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Proteins have evolved to use water to help guide folding. A
physically motivated, nonpairwise-additive model of water-medi-
ated interactions added to a protein structure prediction Hamilto-
nian yields marked improvement in the quality of structure pre-
diction for larger proteins. Free energy profile analysis suggests
that long-range water-mediated potentials guide folding and
smooth the underlying folding funnel. Analyzing simulation tra-
jectories gives direct evidence that water-mediated interactions
facilitate native-like packing of supersecondary structural ele-
ments. Long-range pairing of hydrophilic groups is an integral part
of protein architecture. Specific water-mediated interactions are a
universal feature of biomolecular recognition landscapes in both
folding and binding.

Water is intimately involved in protein folding (1–4). That
proteins denature both on heating and cooling strongly

implicates the involvement of water degrees of freedom. Kauz-
mann (5) correctly inferred from thermodynamics the hydro-
phobic layering characteristic of protein structure before protein
structures were determined crystallographically. The kinetics of
water exclusion is often considered in discussing mechanisms of
protein folding, but again it is the avoidance of water in the final
folded structure that is emphasized (1). Hydrophobicity patterns
have long been a dominant consideration in predicting protein
structure by using sequence data (6) and are basic in synthetic
protein design (7). Nevertheless, the structured character of
water has not been a paramount factor in most existing algo-
rithms for structure prediction (8). These usually rely on effec-
tive pair potentials (9) or buried surface area terms to account
for the free energy of burying hydrophobic residues (10).

In this article, we hypothesize that specific water-mediated
interactions help guide the folding process even before native
contacts form. Using this idea we develop a bioinformatic,
nonpairwise-additive interaction model accounting for water
and show that it greatly improves the efficiency and accuracy of
structure prediction for �-helical proteins. Analysis of folding
trajectories with this potential strongly implicates the guiding
role of long-range water-mediated interactions. Interestingly, we
find here that long-range hydrophilic interactions, as distinct
from hydrophobic interactions, also take center stage.

The bioinformatic route to water-mediated potentials is dif-
ficult in several ways (for more directly physical approaches see
ref. 11). Although bound water is visible in structures, localizing
waters is more difficult than localizing main-chain atoms. Mo-
nomeric protein structures also have relatively few visible water-
mediated interactions. Our path to a water-mediated potential
started with an energy landscape analysis of protein–protein
interactions and a bioinformatic survey of interfaces in dimer
structures (12, 13). We found that the often-used contact
potentials (9) worked well to describe hydrophobic binding
interfaces; however, hydrophilic interfaces were poorly recog-
nized (13). This finding suggests that longer-range interresidue
contacts, mediated by water, play an important role in stabilizing
these interfaces (13). To test this hypothesis, we derived both
direct and water-mediated binding potentials (13). When these
two potentials were used simultaneously (13), smooth recogni-
tion of diverse binding interfaces was achieved (in contrast to the
direct contact potential). Here, we show that water-mediated

interactions play an important role not only in binding interfaces
but in folding of monomeric proteins.

We use the associative memory (AM) Hamiltonian molecular
dynamics model as a starting point (14–16). This Hamiltonian
has two principal components: general polymer physics-based
terms that are sequence independent, collectively called ‘‘back-
bone,’’ and sequence-dependent knowledge-based distance-
dependent additive potentials, collectively denoted as AM�C
(AM�contact). The AM part describes interactions between all
pairs of residues that are separated in sequence between 3 and
12 residues. It uses a set of nonhomologous memory proteins to
build a funneled energy landscape by matching fragments. The
C part applies to tertiary contacts between residues separated by
�12 residues in sequence. All parameters in the potential have
been optimized with a self-consistent procedure based on the
energy landscape theory as described (15) (see Appendix: Com-
putational Details and Supporting Text, which is published as
supporting information on the PNAS web site).

The C part of the AM�C potential describes effective inter-
actions between C� (C� for Gly) atoms in each residue pair. It
consists of three wells covering the 4.5- to 8.5-Å, 8.5- to 10.0-Å,
and 10.0- to 15.0-Å distance intervals. Similarly, the potentials
used in this study contain a first well for the 4.5- to 6.5-Å interval,
whereas the second well is replaced by a local density-dependent
potential (discussed below). They contain no third well, because
it is unlikely that specific interresidue interactions are mediated
by water to such a long distance (10–15 Å). There is also a
residue-specific many-body burial profile potential describing
coordination preferences of all 20 amino acids. The parameters
for the resulting potential, which we call AM�W (W for water),
were optimized by using our earlier sequence-based approach
(13). We have further refined these parameters by using the
self-consistent structurally based optimization scheme from en-
ergy landscape theory (15). We denote the original potential,
AM�W-0, and the more refined one, AM�W-1 (see Appendix for
Computational Details and Supporting Text).

For the coarse-grained models considered in our study, the
definition of water-mediated contacts naturally becomes some-
what more indirect than, for example, in full-atom simulations.
Because direct contacts are defined as occurring between resi-
dues that have a distance between C� (C� for Gly) atoms of �6.5
Å, a similar constraint for water-mediated contacts places them
in the 6.5- to 9.5-Å distance interval. A more extensive discussion
of the rationale for this choice is given in ref. 13 where the results
for protein binding recognition also was found to be robust with
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respect to various alternative definitions of water-mediated
contact range.

To interact through water, we require that both residues are
sufficiently exposed to water, or equivalently, neither residue
should be buried in the protein interior (hydrophobic core). To
model this we use a highly nonadditive local density-dependent
potential: when either of the residues in the pair attains a local
neighbor density above a critical threshold value (i.e., becomes
buried), the potential switches smoothly but quickly from water
mediated to protein mediated.

Results and Discussion
Physical Interpretation of the Interaction Potentials. Before discuss-
ing the simulation results, we briefly analyze the main qualitative
differences between the AM�C and AM�W interaction poten-
tials. The interactions within the range of the first well and the
protein-mediated interactions of the second well of the AM�W
potential are qualitatively similar to their corresponding AM�C
counterparts (see Fig. 1 A and B). The main difference lies in the
interactions between hydrophilic residues in the second-well
water-mediated interactions (see Fig. 1C). Whereas very polar
second-well interactions are destabilized on average for the
AM�C potential, they are highly stabilized for the AM�W
potential when two residues are in a low-density environment,
i.e., when residues interact through water (Fig. 1C).

Although these potentials are knowledge-based in origin,
examining their details gives interesting physical insight into the
nature of biomolecular forces (13). Perusing of charged residue
interactions in Fig. 1 B and C suggests that a large desolvation
penalty must be paid when a fully direct contact is formed, and,
therefore, charged and highly polar residues prefer to avoid
complete desolvation by interacting through one or two water
layers. Even more interestingly, not only do oppositely charged
residues attract each other when interacting through water, but
so do residues of the same charge (Fig. 1C). This finding either
indicates that residues of the same charge alter their mutual pKa
so only one residue is really charged (i.e., one has in fact a
charged-polar interaction) or that correlated fluctuations of the
counterion cloud (17) and the perturbation of the water hydro-
gen-bonding network bind the like-charged residues together.

General Trends. Given the differences among the potentials
outlined above, we anticipate that the AM�W potential would
significantly improve the AM�C potential results for those
proteins that contain explicit water-bridged interactions in their
native state. As we shall see, these water-mediated interactions
also appear transiently during collapse and folding of the chain
and help guide the heteropolymer into a correct topology. For
each protein of 14 chosen for study (discussed below), we have
carried out five distinct annealing runs (7.2 � 105 time steps)
with each of the three potentials (AM�C, AM�W-0, and AM�
W-1), starting from a randomly generated extended-coil con-
formation at high temperature (we have not optimized the
annealing protocol for the AM�W potentials nor used other
minimization techniques; ref. 18). For each run we have taken
240 snapshots at equal time intervals, monitoring the progress
toward achieving a native-like conformation by using a contact
overlap measure Q. Our Q measure is more stringent than the
usual contact Q, because it takes into account not only the
correctness of contacts that occur in the native structure but also
the correctness of distances between all pairs of residues even
when they are far apart in the native state. In addition to Q, when
discussing various structures, we use other structural similarity
measures, such as rms displacement (RMSD) and the combina-
torial extension (CE) method, which makes sequence-
independent alignment of two conformations (19). It is perhaps
not surprising that comparing protein structures is a tricky
business, involving several means of similarity as discussed (20).

The validation of any knowledge-based potential must be done
on an unrelated set of test proteins because of the risk of
parameter overlearning. Nine of the 14 �-helical proteins used
are ‘‘training’’ proteins for the AM�C potential, i.e., they were
used to derive the parameters for the AM and C parts of the
potential (15). The W part of AM�W-0 was optimized by using
a sequence-based technique for an unrelated set of proteins.
Thus for the AM�W-0 tertiary contact potential these nine
proteins serve partially as test proteins. On the other hand, the
W part of the AM�W-1 potential was refined by using the same
training set of nine proteins. We emphasize these relationships
to be attentive to the possibility of overlearning. It is necessary
to apply the potential to an unrelated set of test proteins for
confirmation.

The performance of the AM�W potentials is well documented
by five �-helical test proteins that we discuss in detail below (see
also Supporting Text). Two test proteins [Protein Data Bank
(PDB) codes 1BG8 (21) and 1JWE (22)] were targets taken from
the CASP3 (Critical Assessment of Techniques for Protein
Structure Prediction) event (ref. 20; a detailed compilation of all
CASP results may be found at http:��predictioncenter.llnl.gov),
and three, target T0170 [PDB code 1H40 (23)], target T172b
[PDB code 1N2X (24)], and target T129a [PDB code 1IZM (A.
Galkin, E. Sarikaya, C. Lehmann, A. Howard, and O. Herzberg,
personal communication)], were taken from the CASP5 event
(http:��predictioncenter.llnl.gov and ref. 25). Our results com-
pare favorably with the top CASP predictions for these proteins
(http:��predictioncenter.llnl.gov), but have nevertheless been
obtained a posteriori (although in a fairly automatic manner) and
should not be regarded as new CASP entries. Nevertheless,
because numerous prediction groups participated in CASP, the
CASP experiment has generated valuable statistical data that
may be used to calibrate progress.

When the best Q scores obtained for each protein during all
five annealing runs are compared across all 14 proteins (Fig. 2),
the following trends becomes evident. First, AM�C and AM�W
potentials show similar performance for small (�115 residues)
training proteins. As for small test proteins, 1BG8 (21) is greatly
improved by both AM�W-0 and AM�W-1 potentials, whereas
T0170 is improved only by AM�W-0. The most significant trend,
one that is highly desirable, comes when the largest proteins
(�115 residues) are considered. A methodical improvement in
the prediction of both training and test proteins is achieved by
both AM�W-0 and AM�W-1 potentials, the latter showing a
more uniform trend (Fig. 2). For large proteins, an improvement
of 0.05–0.10 in Q is very significant, typically improving global
RMSD by a few Å and significantly improving other measures of
fold recognition, such as CE Z score.

Specific Targets. Having achieved substantial progress in protein
structure prediction by using the tertiary contact potential
incorporating long-range water-mediated interactions, we next
investigate the cause of the improved structural recognition. We
focus on three proteins: (i) PDB code 2FHA (26), a training
protein, the largest one in the protein set; (ii) PDB code 1BG8
(21), a small test protein for which both AM�W-0 and AM�W-1
show very significant improvements; and (iii) CASP5 target
T129a (A. Galkin, E. Sarikaya, C. Lehmann, A. Howard, and O.
Herzberg, personal communication), the largest test protein in
the protein set, that has two interacting domains.

Human iron storage protein, ferritin [PDB code 2FHA (26)],
is the largest protein studied (172 residues). Although it was a
training protein for AM�C, there was a large improvement in
structure prediction when using both AM�W-0 and AM�W-1
(Fig. 3A). During the cooling schedule the divergence between
the trajectories in nativeness occurs around T � 1.05. To further
evaluate the difference between the potentials, we carried out
free energy calculations as a function of Q by using the histo-
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gramming technique (16). These calculations show that the free
energy minimum shifts toward more native-like structure for
AM�W-0 vs. AM�C (data not shown). In addition, the thermo-
dynamic energy as a function of Q (Fig. 3B) indicates that
AM�W-0 energy landscape is slightly more funneled than
AM�C. The AM�C potential generates a rougher energy land-
scape than the AM�W potentials. This is even more exaggerated
in the E(Q) plot of Fig. 3B caused by the statistical noise caused
by slow exploration of deeper traps of the AM�C potential
energy surface. These thermodynamic observations at least
partially explain the improved prediction from the AM�W
potentials.

The highest Q structure from AM�W-0 annealing is super-
imposed on the native ferritin structure in Fig. 3C. The CE
structure alignment method gives a Z score of 5.7 for the
alignment of 134 residues with an RMSD of 3.4 Å (a Z score �3.5
is considered as significant fold recognition). The first and last
15 residues were not aligned by CE, as evident in Fig. 3C.
Because of this mispacking of these two relatively small frag-
ments, the global RMSD of 10.2 Å turns out to be somewhat
misleading. The distance plots for the native and the predicted
structure (Fig. 3D) indicate that the overall fold and the tertiary
interactions are captured quite accurately. The best AM�C
snapshot, on the other hand, describes correctly only a smaller
part of the overall structure (118 residues are aligned with
RMSD of 5.0 Å and Z score of 3.9). When we partition the
Q-score data into native contacts that are short and medium
range in sequence (between 3 and 12 residues) as opposed to
long range in sequence (tertiary contacts, �12 residues), then
the resulting Qshort and Qmedium are rather similar for AM�C and
AM�W potentials (Qs � 0.74 and Qm � 0.59 vs. Qs � 0.79 and
Qm � 0.64). The main performance gain comes from improved
packing of supersecondary structural elements (Qlong � 0.20 vs.
Qlong � 0.36). Although expected, because the AM potential
describing short- and medium-range contacts is shared by all

which are more destabilized in the AM�W-0 and AM�W-1 potentials. (C) The
45 interactions for second-well protein-mediated (filled symbols) and second-
well water-mediated (dotted symbols) interactions among all charged and
polar residue pairs are shown. Again the second-well protein-mediated inter-
actions in AM�W are similar to those in AM�C, but the AM�W water-mediated
interactions stand out as being different (see the text for discussion).

Fig. 1. The detailed interactions in the bioinformatic prediction energy
functions are compared. We partition 210 interresidue pairs into 165 pairs
having at least one hydrophobic partner (hydrophobic group) and 45 pairs
having only charged and polar residues in the pair (polar group). More positive
values for the matrix elements indicate more favorable interactions. (A) The
165 interaction matrix elements for first-well interactions among residue pairs
having at least one hydrophobic partner are shown. The hydrophobic group
first-well interactions show very similar profiles among the AM�C and AM�W
potentials. (B) The 45 interactions for first-well interactions among all charged
and polar residue pairs are shown. The first-well polar group contact interac-
tions are rather similar in each potential, except for the most charged pairs,

Fig. 2. Structure prediction performance and the comparison of AM�C,
AM�W-0, and AM�W-1 potentials. The maximum Q scores versus chain length
attained during five annealing runs for each of 14 proteins using three
different potentials are shown. PDB codes for the training proteins are in
violet, and the test proteins are in green.

3354 � www.pnas.org�cgi�doi�10.1073�pnas.0307851100 Papoian et al.



potentials, this finding directly shows that the AM�W potentials
improve nativeness by better treatment of tertiary interactions.

The small test (CASP3) protein for which we have observed
large enhancement in native structure recognition is Escherichia
coli stress-response protein HdeA [PDB code 1BG8 (21)]. The
superposition of best predicted structure with AM�W-1 and the
native is shown in Fig. 4A. At the overall Q score of 0.47, the CE
alignment of 70 residues of total 76 residues produces an RMSD
of 4.2 Å and Z score of 3.7. The global RMSD was 5.1 Å. The
best AM�C prediction (Fig. 4B) again captures correctly large
chunks of the structure (CE alignment of residues 7–62 produces
a Z score of 3.3 and RMSD of 5.7 Å), but fails to pack them
globally (overall Q � 0.31, global RMSD � 12.0 Å). Free energy
calculations show that the minimum in F(Q) is shifted substan-
tially toward the native for the AM�W potentials (Fig. 4C),
rationalizing annealing results.

Closer examination of the HdeA sequence reveals that both N-
and C-terminal 11-residue fragments are highly charged (four
charged residues in the N-terminal fragment and seven charged
residues in the C-terminal fragment). Fig. 4B shows that it is
these terminal fragments that are packed incorrectly by the
AM�C potential. For analysis, we thus partitioned the protein

into two fragments: a larger N-terminal fragment consisting of
residues 1–61, and a smaller C-terminal terminal fragment
consisting of residues 62–76. The annealing trajectories for the
corresponding fragment Q scores (Fig. 4D) indicate that AM�C
and AM�W-1 produce qualitatively similar fragment structures
down to T � 0.8, at which temperature the larger fragment
experiences a jump in the nativeness for the AM�W-1 potential.
This event is immediately preceded by a jump in the interfrag-
ment Q value (Fig. 4E), suggesting that native interfragment
interface formation nucleates the folding of the larger fragment.
We have additionally partitioned the interfragment Q into
first-well and second-well contributions (Fig. 4F). This analysis
shows the major improvement in the interface recognition comes
from the second-well interactions. Because protein-mediated
second-well interactions are greatly diminished in AM�W-1 (see
Fig. 1C) and we notice the charged nature of the C-terminal
fragment (Fig. 4A), we see that it is AM�W water-mediated
interactions that greatly facilitate correct packing of secondary
structure elements in HdeA.

When the HdeA crystal structure was originally published,
Yang et al. (21) could not find any sequence or structural
similarity to any other known protein. Its functional role was also
unknown (21). In a subsequent study (27), it was demonstrated
that HdeA provides acid resistance in bacterial pathogens
(HdeA is stable under extreme acidic conditions). It was sug-
gested that in neutral pH HdeA forms a dimer (the dimer
interface is formed mainly by hydrophobic residues), which

Fig. 3. Structure predictions for ferritin, PDB code 2FHA. (A) The best (of five
for each potential) Q-score annealing trajectories are shown for three differ-
ent potentials. (B) The average thermodynamic energy vs. Q. (C) Superposition
of the AM�W-0 best Q-score structure (blue) and the native structure (red) is
indicated. Spheres indicate charged residue C� atoms. (D) The distance plot for
the AM�W-0 best Q-score structure (blue, upper triangle) and the native
structure (red, lower triangle). (E) Distance plot for the AM�C best Q-score
structure (blue, upper triangle) and the native structure (red, lower triangle)
are compared. In the AM�W-0 structure (D), only a small number of contacts
are missing and a small registry shift near residue 70 occurs. In the AM�C
structure (E) the C-terminal half misses on a major interhelical interface.

Fig. 4. Structure predictions for 1HdeA, PDB code 1bg8 (CASP3). (A) A
superposition of the best Q-score structure from the AM�W-1 potential (blue)
and the native structure (red) is shown. Spheres indicate charged residue C�

atoms. (B) The superposition of the best Q-score structure from the AM�C
potential (blue) and the native structure (red) is shown. (C) Free energy vs. Q
as computed with a histogramming technique. (D) Annealing trajectories of
individual fragment Q scores, large N-terminal fragment containing residues
1–61, and small C-terminal domain containing residues 62–76 are shown as a
function of the instantaneous temperature through the run. (E) Annealing
trajectories of interfragment Q scores are indicated. (F) Annealing trajectories
of interfragment Q scores partitioned into the first-well and second-well
contributions are shown.
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dissociates to become an active monomer when pH is signifi-
cantly lowered (27), the exact mechanism of dissociation being
unclear. Gajiwala and Burley (27) hypothesized that perhaps
pH-induced conformational changes of unknown nature lead to
dissociation. In light of our analysis, it indeed seems plausible
that a change in the protonation state of terminal fragments
would lead to large structural rearrangement, perhaps causing
the dimer dissociation.

The final test protein for analysis is a two-domain CASP5
target, T129a [PDB code 1IZM; the structure has not been
released at the time of writing (A. Galkin, E. Sarikaya, C.
Lehmann, A. Howard, and O. Herzberg, personal communica-
tion)]. The distance plot comparing the best Q (0.36) predicted
structure and the crystal structure (Fig. 5A) shows that the major
features of the protein fold are well captured (global RMSD was
found at 8.7 Å). Interestingly enough, the same snapshot also has
the best interdomain Q score for the same trajectory. However,
there exist snapshots with somewhat better individual domain
structures that are docked incorrectly (Fig. 5B). The individual
domain II Q scores between the best AM�C and AM�W-1
trajectories are of similar quality, but the AM�W-1 potential
produces more native-like structures for domain I (Fig. 5C). As
in the case of HdeA, the interdomain Q (Fig. 5D) shows the most
improvement for AM�W-1 compared with AM�C. Partitioning
the interdomain Q into first- and second-well contributions (Fig.
5 E and F), again leads to the conclusion that water-mediated
interactions enhance native-like packing of supersecondary
structure elements.

At a coarse-grained level, the interplay between direct contact

interactions and longer-range water-mediated interactions, both
guiding the folding process, suggests some new protein physics.
Direct contact potentials are crudely equivalent to surface
tension between the protein and its solvent environment,
whereas longer-range water-mediated interactions depend on
the curvature of the protein–water interface. The complex
solvation physics of polar and charged species in the presence of
counterions shapes the curvature landscape. Our results imply
that, at least in the cases studied, evolution has tuned both the
surface tension and curvature contributions to be consistent with
the principle of minimal frustration (28).

Conclusions
In summary, specific water-mediated interactions are a universal
feature of biomolecular recognition, both in folding of mono-
mers and binding of many dimers. We have shown that the
inclusion of long-range water-mediated interactions, through a
nonpairwise-additive switching potential, in structure prediction
Hamiltonians leads to systematically improved predictions for
protein structures. Detailed analysis of annealing trajectories for
the model reveals explicitly that water-mediated interactions
indeed help to correctly assemble supersecondary structure
elements into the global native fold. We hope that the water
model presented in this article will also help advance the
important ongoing efforts toward building an accurate coarse-
grained representation of water for self-assembly of both bio-
logical and nonbiological systems.

Appendix: Computational Details
The AM�C Hamiltonian. The AM�C Hamiltonian has been dis-
cussed at great length in the literature (14–16, 29–32). The
Hamiltonian, HAM�C � Hbb � HAM � Hcontact, consists of a
general polymer physics-based backbone potential (see refs. 15,
16, and 29 for details), an AM term defining an energy funnel
for residues separated by �12 residues (15, 16, 31), and a contact
term that describes tertiary interactions. The contact Hamilto-
nian, Hcontact, has three wells covering the 4.5- to 8.5-Å, 8.5- to
10.0-Å, and 10.0-to 15.0-Å intervals. Supporting Text provides
additional details about the AM�C Hamiltonian.

The AM�W Hamiltonian. The AM�W Hamiltonian is a modifica-
tion of the AM�C Hamiltonian, where the tertiary contact part
of AM�C Hamiltonian is replaced by a potential based on
water-mediated interactions, HAM/W � Hbb � HAM � HRg �
Hcontact � Hwater � Hburial, where Hbb and HAM are the same as
in the AM�C potential, HRg is a quadratic potential that helps to
collapse the chains (Hrg � C * [Rg({r}) � Rg(N)]2, based on work
from ref. 33), Hcontact keeps the same functional form as in
AM�C, but it contains only a single, direct contact, defined
between 4.5 and 6.5 Å, Hwater is a nonpairwise additive second-
well switching potential (defined below), and Hburial is a many-
body potential indicating the burial preferences for each amino
acid (defined below). The water-mediated second-well potential
is, Hwater � �1�2�i,j�ij

II(�ij
wat�ij

wat � �ij
prot�ij

prot), where switching
functions �ij

wat � H(�i � �trsh)H(�j � �trsh) and �ij
prot � 1 � �ij

wat

are used, that depend on local density environment of residues
i and j (�i � �k�ik

I , �ij
I/II � 1�4(1 � tanh(�(rij � rmin

I�II)))
(1 � tanh(�(rmax

I�II � rij))), and H(�i � �trsh) � 1�2(1 � tanh(�(�i
� �trsh)))). In these expressions rij is the distance between
residues i and j, rmin and rmax indicate the endpoints of corre-
sponding wells (4.5–6.5 Å for the first well, 6.5–9.5 Å for the
second well), and � is a parameter that describes the sharpness
of the switching tanh functions (� was set to 5.0). The � switching
functions are constructed so that when the local density � for
each residue increases beyond a threshold value of �trsh [chosen
to be 2.6 from a structural survey of the monomer database (34),
see below], the �wat switches smoothly from 1 to 0, whereas �prot

switches from 0 to 1.

Fig. 5. Structure predictions for CASP5 target protein T129a (PDB code 1IZM,
structural information not yet officially released at the time of writing). (A)
The distance plot for AM�W-1 best Q-score structure (blue, upper triangle)
and the native structure (red, lower triangle) is shown. (B) The distance plot for
AM�W-1 structure with the best sum of individual domain Q scores (blue,
upper triangle) and the native structure (red, lower triangle) is shown. (C)
Annealing trajectories of individual domain Q scores, N-terminal domain
containing residues 1–75, and C-terminal domain containing residues 76–170
are indicated. (D) Annealing trajectories of interdomain Q scores are shown.
(E) Annealing trajectories of interdomain first-well Q scores are plotted. (F)
Annealing trajectories of interdomain second-well Q scores are plotted.

3356 � www.pnas.org�cgi�doi�10.1073�pnas.0307851100 Papoian et al.



The burial profile term, Hburial, is a many-body local density
based on three-well potential, which indicates amino acid pref-
erences for a particular coordination density, Hburial � �1�
2�i���1

3 �i
�Si

�(�i
�), where Si

� � tanh(�(�i � �i
�,min)) �

tanh(�(�i
�,max � �i)), where (� � 1, 2, or 3), are indicative

whether the particular residue i is found in low, medium, or high
local density environment. The intervals for these three wells
were defined from zero to three, three to six, and six to nine
residues (i.e., the potentials becomes zero when the coordination
number is increased beyond nine).

Optimization of the AM�W-0 Potential. The training set consists of
156 proteins from a database of Banavar and colleagues (34). In
AM�W-0 the 210 parameters for the first-well interactions, the
second-well through-protein interactions, and the second-well
through-water interactions were found with a sequence shuffling
protocol as described (13). These were scaled to the magnitude
of the AM�C interactions.

The 60 parameters (20 amino acids � 3 wells) of the many-
body burial profile were obtained from the same database of
monomeric proteins (34) by calculating the frequency of occur-
rence of a particular coordination number within a 3-Å interval
for each of the 20 amino acids, and the logarithms of the
corresponding frequencies were taken.

Optimization of the AM�W-1 Potential. Our self-consistent struc-
tural-based optimization strategy maximizes the TF�TG (folding
temperature�glass transition temperature) by using ideas from
the energy landscape theory (30). For each of the nine training
proteins, molten globules and native ensembles were generated
with the AM�W-0 potential by using long constant temperature
runs (1.26 � 106 time steps) at the corresponding equilibration
temperatures with a Q-constrained potential.

The Hamiltonian is linear H � �i�i	i, where 	is are real
interaction terms in the Hamiltonian described previously. The
�s are parameters that scale these terms. Our previously de-
scribed variational optimization procedure based on the energy
landscape theory is used to maximize TF�TG (30). We introduce

two auxiliary mathematical objects, a vector A � 		
mg � 		
nat,
which is indicative of the stability gap, and a matrix B � (			�
mg
� 		
mg		�
mg) � (			�
nat � 		
nat		�
nat), which characterizes the
excess ruggedness of the molten globule ensemble compared
with the native ensemble. When TF and TG are computed in
terms of A and B, then TF�TG optimization leads to � � �0 � T
* B�1A, where T is the simulation temperature (15, 30, 35).

In the current work, the standard procedure was modified by
using each training protein to generate its own B� � B�0 � T *
A equation. We used least-square singular value decomposition
solution of an overdetermined set of equations for all proteins
simultaneously (36). Robustness of the solution was tested by
using Poisson noise and repeatedly (20 times) solving for � with
different random seeds. To prevent overlearning from the small
training set we allowed only a modulation of the AM�W-0
potential with an hydrophobic�polar coarse-grained grouping of
amino acid interactions (37).

All parameters that are new in AM�W-1 as compared with
AM�C are given in Supporting Text, Fig. 6, and Tables 1–6, which
are published as supporting information on the PNAS web site.

Training Proteins for AM�C and AM�W-1 Parameter Optimization.
Nine �-helical proteins (PDB codes 1R69, 1UTG, 3ICB, 256BA,
4CPV, 1CCR, 2MHR, 1MBA, and 2FHA) were used for
training.
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