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Abstract
Rationale and Objectives—The purpose of this study was to determine textural features that
show a significant difference between carcinomatous tissue and the bladder wall on magnetic
resonance imaging (MRI) and explore the feasibility of using them to differentiate malignancy
from the normal bladder wall as an initial step for establishing MRI as a screening modality for the
noninvasive diagnosis of bladder cancer.

Materials and Methods—Regions of interest (ROIs) were manually placed on foci of bladder
cancer and uninvolved bladder wall in 22 patients and on the normal bladder wall of 23 volunteers
to calculate 40 known textural features. Statistical analysis was applied to determine the difference
in these features in bladder cancer versus uninvolved bladder wall versus normal bladder wall of
volunteers. The significantly different features were then analyzed using a support vector machine
(SVM) classifier to determine their accuracy in differentiating malignancy from the bladder wall.

Results—Thirty-three of 40 features show significant differences between bladder cancer and the
bladder wall. Nine of 40 features were significantly different in uninvolved bladder wall of
patients versus normal bladder wall of volunteers. Further study indicates that seven of these 33
features were significantly different between uninvolved bladder wall of patients with early cancer
and that of volunteers, whereas 15 of 33 features were different between that of patients with
advanced cancer and normal wall. With the testing dataset consisting of ROIs acquired from
patients, the classification accuracy using 33 textural features fed into the SVM classifier was
86.97%.

Conclusion—The initial experience demonstrates that texture features are sensitive to reveal the
differences between bladder cancer and the bladder wall on MRI. The different features can be
used to develop a computer-aided system for the evaluation of the entire bladder wall.
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Bladder cancer is the fourth most common malignancy and accounts for 7% of all
malignancies in men in the United States (1,2). In addition, according to the National Cancer
Institute’s Surveillance Epidemiology and End Result Registry, there has been a rising trend
in bladder cancer incidence by approximately 40% since 1975 (3). In China, bladder cancer
is the ninth most common malignancy in men, with increasing incidence in areas with
growing aging population or the worsening environment (4,5).

The recurrence of bladder cancer is very high and even early-stage bladder cancer is likely
to recur. It is estimated that 50–70% of all diagnosed cases will recur and 10–30% will
progress to muscularis invasive disease (6). For this reason, bladder cancer posses a
significant economic burden, and survivors often undergo follow-up tests to look for bladder
cancer recurrence for years after treatment. Therefore, early detection of bladder
abnormalities in high-risk populations and an appropriate follow-up procedure for survivors
in a convenient and noninvasive manner is crucial to prevent the disease and reduce the
death rate.

With recent advances in imaging and visualization techniques, image-based virtual
cystoscopy (VCy), which involves three-dimensional surface model generation and
depiction of urinary bladder based on volumetric computed tomography (CT) or magnetic
resonance imaging (MRI) data, has revealed its potentials in the visualization of the mucosa
layer, the evaluation of urethral orifice, and in patients with urethral stricture disease
(7,8,22). Currently, most VCy systems only provide three-dimensional visualization of the
entire inner surface of the bladder accompanied with two-dimensional transectional images
for physician’s review. Essential information, such as the detection of abnormalities, degree
of muscle invasion, and staging, which is imperative for accurate diagnosis and treatment
planning of invasive bladder cancer, could not be obtained directly in VCy, limiting its
further use in bladder surveillance.

As reported, bladder carcinoma invades gradually from the mucosa into the wall muscles
and is categorized into different stages (2,3). Imaging is an essential part of clinical staging.
Several recent studies have shown that geometric analysis and intensity features of the
bladder wall tend to be good indicators for the occurrence of abnormalities. Especially,
textural features that reflect intensity variation and tissue patterns have the potential to
differentiate carcinomatous tissues from normal tissues and reflect the transition of different
stages (9,10,17,22). For example, Sheshadri et al. used texture features from mammograms
to classify different types of breast tissues, which led to a new method for early detection of
breast cancer (9). Ganeshan et al. concluded that texture analysis in noncontrast-enhanced
CT could reflect changes in disease-free areas of the liver (10). Nailon et al. reported three
texture features that were sensitive to differentiate bladder, rectum, and perivesical tissues
on CT images (17). Based on these observations, it is hypothesized that if characteristic
texture features that could differentiate bladder cancer from normal tissues are available,
they may help us to detect the abnormalities in an automatic way, ie, computer-aided
detection (CAD), and furthermore to help determine the invasion stage of bladder cancer
into the bladder wall muscle, ie, computer aided diagnosis (CADx).

Though both CT and MRI are clinically used for bladder imaging, the MRI modality has
more advantages because of its noninvasive and radiation-free nature as well as its high
intensity-contrast between the bladder neoplasm, the bladder wall, and urine exhibited on
specific MRI sequences. Previous studies have shown a superior accuracy of MRI in
detecting the local staging of bladder tumors and in predicting the wall and perivesical
infiltration (11). The purpose of this study was to determine features that show a significant
difference between carcinomatous tissue and the bladder wall on MRI and explore the
feasibility of using them to differentiate malignancy from the normal bladder wall as an
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initial step for CAD of tumor detection. It is also an essential step forward to establishing
MRI as a screening modality for the noninvasive diagnosis of bladder cancer.

MATERIALS AND METHODS
Subjects

Twenty-two consecutive male patients in whom findings from routine cystoscopy were
positive for tumors were referred from the urology department, Tangdu Hospital, Xi'an,
China, between March 2008 and May 2010. All the patients were confirmed of having
urothelial carcinoma by postoperative pathological biopsy. Twenty-three male volunteers
were also recruited simultaneously as the control group; they had no known history of
bladder diseases, no bladder mass observed during the ultrasound examination, and no
hematuria. The research trial has been approved by the Hospital Ethics Committee and
informed written consent was obtained from each patient and volunteer.

Imaging Protocols
Though gadolinium-enhanced MRI has shown better staging accuracy in some studies (6), a
protocol without contrast enhancement would be more acceptable for routine check or mass
screening. To find a protocol that better accommodated to this study, several T2-weighted
sequences that exhibit high contrast between the bladder wall and urine, including a free
breathing T2-weighted fast spin-echo, a free breathing T2-weighted single-shot fast spin-
echo (SSFSE), and a T2-weighted fast spin-echo respiratory trigger sequence, were tested on
both patients and volunteers, respectively. Finally the T2-weighted SSFSE was selected
because it is less susceptible to motion than other sequences and is a fast sequence that is
more acceptable for volunteer scans.

All MRI examinations in this study were performed by a 3.0 T scanner (MR-Signa EXCITE
HD, GE) with a phased-array abdominal/pelvis coil (TORSOPA, GE). Before the
examination, each subject (patient or volunteer) was asked to drink enough mineral water
and then wait for an adequate time period so that the bladder was distended sufficiently. An
axial T2-weight SSFSE sequence was performed with the following parameters of repetition
time/echo time: 2117.6/78.0 ms, matrix: 512 × 512, field of view: 40 cm, thickness: 3.0 mm,
and intersection gap: 0.5 mm. The acquisition time was 67–102 seconds for each plane.
Sagittal or coronal T2-weighted images were added if the tumor was located in the base or
the dome of the bladder. No contrast agent was used and all the subjects were examined in
supine position.

ROI Measurements
To identify characteristic image features that could reflect the difference between
malignancy and the bladder wall, regions of interest (ROIs) were first manually placed on
foci of bladder cancer and uninvolved bladder wall in 22 patients and on normal bladder
wall of 23 volunteers. All borders of the ROIs were carefully traced so that only one type of
tissue was encircled in one ROI, as shown in Figure 1. Considering the invasive nature of
tumors, the bladder wall ROI of each patient was placed with a certain distance away from
the tumor boundary. To ensure correct enclosure of carcinoma or bladder wall tissues, all
ROIs were first placed using a self-developed software package by two experienced
radiologists with reading experience of more than 10 years. The third radiologist with
reading experience of more than 20 years made a final decision for each ROI based on their
results (Fig 1).

For later statistical analysis, all ROIs were divided into three groups (group A, bladder
carcinoma of patients; group B, uninvolved bladder wall of patients; and group C, normal
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bladder wall of volunteers). Here we separated ROIs of the bladder wall into two groups (B
and C) to explore whether the image pattern of patients’ bladder wall the same as that of
volunteers’.

Texture Analysis
Based on extracted ROIs, statistical analysis on texture features among the three groups was
performed with two steps below: 1) extracting texture features from each ROI and 2)
performing statistical analysis on extracted features.

In the first step, both statistical-based and structural-based features could be used for textural
analysis. Considering the relatively poor pattern regularity and fine textures exhibited in
medical images, only statistical-based textural features that have been reported in previous
publications were compared in this study. Finally, five categories of texture features were
extracted from each ROI to explore textural characteristics of different types of tissues,
including: 1) features based on the probability distribution of image intensity in each ROI,
including mean, entropy, uniformity, smoothness, standard deviation (SD), skewness, third
moment (Tm), and kurtosis (9,10) (eight features); 2) features based on auto-covariance
coefficients (Cov), ie, norm of vector (Norm) (12); 3) textural features related to visual
perception that are called Tamura features, including contrast, directionality, line-likeness,
and regularity (13) (four features); 4) textural features derived from the gray level
cooccurrence matrix (GLCM), where each element represents the relative frequency with
which two pixels with given gray levels are separated by a given pixel distance. Considering
that the bladder wall is relatively thin, a fixed distance was used for the calculation of
GLCM, and a total of 16 features were derived (f1–f16) (14,15); and 5) textural features
derived from the gray level-gradient co-occurrence matrix (GLGCM) that reflects the spatial
variation of gray level and gradient. For similar reason, a fixed pixel distance was
considered and a total of 11 features were calculated (T1–T11) (16). Taken together, 40
features were extracted from each ROI for further analysis. Tables 1a and 1b provide
information on these textural features.

Most of the 40 features were designed for regularly shaped ROIs in previous studies. In this
study, however, nearly all ROIs were irregular, including long and narrow ones from the
bladder wall. For accurate feature calculation, some modifications were applied for
irregularly shaped ROIs. In particular, when the calculation involved in pixels located at the
ROI boundary or neighboring pixels outside the ROI (background pixels), the average
intensity of non-background pixels inside the 3 × 3 neighborhood of the pixel would be
used. In addition, if the number of nonbackground pixels inside the neighborhood was less
than a preset threshold (depending on feature types), the pixel would not be considered in
the calculation any more. For simplicity, all features were calculated in two-dimensional by
a locally developed software package using Matlab7.6.

In the second step, sample t-test and the variance analysis (one-way analysis of variance)
were applied to multiple features to evaluate the significance of difference among the three
groups (ie, group A, carcinoma tissues of patients; group B, uninvolved bladder wall of
patients; and group C, normal bladder wall of volunteers). The results were expressed as
mean absolute deviations between these groups. The significance threshold was set as P < .
01 and all the statistical analysis was performed by the SPSS12.0 package.

Initial Classification Using Selected Features
To test the feasibility of using statistically significant features for the differentiation of
malignancy from the bladder wall, initial classification study was further performed.
Considering its generalization capability and high performance, a classical support vector
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machine classifier was employed, with the radial basis function as the kernel function.
Significantly different features were fed into the classifier to determine their accuracy in
differentiating malignancy from the bladder wall. To train and test the classifier with limited
amount of ROI data, leave-one-out cross-validation was used. All feature vectors extracted
from ROIs of patients, including both groups A and B, were randomly divided into 10
subsets. The classifier was trained by nine subsets and tested by the left. The process was
repeated 10 times so that each subset was used once as the testing data. The performance of
the classifier was evaluated as the average of the accuracy rates of 10 times.

RESULTS
Table 2 shows the age distribution, histological subtypes, and staging of all patients. The age
of volunteers ranges from 28 to 64, with mean and standard deviation of 46.55 ± 13.19.
There was no significant difference in age between the two groups.

Among 22 patients enrolled, all tumors were polypoidal shaped and the size of bladder
tumors ranged from 0.5 to 6 cm in diameter. Because the smallest one was too small to be
encircled, it was not included in group A. In addition, the bladder wall of two patients were
hardly outlined because of motion artifacts and therefore not included in group B. For each
dataset, about 5–20 ROIs of the bladder wall were placed depending on the number of
bladder images, whereas 3–13 tumor ROIs were outlined from each patient’s dataset based
on the size of bladder tumor. In total, in this study, group A includes 118 tumor ROIs from
21 patients, group B includes 189 wall ROIs from 20 patients, and group C represents 142
wall ROIs from 23 volunteers.

It has been widely recognized that carcinomatous tissues (bladder cancer) and smooth
muscle (bladder wall) are two different types of tissues pathologically. To see whether
image features could reflect the difference, the t-test was first performed between the
samples in groups A and B. Thirty-three of 40 features show significant difference (P < .01)
between the two groups, as shown in Table 3, including mean, entropy, uniformity,
smoothness, SD, Tm, norm, contrast, line-likeness, 14 of 16 GLCM features (f1–f16 except
for f12, f13), and 10 of 11 GLGCM features (T1–T11 expect for T6). The relatively high rate
of 82.5% features having difference indicates that the pathological difference between the
two types of tissues could be reflected by textural features. Based on this analysis, it could
be postulated that these features may be further applied to differentiate malignancy from the
bladder wall.

After the test between groups A and B, the t-test was then extended to the samples in groups
B and C to explore whether the image textures of patients’ bladder wall differ from those of
volunteers’. Nine of 40 features show significant difference (P < .01) between the two
groups, including 1) two intensity features (ie, entropy and uniformity), 2) one Tamura
feature (ie, directionality), 3) three GLCM features (ie, f1, f9, and f12), and 4) three GLGCM
features (ie, T5, T6, and T9), as shown in Table 4. Anatomically the bladder wall of both
patients and volunteers was composed of smooth muscle and correspondingly the image
texture would be similar. However, nine of 40 features are significantly different between
them. A possible reason is that the bladder wall of patients might undergo some pathological
process, which was reflected by some image features.

To see whether the variation on the bladder wall of patients correlates with cancer staging,
group B was further divided into two subgroups. B1 included samples from patients with
early cancer (Ta, T1, and T2) and B2 includes samples from patients with advanced cancer
(T3 and T4). The total number of patients is 16 for B1 and 4 for B2 and a corresponding total
number of ROIs is 135 for B1 and 54 for B2, respectively. The variance analysis was
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performed between samples in subgroups B1 or B2 and samples in group C. Only 33 features
that have showed significant differences in the first experiment were used in this analysis.

The analysis result shown in Table 5 indicates that seven of 33 features (ie, entropy,
uniformity, Tm, T5, T9, f1, and f9), are significantly different (P < .05) between subgroup
B1 and group C. Meanwhile, 15 of 33 features are significantly different (P < .05) between
subgroup B2 and group C, including entropy, uniformity, SD, line_likeness, T3–T5, T7–T9,
f1, and f8–f11. Combining the two tables, six features (ie, entropy, uniformity, T5, T9, f1,
and f9) are significantly different, not only between groups B and C, but also between
groups B1 and C and between groups B2 and C. In addition, nine features, which are not
significant between subgroups B1 and C, show significant difference between B2 and C. The
result indicates that although bladder cancer occurs at a limited area, it may have an impact
on the bladder wall. With the development of bladder cancer from early stage to advanced
stage, more difference between the bladder wall of patients and normal bladder wall may be
detected by texture features.

Based on the results in Tables 2–5, it can be deduced that not only the textural pattern of
bladder carcinoma differs greatly from the bladder wall, but also that a difference between
the bladder wall of patients with early cancer and that of patients with advanced cancer may
also exist. In other words, changes of texture patterns on MRIs may reflect the existence of
bladder cancer and further the staging of bladder cancer. With the integration of features
reflecting the difference between carcinoma and normal wall, a CAD system for the
detection and staging of bladder cancer may be possible.

To test the feasibility of using these textural features for the differentiation of malignancy
from the bladder wall, the support vector machine classifier was trained and tested by the
testing dataset consisting of total 307 ROIs from groups A and B. The exhaustion method
was used to search for the optimal parameter combination for the classifier. Using 33
significant features shown in Table 3, the classification accuracy of 10 training and testing
rounds was 86.97%. It indicates the potential of using textural features to differentiate
bladder cancer from its surrounding bladder wall.

DISCUSSION
In the past few years, CAD/CADx for breast cancer, pulmonary nodules, and colon polyps
has been a very active research topic, aiming to assist physicians to detect and distinguish
nodules and polyps from benign to malignant. The achievement is still moderate possibly
because the primary consideration of the outside characteristics on the surface of nodules or
polyps. It was gradually recognized that different image textural patterns may reflect
different types of tissues and can be used to distinguish carcinomatous tissues from healthy
tissues on images. For clinical application on bladder evaluation, it was hypothesized that
bladder carcinoma could be separated from normal wall and therefore the abnormalities and
the invasion of malignancy into the muscle layers could be noninvasively recognized if the
imaging modality is sensitive enough to reveal the information. The results of this study
indicate that the specific MRI sequence may be sensitive enough to reveal the textural
difference between bladder cancer and the bladder wall.

For noninvasive detection of bladder cancer based on MRI scans, another important issue is
to find sensitive features that reflect the textural difference. Previous study performed by
Nailon et al. investigated possible texture features that were sensitive to differentiate
bladder, rectum, and perivesical tissues on CT images (17). In this study, we focused on the
determination of textural features reflecting the difference between bladder cancer and the
bladder wall. Preliminary results demonstrate that 33 of 40 features tested here could reflect
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the textural difference between the two types of tissues (P < .01). Three features investigated
by Nailon et al. were also included in this study and exhibited good sensitivity on MRI
images.

Further statistical analysis on feature difference between uninvolved bladder wall of patients
and normal bladder wall of volunteers indicates that nine of 40 features are significantly
different (P < .05). It suggests that the bladder wall of patients may differ from that of
healthy volunteers, which may be caused by the proliferation and invasion of cancerous
tumors into the bladder wall. To further identify whether the textural pattern of the bladder
wall changes with cancer staging, wall ROIs of patient were divided into two subgroups (ie,
B1 including wall ROIs from patients with early cancer and B2 including wall ROIs from
patients with advanced cancer). Although only seven of those 33 features show significant
difference between B1 and group C, 15 of 33 features show significant difference between
B2 and group C. In other words, 26 of 33 features do not differ in uninvolved bladder wall of
patients with early cancer and normal bladder wall, indicating the similar pattern of their
intensity distributions. However, that 15 of 33 features differs between the bladder wall of
patients with advanced cancer and that of volunteers indicates possibly different patterns
between the two groups. These observations are consistent with some findings published
previously. For example, in 2011 National Comprehensive Cancer Network guidelines, it is
claimed that bladder wall thickening suggest the presence of T3a stage of bladder cancer
(18) and Jaume et al. has tried to detect bladder tumor based on abnormal thickness of
bladder wall in CT scans (19). Victor’s study (20) indicates that vascular invasion of bladder
cancer is associated with disease progression. Some other reports further argue that the long-
term recurrence of bladder cancer and treatment of drugs lead to bladder fibrosis. All these
facts indicate that with the rampancy of vascular invasion and fibrosis into the bladder wall,
the change of texture pattern on MRI scans may reflect the invasion of malignancy.

Further analysis on the experimental results of three groups indicates that 9 features (ie, SD,
line_likeness, T3, T4, T7, T8, f8, f10, and f11) were different between the bladder wall of
patients with advanced cancer (subgroup B2) and that of volunteers, but not different
between patients with early cancer (subgroup B1) and volunteers. Meanwhile, these nine
features were significantly different between bladder cancer (group A) and uninvolved
bladder wall of patients (group B), but not significant between the bladder wall of patients
(group B) and that of volunteers (group C). It suggests that they may be the most suitable
features with which to distinguish bladder carcinoma from the bladder wall, and could be
used as candidates for CAD of bladder abnormalities. In addition, there are six features (ie,
entropy, uniformity, T5, T9, f1, and f9) that were not only significantly different between
groups B1 and C, groups B2 and C, but also different between groups A and B. That means
these features may have the potential to reflect subtle difference on textural patterns between
the bladder wall and bladder cancer, and therefore can be applied as candidates to detect
bladder cancer at early stages.

As reported, clinical staging is an important yet imperfect evaluation of patients with
bladder cancer, with about 30–50% of patients clinically understaged at the time of
cystectomy (6), which can lead to incomplete resection and higher recurrence rates.
According to the 2011 National Comprehensive Cancer Network guidelines for bladder
cancer, surveillance cystoscopy and urine cytology should be performed every 3 months for
patients without muscularis invasive disease for the first 1–2 years, repeated at increasing
intervals over the next 2 years (18). Any unnecessary delays on treating muscularis invasive
bladder cancer should be avoided because a more than 12-week delay was associated with
advanced pathological stage and decreased survival (6). Therefore, noninvasive and
convenient detection of bladder cancer would be critical for the management of recurrence
and increased survival. With noninvasive MRI, the proposed features could be used to
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differentiate bladder cancer from the bladder wall as an initial step of a CAD system for
bladder cancer detection (23). Further integration of extracted features with a CADx system
would make the staging of bladder cancer possible in a noninvasive and automated way,
resulting in more accurate pretreatment diagnosis.

Meticulous bladder preparation and adequate distension are critical for an accurate
interpretation of bladder images. Retained fluid or lack of adequate bladder distension may
interfere with the correct diagnosis (21). In this study, with the proposed MRI sequence,
contrast enhancement would not be necessary because of natural contrast between the
bladder wall and urine. What the patients needed to do was to drink enough water and wait
for the bladder to be distended sufficiently. The proposed routine for bladder cancer
surveillance would be attractive to clinics and public health because of its higher acceptance
by patients as well as its considerably low risk.

Though the preliminary results are promising, further investigation is needed. More patients
with bladder cancer at different stages should be recruited in further study to increase the
reliability of proposed textural features and to detect the invasion of bladder cancer into the
bladder wall. In this study, interactive segmentation was used for correct inclusion of
different types of tissues in the ROI, which was quite time-consuming. To integrate the
proposed pipeline into a virtual cystoscopy system for clinical screening, automatic
segmentation of carcinoma and the bladder wall should be required. Developing a CAD/
CADx system for virtual cystoscopy based on MRI scans is our ultimate goal, which will
provide an objective and consistent tool for fast evaluation of the entire bladder.
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Figure 1.
Patient’s magnetic resonance image with outlined regions of interest (ROIs). (a) ROI for
carcinoma neoplasm; (b) ROI for bladder wall tissue.
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TABLE 1A

The Textural Features Used in This Study (Simple Version)

Category N Features

Distribution of image gray level (9,10) 8 Mean, entropy, uniformity, SD, smoothness, skewness, Tm, kurtosis

Auto-covariance coefficient (12) 1 Norm of vector

Tamura features (13) 4 Contrast, directionality, line-likeness, regularity

Features derived from GLCM (14,15) 16 Sixteen features derived from the GLCM matrix, ie, f1: angular second moment, f2: contrast, f3:
correlation, f4: sum of squares, f5: inverse difference moment, f6: sum average, f7: sum
variance, f8: sum entropy, f9: entropy, f10: difference variance, f11: difference entropy, f12 and
f13: information measures of correlation, f14: inertia, f15: cluster shade, and f16: cluster
prominence.

Features derived from GLGCM (16) 11 Eleven features derived from the GLGCM matrix, ie, T1: small grads dominance, T2: big grads
dominance, T3: gray asymmetry, T4: grads asymmetry, T5: energy, T6: correlation, T7: gray
entropy, T8: grads entropy, T9: entropy. T10: inertia, and T11: DifferMoment.
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TABLE 3

t-test Results between Groups A and B (Na = 21, Nb = 20)

Features P (Two-Tailed)

Mean .0000

Entropy .0000

Uniformity .0010

Standard deviation .0000

Smoothness .0000

Third movement .0000

Norm .0000

Contrast .0000

Line_likeness .0060

T1 .0000

T2 .0000

T3 .0000

T4 .0080

T5 .0010

T7 .0000

T8 .0098

T9 .0000

T10 .0000

T11 .0000

f1 .0000

f2 .0000

f3 .0000

f4 .0000

f5 .0000

f6 .0000

f7 .0000

f8 .0000

f9 .0000

f10 .0000

f11 .0000

f14 .0000

f15 .0000

f16 .0000

The difference between groups A and B was considered to be significant if P < .01.
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TABLE 4

t-test Results between Groups B and C (Nb = 20, Nc = 23)

Features P (Two-tailed)

Entropy .0000

Uniformity .0000

Directionality .0050

T5 .0020

T6 .0010

T9 .0000

f1 .0000

f9 .0000

f12 .0070

The difference between groups B and C was considered to be significant if P < .01.
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TABLE 5

Analysis of Variance between Groups B1 and C, B2 and C

Feature B2 and C P B1 and C P

Mean △ .639 ○ .733

Entropy ▲ .001 ● .005

Uniformity ▲ .003 ● .011

Standard deviation ▲ .044 ○ .149

Smoothness △ .079 ○ .310

Third moment △ .362 ● .025

Norm △ .240 ○ .120

Contrast △ .138 ○ .176

Line_likeness ▲ .002 ○ .437

T1 △ .632 ○ .469

T2 △ .810 ○ .350

T3 ▲ .041 ○ .777

T4 ▲ .017 ○ .517

T5 ▲ .007 ● .014

T7 ▲ .042 ○ .856

T8 ▲ .021 ○ .218

T9 ▲ .000 ● .015

T10 △ .605 ○ .967

T11 △ .756 ○ .279

f1 ▲ .000 ● .005

f2 △ .186 ○ .814

f3 △ .931 ○ .134

f4 △ .565 ○ .453

f5 △ .085 ○ .861

f6 △ .736 ○ .681

f7 △ .603 ○ .672

f8 ▲ .007 ○ .753

f9 ▲ .000 ● .001

f10 ▲ .032 ○ .426

f11 ▲ .028 ○ .578

f14 △ .186 ○ .814

f15 △ .940 ○ .052

f16 △ .182 ○ .103

▲
significant difference between groups B2 and C; △, no significant difference between groups B2 and C; ●, significant difference between

groups B1 and C; ○, no significant difference between groups B1 and C.

The difference between groups was considered to be significant if P < .05. Nine features show significant difference between subgroup B2 and
group C and no significant difference between subgroup B1 and group C (indicated by ▲ and ○). Only one feature shows the opposite result
(indicated by △ and ●).
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