicked only when both BCL2 and BCL-
W are co-inhibited (52). Other interactions also occur but these are not directly reflected in
this model. For example, BCL2 and BCL-W can affect cell survival by binding and
sequestering BECN1. These interactions prevent the induction of a prodeath autophagy and
can contribute to antiestrogen resistance (52). However, these events are further downstream
and occur primarily in the proteome, and so might not be reflected in a model based
primarily on transcriptome data. This observation identifies one limitation to using such
models to try to solve an entire subnetwork topology. However, to understand the
transcriptional components of the subnetwork, the application of DDN to gene expression
microarray data can uncover known relationships and propose new hypotheses for further
study.

How the full subnetwork regulating endocrine resistance is wired remains unknown.
Nonetheless, the extraction of topological information supported by experimental biological
data in relevant cell systems provides a starting point from which to uncover new nodes and
edges and build out the network in an iterative manner (6). As we obtain additional
experimental data, we can eventually move towards constructing mathematical
representations of the signaling and network function. Ultimately, we will build predictive
models that capture how ER-mediated signaling coordinates cell survival and cell
proliferation decisions, and the required metabolic and other cellular functions that must be
activated or repressed to execute these functions.

Conclusions and future directions

In estrogen dependent cells, estrogen withdrawal (Al) or ER blockade (AE) results in a loss
of adequate metabolic activity, likely resulting in low energy production. Inadequate energy
depletes exiting stores and eventually fails to meet the needs of the EnR to fold new
proteins. This chain of events results in activation of an endoplasmic reticulum stress and
induction of the UPR in an attempt to rebalance the energy and nutrient demands the cells
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need for survival. Those cells best capable of adapting their prosurvival signaling will have
the greatest probability of acquiring a stably resistant phenotype. Where this signaling
involves upregulation of XBP1(s), the cells will also have a greater likelihood of becoming
crossresistant to other endocrine therapies. UPR initiated signaling may also result in an
upregulation of autophagy, with surviving cells being those that can adjust this self-digestion
to balance the need for energy and nutrients with the risk of activating cell death cascades. A
critical signaling integration point for these activities appears to include modulation of the
expression of various members of the prosurvival BCL2 family including, but not limited to,
BCL2, BCL3, and BCLW (52, 53, 57, 58).

The need to develop a greater understanding of the signaling that regulates endocrine
responsiveness is evident. While much is known about the potential contribution of
individual genes, and perhaps also some relatively linearly constructed signaling pathways,
how this knowledge can be used to build dynamic, predictive models of cell function
remains elusive. To create more effective combinatorial therapies it is likely that we must
understand the topology of the network with sufficient clarity that we can target only those
nodes/edges needed to cause the signaling to collapse, and for the cell to have the least
chance to adapt or rewire its signaling to survive. If we are correct, the current practice of
treating ER+ breast cancers with single agent endocrine therapies may eventually be
replaced with modalities that are more complex. Among the challenges in arriving at this
point will be obtaining an adequate understanding of signaling complexity, being able to
model the inherent redundancy and degeneracy naturally present within networks that
control and execute such fundamental decisions (and that contribute to the apparent
plasticity of the phenotypes), and developing safe and effective new drugs for these targets.
While this is very probably a wicked problem, current approaches to ease the challenges for
this problem include the integration of mathematical and computational tools to help guide
the modeling and offer hypotheses for the laboratory experimentalists to test. Data from the
hypothesis-testing laboratory experiments provide further insights to adjust iteratively
computational and mathematical models. In addition to the need to apply some standard
reductionist wet laboratory experiments, at least for the time being, high throughput
experimental methods such as the various microarray, proteomic, sequencing, and functional
genomics tools now available offer the opportunities to obtain much of the data required to
eventually allow building useful models.
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Figure 1.

Overview of the three arms of the unfolded protein response (UPR). Accumulation of
unfolded proteins causes HSP5A to dissociate from (and so activate) the three sensors
PERK, ATF6, IREla. The activated sensors then initiate their respective signaling arms,
each of which results in the regulation of transcription (by ATF4, cleaved ATF6, and spliced
XBP1, respectively). The role of XBP1 in the ATF6 arm (induction of XBP1(u)
transcription) and IRE1a arm (creation of XBP1(s) by XBP1(u) splicing) is shown.
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Figure2.

DDN model showing initial topology (nodes and predicted edges) of a subnetwork featuring
XBP1, BCL2, and NFxB. Overexpression of XBP1 in MCF-7 cells results in the
upregulation of endogenous BCL2; the BCL2 gene has three XBP1-CREs in its upstream
promoter region. Solid edges are those present with E2 treatment; dashed edges are present
with 17B-estradiol and Fulvestrant co-treatment. Adapted from figure 3 in reference (20).
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Figure 3.

Figure 3A. BCL2 promoter contains at least three of the specific CAMP responsive element
sequences regulated by XBP1(s).

Figure 3B. ER and XBP1 interact to induce the prosurvival factor BCL2. ER can induce
XBP1, and XBP1 can induce ER. ER and XBP1 can form transcription complexes that are
more effective at driving transcription from EREs. Independently, ER and XBP1 (and
presumably also ER:XBP1 complexes) can induce BCL2, providing integrated and
potentially redundant prosurvival signaling from the UPR.
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