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In the analysis of proteome changes arising during the
early stages of a biological process (e.g. disease or drug
treatment) or from the indirect influence of an important
factor, the biological variations of interest are often small
(�10%). The corresponding requirements for the preci-
sion of proteomics analysis are high, and this often poses
a challenge, especially when employing label-free quan-
tification. One of the main contributors to the inaccuracy
of label-free proteomics experiments is the variability of
the instrumental response during LC-MS/MS runs. Such
variability might include fluctuations in the electrospray
current, transmission efficiency from the air–vacuum in-
terface to the detector, and detection sensitivity. We have
developed an in silico post-processing method of reduc-
ing these variations, and have thus significantly improved
the precision of label-free proteomics analysis. For abun-
dant blood plasma proteins, a coefficient of variation of
approximately 1% was achieved, which allowed for sex
differentiation in pooled samples and �90% accurate dif-
ferentiation of individual samples by means of a single
LC-MS/MS analysis. This method improves the precision of
measurements and increases the accuracy of predictive
models based on the measurements. The post-acquisition
nature of the correction technique and its generality prom-
ise its widespread application in LC-MS/MS-based meth-
ods such as proteomics and metabolomics. Molecular &
Cellular Proteomics 12: 10.1074/mcp.O112.023804, 2324–
2331, 2013.

Label-free proteomics is sensitive, comprehensive, and ver-
satile (1, 2). The “lyse, digest, and analyze” approach requires
the least sample preparation and wet chemistry of all quanti-
tative proteomics approaches (3). The label-free quantification
technique is equally applicable to the analysis of peptide

mixtures, protein complexes, body fluid proteomes, whole
organisms, organs, and organelles. It also does not impose a
limitation on the number of samples, which makes it best
suited for the requirements of clinical proteomics in which
analyses of large cohorts are common. Additionally, a single
LC-MS/MS run can identify and quantify several thousand
proteins, which makes the cost of analysis per quantified
peptide, protein, or proteome very low (4).

A significant drawback of label-free proteomics has been its
limited precision in the determination of relative changes in
peptide abundance, even when the area of the extracted
chromatographic peak is used as the peptide abundance. It
has been estimated that such label-free quantification gives
abundance ratio results that are on average two to three times
less accurate than the “gold standard” in global proteomics,
stable isotope labeling of amino acids in cell culture (SILAC)1

(4). There are several reasons for such a performance gap.
Unlike in SILAC, where proteins in all samples under compar-
ison are extracted and digested simultaneously (5, 6), in the
label-free method, each sample is prepared independently,
and therefore variations in sample preparation conditions can
cause abundance fluctuations. However, these variations are
a subjective factor that can be reduced by training the per-
sonnel and/or by employing sample preparation robots. The
main objective contributor to the imprecision of a label-free
LC-MS/MS experiment is the fluctuation of the instrumental
response during the LC-MS/MS run or series of runs. A major
component of the instrumental response fluctuation is the
variation in the current of electrospray ionization (ESI) during
the LC-MS/MS run. ESI is a resonance process, with reso-
nance frequencies stretching from sub-hertz levels to 100 kHz
(7, 8). Empirical observations also reveal that ESI current
fluctuations occur on the minute time scale (see below). Be-
cause the conditions during an LC-MS/MS run vary (e.g.
significant variations in the eluent and analyte composition
and in the analyte concentration occur), the values and am-
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plitudes of the resonance ESI frequencies change in a wide
interval (8) and are additionally affected by such varying pa-
rameters as the temperature and humidity of the ambient air,
the presence in that air of certain chemicals, the shape and
surface properties of the ESI sprayer on a microscopic level,
etc. (9). The total electrospray current is divided between the
background ions and the analyte ions, with a branching ratio
depending upon the eluent composition, relative concentra-
tions and basicity of the analytes, and parameters of the
electrospray process, such as the average droplet size, the
rate of droplet formation, etc. (10). Because the peptide con-
centration at the peak of chromatographic elution is high,
charge competition might arise between the peptides and the
background molecules, as well as among the peptides them-
selves. Given such complexity of the ESI process, it is no
surprise that the ESI current of peptides during an LC-MS/MS
run remains one of the most poorly controlled parameters in
the proteomics experiment. This is especially true when, for
the best sensitivity, nanoflow liquid chromatography is em-
ployed, in which the ESI process is often not assisted
pneumatically.

The ESI current fluctuations might appear easy to take into
account, as most mass spectrometers record the actual ESI
current at the moment when the mass spectrum is acquired.
However, in practice, normalization of the peptide abundance
by ESI current often leads to only a marginal improvement.
This is likely because background ions are the chief contrib-
utors to the measured ESI current, and the composition and
abundance of such ions vary during the course of the LC-
MS/MS run (10). Another possible reason is that the fluctua-
tions of the instrumental response include other factors be-
sides the ESI current, such as the instrumental sensitivity. The
latter depends upon, among other parameters, the transmis-
sion of the ion optics from the air–vacuum interface to the
mass detector. This transmission can change during the LC-
MS/MS experiment because of ion optics contamination and
charging up of conducing surfaces.

To address these issues, one can add a set of internal
standards to either the peptide mixture or the liquid chroma-
tography eluent (4), but such an approach represents another
layer of complexity, involves additional problems, and in-
creases the cost of analysis.

Here we describe a new method of effective normalization
of the electrospray current for peptides or other analyte mol-
ecules in a conventional label-free LC-MS/MS experiment in
which MS and MS/MS scans are alternated, with the peptide
sequences identified via MS/MS and MS scans used for
quantification via chromatographic peak integration. The
method represents pure post-processing, with little increase
in complexity relative to a standard data analysis. This method
is based on the empirical fact that in a typical comparative
proteomics experiment, a large number of peptides (often a
majority) change their abundances insignificantly (��10%).
This is especially true for an important class of proteomics

tasks in which the measured differences between the pro-
teomes are small (e.g. in the early response of a cell, organ, or
organism to drug or disease; in differentiating closely related
phenotypes; etc.). Because the fluctuations of ESI current (as
well as fluctuations of the instrumental response in general)
affect all simultaneously eluting peptides to the same degree,
these “unchanged” peptides can be used as references for
abundance alignment of other peptides eluting within the
same narrow time window (�1 min). The task is therefore to
identify these unchanged peptides and use them as internal
standards for instrumental response correction (Fig. 1). This is
solved here by means of statistical analysis of the multitude
of simultaneously eluting peptide species. We demonstrate
that such abundance alignment significantly improves the
precision of label-free quantification. The alignment not only
reduces the effects of ESI current fluctuations, but also auto-
matically accounts for the differences in the loaded sample
amounts, as well as for instrumental phenomena such as the
loss of ion transmission due to source contamination, reduc-
tion of the detector sensitivity with time, etc. The main pa-
rameter that is improved upon the correction is the coefficient
of variation (CV) of protein abundances. The importance of

FIG. 1. The principle of instrumental response correction using
alignment of two LC-MS/MS runs. A, an RT window contains sev-
eral peptide chromatographic peaks eluting within this window (for
clarity, no overlap on the RT scale is shown). B, some of the peaks
correspond to unchanged peptides that can be identified via statis-
tical methods. C, these unchanged peaks are used to normalize the
abundances of all peptides in run 1, which provides corrected ratios
with respect to their abundances in run 1.
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this parameter can be illustrated by the following example: in
order to detect with 95% probability (p � 0.05) a 20% change
in the protein abundance measured with a CV of 10% (typical
for today’s proteomics), one must analyze eight independent
replicates for both case and control samples. The same task
with a 5% CV requires three replicates, and with a 3% CV, two
replicates (the minimum recommended number of replicates).
Thus, reducing the CV of protein abundance measurements
can greatly reduce the required number of LC-MS/MS runs,
and therefore the time and cost of the proteomics analysis.

Our method of instrumental response correction is compu-
tationally inexpensive and fast (seconds for a pair of LC-MS
runs). The ease of the method and its generality might earn it
widespread application in proteomics, metabolomics, and
other LC-MS/MS-related techniques.

MATERIALS AND METHODS

Proteomics Experiment—218 blood plasma samples from the Kuo-
pio cohort were obtained in the course of the EU 7th Framework
Programme’s project PredictAD. This project defines long-term goals
of research, order and procedure of scientific collaboration, and
possible ethical issues related to the scientific activity. Detailed de-
scriptions of sample collection and preparation, clinical consider-
ations, and procedures are available in articles published in the con-
text of this project (11). Only the information limited to sex, age, and
state of Alzheimer disease was available for the samples. The pro-
vided samples were pooled according to gender and the stage of
Alzheimer disease (control, mild cognitive impairment, progressive
mild cognitive impairment, and Alzheimer disease). Each pooled sam-
ple was independently digested in triplicate by trypsin in Protease-
MAX™ Surfactant, Trypsin Enhancer (Promega, Madison, WI) accord-
ing to the protocol provided by the producer. Each individual sample
was digested once using the same protocol. Each peptide digest of
pooled samples was analyzed twice using nanoflow C18 reverse-
phase liquid chromatography (HPLC) (Easy-nLC, Proxeon, Odense,
Denmark) with a 60-min gradient coupled with electron transfer dis-
sociation MS/MS on a Velos Orbitrap mass spectrometer (Thermo
Fisher Scientific). Survey MS scans were carried out in the Orbitrap
Fourier transform mass analyzer with a resolution of 60,000, with the
m/z ranging from 300 to 2000. After each MS scan, the top five most
abundant precursor ions were selected for MS/MS using high-energy
collision dissociation in the Orbitrap (resolution of 7500) and electron
transfer dissociation in the Velos ion trap. Each of the individual
samples was analyzed once using the same conditions as above, but
with a nanoAcquity UPLC (Waters, Milford, MA) and using a shorter,
30-min-long gradient. Individual samples were analyzed in two unin-
terrupted series of LC-MS/MS runs with a three-week break between
the series. For the current study, samples of 19 healthy males and 16
healthy females 71 � 6 years old were selected representing LC-
MS/MS runs from both series.

Peak List Generation and Database Search—MS/MS spectra were
extracted using the home-written program RAW_to_MGF v. 2.0.5,
which selected the 200 most intense peaks for each MS/MS spec-
trum and also cleaned electron transfer dissociation MS/MS spectra
from precursors and neutral losses according to Ref. 12. Then,
MS/MS spectra from different runs were clustered together using the
home-written program Cluster_to_MGF v 2.0.6 to make a single .mgf
file for pooled samples and two .mgf files for individual samples
before and after the break, respectively. Cluster_to_MGF gathers
groups of spectra that are presumed to be of the same compound.
Spectra are included in this group if they share 10 of the 20 most

intense peaks with at least one other spectrum in group. One spec-
trum from each group with the maximum aggregate intensity is taken
as representative of this group for aggregation in the .mgf file.

The resultant .mgf files were searched using Mascot v. 2.3 (Matrix
Science, London, UK) using high-energy collision dissociation and
electron transfer dissociation data, with a precursor mass accuracy of
10 ppm, MS/MS accuracy of 0.6 Da, a maximum of two missed
cleavages, carbamidomethylation of cysteine as a fixed modification,
and asparagine and glutamine deamidation and methionine oxidation
as variable modifications (the inclusion of these variable modifications
makes sequence assignment more reliable). The database search
was performed against the IPI Human V3.86 database concatenated
with a decoy reverse-sequence compilation of this database for false
discovery rate determination (contains 183,042 sequences, 91,521 of
which are reversed). 1455 unique peptides belonging to 157 proteins
were identified in the pooled samples with a false discovery rate of
�1% (spectra peptide assignment was treated as false positive if its
best hit matched in the database a reversed protein sequence).
Before and after the break, 785 and 1109 peptides and 130 and 149
proteins were identified, respectively, in individual samples (supple-
mental Data S2). The Mascot score threshold required in order to
keep a 0.01 false discovery level for accepting individual MS/MS
spectra was 30.68 for pooled samples and 34.04 and 32.01, respec-
tively, for individual samples before and after the break.

Quantification of the proteins was performed using the home-
written program Quanti v. 2.5.2.1. This program performs the label-
free extracted-ion-chromatogram-based quantification of peptides
presented in Mascot search results considering all available isotopes
and charge states. Quanti uses for quantification only reliably identi-
fied (false discover rate � 0.01), first-choice, unmodified, unique-
sequence peptides. No fewer than two such peptides have to be
present in order for a protein to be quantified. For each protein, one
of the database I.D.s was selected that covered all the identified
peptide sequences for that protein. All the I.D.s corresponding to the
same peptide set or subset of that peptide set were also cited
(supplemental Data S4). If two database protein entries had partial
intersection, then all the peptides belonging to that intersection were
excluded from the analysis.

This method yielded 105 quantified proteins in pooled samples,
with 72 and 93 quantified proteins in individual samples before and
after the break, respectively, excluding 4 keratin proteins that
showed large sample-to-sample variation and were attributed to
contamination.

Abundance alignment was implemented as part of the Quanti
program. A single alignment step between two LC-MS/MS runs rep-
resenting case and control consisted of the following steps:

1. Simultaneous label-free quantification analysis of all LC-MS/MS
runs, including the alignment of peptides’ retention times (RTs), and a
determination for each peptide in each LC-MS/MS run of the RT and
abundance A (integral of the extracted chromatographic peak of the
peptide ion, including all isotopes and charge states). Fig. 2A shows
the total ion chromatograms of two consecutive LC-MS/MS runs of the
same digest. The total ion chromatogram variation between the runs is
chiefly due to the fluctuation of the instrumental response function.

2. Despite the apparently reasonable overlap between the total ion
chromatogram traces in Fig. 2A, detailed analysis showed that the
peptide abundances in the two LC-MS/MS runs varied quite signifi-
cantly. The smoothed ratios r of the same-peptide abundances are
shown in Fig. 2B. The nonrandom component of r apparently drifts on
the minute time scale and, in this particular example, reached a
magnitude of 50% or more. Despite such strong fluctuations of the
instrumental response, the correlation plot for peptide abundances
between these two runs still gave a decent R2 � 0.97 (supplemental
data). This value could be considered acceptable in today’s proteom-
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ics, and thus the large systematic, time-dependent drift of relative
peptide abundances could easily be overlooked in routine proteomics
experiments.

3. To eliminate or drastically reduce the above-mentioned fluctua-
tion, a sliding window �RT was arranged centered on a peptide of
interest (all peptides were chosen in consecutive RT order). The width
of �RT can be adjusted from seconds to minutes, but in general it
should be larger than the typical width of a chromatographic peak.
Shorter windows closely follow rapid fluctuations in the ESI current,
but can result in misidentification of the unchanged peptides.

Within each �RT window, the r values of all peptides eluting within
that window were sorted in ascending order, and the median value of
r was selected (Fig. 2C). In the selection of the median, peptide
abundances can be taken into account to discriminate against the
low-abundant peptides, whose abundances are measured less pre-
cisely. Empirically, we determined that the square root of the peptide
abundance provides an optimal weighting factor for the median
calculations.

Peptides that are best avoided for median calculations are those
that may originate from in vitro post-translational modifications of
tryptic peptides, such as deamidated analogues of peptides with Asn
and Gln residues and oxidized Met residues. The abundance of these
modified species can vary significantly even in technical replicates

depending upon minute details of sample handling, storage, and the
order of sample injection.

4. Median case/control values for all �RT windows were smoothed
using the same window width for smoothing as was used to get
median peptide ratio values. The spectrum of the smoothed corrected
values plotted against the RT (similar to Fig. 2B) can be used for
quality control. Smoothed median values were then used as RT-de-
pendent correction factors (Fig. 1B; each peptide abundance in run 2
was divided by the corresponding correction factor). After correction,
R2 for the two runs in Fig. 2A improved to 0.997.

5. Protein regulation factors were calculated as medians of the
corrected ratios of the unique peptides composing the protein. If
there are more than two samples in an experiment, matrix A is created
for each protein, such that each element aij is the ratio of the abun-
dances vk in a pairwise comparison of the ith and jth samples: aij �
vi/vj . The matrix A is reciprocal (aij � 1/aji), but it is inconsistent (aik �
aij

*ajk) because of the independent calculation of aij, ajk, and aik. The
theory of using reciprocal inconsistent matrices for approximating
true abundance ratios was developed in the late 1970s by Saaty and
colleagues (13). The best estimate of the true relative protein abun-
dance of the jth protein is the geometric mean of a1j to anj. (14). There
is a simple explanation for why the geometric mean is better suited in
this case than an arithmetic average: the aij ratios are asymmetric

FIG. 2. A, total ion chromatograms
of two consecutive LC-MS/MS runs of
the same proteomics sample (techni-
cal replicates). B, the median ratios r of
the abundances of the same peptides
eluting within a �1 min RT window in the
two runs. In the absence of the instru-
mental response fluctuations, the ex-
pected value is unity for all peptides. C,
the ratios r are sorted according to their
value; a median is calculated using the
square root of the peptide abundance as
a weight factor.
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entities, with the up-regulation range being a � (1, �) and a down-
regulation range of (0, 1). Therefore, the arithmetic mean gives a
biased estimate. At the same time, log(a) is symmetric within the
ranges (	�, 0) and (0, �), and thus the arithmetic average of the
logarithms of ratios (which is equivalent to a geometric average of
ratios) is unbiased.

In principle, the correction method improves only the measurement
precision. It is known in statistics that any manipulation of data, includ-
ing any kind of normalization, can only reduce the accuracy (deviation of
the result from the true value) and can never improve it. However,
normalization that reduces the accuracy less than it improves the pre-
cision can have a huge beneficial effect on the statistical power (e.g.
reduce the number of replicate analyses necessary to detect statistically
significant changes in protein abundances, as discussed above). Thus a
normalization method that slightly reduces the accuracy (e.g. produces
an 18% difference instead of the true value of 20%) but significantly
improves the precision and thus greatly reduces the number of exper-
iments can be very valuable in practical terms.

RESULTS AND DISCUSSION

Precision Improvement—Fig. 3 demonstrates the signifi-
cant improvement in the CV after the ESI current alignment
procedure. Starting from proteins with five quantified pep-
tides, the average CV is below 5%, whereas for proteins with
�10 peptides, the CV is below 3%. The lowest CV of �1%
was obtained for proteins with �100 peptides. This value
represents the intrinsic precision of the alignment method: as
is true of every post-processing correction, it can lead to
marked improvement only when the instrumental response
fluctuations are significant. Therefore, it is advisable to ana-
lyze the data with and without the correction, choosing the
approach that produces lower CVs for a particular dataset.

These CV improvements represent an intermediate result;
the real aim of the correction is to reduce the p value char-
acterizing the difference between biologically distinct sam-
ples. Below, we provide an example of measuring such a
difference as the ultimate test for the utility of the correction
method.

Sex Differentiation—Abundant proteins in human blood are
found in varying concentrations, and their relative abun-
dances change in response to changing conditions (15). It has

been known since the 1960s that alpha2-macoglobulin, the
third most abundant protein in blood plasma, is present in
adult female samples at an approximately 15% higher con-
centration than in adult male samples (16). We decided to look
for sex differences among 70 to 100 of the most abundant
proteins, because there are only a few reports in the literature
of studies on sex differentiation via proteomics blood analysis
(17, 18), none of which used label-free quantification. The
working hypothesis was that, because protein biomarkers
often show sex differences in expression levels (17), many
abundant proteins will show sex-specific differences, and
using these it will be possible to build a model for sex differ-
entiation. The accuracy of such a model built using proteom-
ics data before and after the instrumental response correction
will serve as a test of the utility of our method.

To create a predictive model for sex differentiation, all 105
proteins quantified within the 48 pooled samples (2 sex * 4
disease state * 3 digestions * 2 replicates) were correlated
with the sex of the subjects, and the N most correlating and N
most anti-correlating proteins were selected. For each sam-
ple, the relative abundances of positively and negatively cor-
relating proteins were separately summed, and then the sum
for anti-correlating proteins was subtracted from the posi-
tively correlating sum. A positive resulting value predicted
female sex; negative values indicated male. The 24 obtained
predictions for female samples and 24 male samples were
then submitted to a two-tailed Student t test, yielding the p
values presented in Fig. 4. It is clear that for a broad range of
values (3 � N � 20), and especially for n � 8 to 15, the
instrument response correction produced significantly lower p
values (i.e. better sex separation). Whereas in standard-based
multiple reaction monitoring the use of fewer analytes is
clearly advantageous in terms of the analysis cost, there is no
penalty for using as many proteins as desired to create a
predictive model in the label-free analysis scheme. Therefore,
we chose for our model n � 10 (i.e. 20 in total) proteins out of
the quantified 105 proteins that could be found in both pooled
and individual datasets (Table I). The instrumental response

FIG. 3. The average CV of proteins in
analyzed human blood plasma as a
function of the number of unique pep-
tides quantified per protein before (red
triangles) and after (blue diamonds) in-
strumental response correction.
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correction reduced the sample-to-sample variation of the
same-sex model predictions (Table I, supplemental Fig. S1)
and increased the “sex gap” between female and male pre-
dictions, ensuring 100% accuracy of that model (not surpris-
ing, given that it was built on pooled samples).

The same 20 best correlating and anti-correlating proteins
from the pooled sample analysis were used for sex differen-
tiation based on a single LC-MS/MS analysis of 16 individual
female and 19 male blood samples. These blood samples
were digested and run only once, using a different HPLC with
a much shorter gradient (30 min versus 60 min), thus mimick-

ing an independently made routine analysis performed in a
high-throughput manner. This, as well as the three-week
break between some of the runs (see above), makes this
dataset a challenging but particularly realistic test object.
Instrumental response correction reduced the standard error
of the protein abundance measurement even for individual
samples (Table I).

Without the correction (Fig. 5A), the model achieved 80%
accuracy in sex identification, misclassifying 7 out of 35 sam-
ples. After the correction, only four samples were classified
incorrectly, giving the classification an accuracy of approxi-

FIG. 4. For each 24 pooled female
and 24 pooled male blood plasma
samples, the relative abundances of
positively and negatively correlating
with sex proteins were separately
summed, and then the sum for anti-
correlating proteins was subtracted
from the positively correlating sum.
The 24 obtained predictions for female
samples and 24 for male samples were
then subjected to a two-tailed Student’s
t test. The resultant p values before (red
triangles) and after (blue diamonds) in-
strumental response correction are pre-
sented in the plot as a function of the
number of proteins used for prediction.

TABLE I
The relative abundance ratios (male/female) and their standard errors for blood plasma proteins characteristic for females (upper part) and males

(lower part) and used in the sex-differentiating model

Protein I.D. Protein name
Number of
peptides

Not corrected,
pooled

Corrected,
pooled

Not corrected,
individual

Corrected,
individual

IPI01010737 A2M 165 kDa protein 58 0.755 � 0.015 0.824 � 0.017 0.87 � 0.11 0.88 � 0.09
IPI00896380 IGHM isoform 2 of Ig mu chain C region 14 0.728 � 0.039 0.792 � 0.033 0.79 � 0.14 0.76 � 0.13
IPI00021842 APOE apolipoprotein E 11 0.822 � 0.017 0.915 � 0.014 0.95 � 0.17 0.93 � 0.11
IPI00020986 LUM lumican 2 0.843 � 0.021 0.884 � 0.020 0.86 � 0.11 0.85 � 0.09
IPI00019943 AFM afamin 8 0.854 � 0.019 0.915 � 0.015 1.11 � 0.09 1.08 � 0.07
IPI00657670 APOC3 apolipoprotein C-III variant 1 4 0.808 � 0.024 0.880 � 0.025 0.85 � 0.22 0.87 � 0.16
IPI00021856 APOC2 apolipoprotein C-II 4 0.846 � 0.029 0.893 � 0.024 0.92 � 0.17 0.93 � 0.14
IPI00017601 CP ceruloplasmin 18 0.897 � 0.021 0.945 � 0.016 1.08 � 0.11 1.07 � 0.06
IPI00879573 SERPIND1 heparin cofactor 2 7 0.872 � 0.024 0.934 � 0.020 1.18 � 0.10 1.10 � 0.07
IPI00021855 APOC1 apolipoprotein C-I 5 0.868 � 0.029 0.936 � 0.021 0.92 � 0.09 0.93 � 0.08

Average protein regulation 0.829 � 0.024 0.892 � 0.020 0.95 � 0.13 0.94 � 0.10
IPI00022429 ORM1 alpha-1-acid glycoprotein 1 4 1.053 � 0.029 1.127 � 0.027 1.32 � 0.19 1.29 � 0.18
IPI00930442 IGHG4 putative uncharacterized protein

DKFZp686M24218
2 1.384 � 0.076 1.429 � 0.069 1.76 � 0.20 1.62 � 0.19

IPI00844536 RBP4 uncharacterized protein 5 1.019 � 0.025 1.119 � 0.024 1.08 � 0.11 1.11 � 0.09
IPI00953689 AHSG alpha-2-HS-glycoprotein 6 1.022 � 0.027 1.072 � 0.014 1.11 � 0.06 1.15 � 0.06
IPI00298828 APOH beta-2-glycoprotein 1 9 0.951 � 0.012 1.052 � 0.010 1.08 � 0.10 1.11 � 0.06
IPI00553177 SERPINA1 isoform 1 of alpha-1-antitrypsin 31 0.993 � 0.015 1.075 � 0.013 1.08 � 0.10 1.07 � 0.07
IPI00847635 SERPINA3 isoform 1 of Alpha-1-

antichymotrypsin
12 1.024 � 0.016 1.087 � 0.014 1.08 � 0.16 1.05 � 0.10

IPI00298971 VTN vitronectin 5 1.026 � 0.014 1.086 � 0.013 1.21 � 0.09 1.23 � 0.05
IPI00745872 ALB isoform 1 of serum albumin 79 1.011 � 0.009 1.104 � 0.008 1.03 � 0.02 1.05 � 0.03
IPI00607707 HPR isoform 2 of haptoglobin-related protein 2 1.420 � 0.041 1.427 � 0.028 1.55 � 0.17 1.43 � 0.15

Average protein regulation 1.090 � 0.026 1.158 � 0.022 1.23 � 0.12 1.21 � 0.10
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mately 90%. The p value of the difference between the sex
groups improved from 5.0 
 10	2 to 7.8 
 10	7. Note also
that out of the three “bad” outliers in Fig. 5A, two are much
closer to their true class in Fig. 5B. It is realistic to suggest
that, using more technical replicates and perhaps two to three
digestions per sample, one can achieve nearly 100% accu-
racy in sex differentiation through a rather “shallow” proteo-
mics analysis.

CONCLUSIONS

This new method of instrumental response correction sig-
nificantly improves the precision of label-free proteomic quan-
tification and increases the accuracy of predictive models
based on the measurements. We have demonstrated that the
accuracy of the sex differentiation model based on “one-shot”
proteomics data is significantly improved upon application of
the instrumental response correction. The correction method
is general and, in principle, can be used for many proteomics
and metabolomics datasets acquired in a label-free experi-
ment. The off-line, post-processing character of our correc-
tion sets it apart from the on-line, real-time monitoring meth-
ods that reject experiments performed in deviating conditions
(19). The method is built into versions 2.4 and higher of the
in-house software Quanti operating with Thermo .raw files and

available from the authors upon request. We have been using
the above-described method in our laboratory for almost two
years and have tested it thoroughly on hundreds of proteo-
mics datasets.
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