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Recent studies have identified brain correlates of placebo analgesia, but none have assessed how accurately patterns of brain activity can
predict individual differences in placebo responses. We reanalyzed data from two fMRI studies of placebo analgesia (N � 47), using
patterns of fMRI activity during the anticipation and experience of pain to predict new subjects’ scores on placebo analgesia and
placebo-induced changes in pain processing. We used a cross-validated regression procedure, LASSO-PCR, which provided both unbi-
ased estimates of predictive accuracy and interpretable maps of which regions are most important for prediction. Increased anticipatory
activity in a frontoparietal network and decreases in a posterior insular/temporal network predicted placebo analgesia. Patterns of
anticipatory activity across the cortex predicted a moderate amount of variance in the placebo response (�12% overall, �40% for study
2 alone), which is substantial considering the multiple likely contributing factors. The most predictive regions were those associated with
emotional appraisal, rather than cognitive control or pain processing. During pain, decreases in limbic and paralimbic regions most
strongly predicted placebo analgesia. Responses within canonical pain-processing regions explained significant variance in placebo
analgesia, but the pattern of effects was inconsistent with widespread decreases in nociceptive processing. Together, the findings suggest
that engagement of emotional appraisal circuits drives individual variation in placebo analgesia, rather than early suppression of
nociceptive processing. This approach provides a framework that will allow prediction accuracy to increase as new studies provide more
precise information for future predictive models.

Introduction
Though placebo treatments by definition have no direct pharma-
cological or physical effects, placebo administration engages
brain circuits that can confer therapeutic benefits. For example,
placebo painkillers reduce both pain and noxious stimulus-
evoked brain responses (Wager et al., 2004; Price et al., 2007;
Watson et al., 2007; Colloca et al., 2008; Eippert et al., 2009a; Lu et
al., 2010; Morton et al., 2010).

Placebo responses are notoriously variable across individuals
(Beecher, 1955; Hoffman et al., 2005), making it difficult to eliminate
them in clinical trials and harness them in treatment. Relationships
between placebo effects and personality measures have proven in-
consistent (Liberman, 1964; Shapiro et al., 1979), but new studies
suggest a number of correlates of placebo response magnitude, in-

cluding suggestibility (De Pascalis et al., 2002; Morton et al., 2010),
optimism (Morton et al., 2009), expectation (Vase et al., 2003;
Zubieta et al., 2005; Atlas et al., 2010; Morton et al., 2010), behavioral
activation (Schweinhardt et al., 2009), desire for relief (Vase et al.,
2003), and opiate sensitivity (Amanzio and Benedetti, 1999).
Brain-based correlates include individual differences in opi-
oid system activation (Zubieta et al., 2005, 2006; Wager et al.,
2007b), anticipatory activity (Wager et al., 2004, 2007b), stri-
atal “reward” responses (Scott et al., 2007) and gray-matter
density (Schweinhardt et al., 2009).

Though promising, these studies are limited by several factors.
First, sample sizes have been necessarily small, limiting the reli-
ability of individual difference measures. Second, neuroimaging
studies have been designed to test for nonzero correlations be-
tween placebo analgesia and brain measures, but not to estimate
predictive accuracy (effect size). A recent series of papers high-
lights the importance of this issue: Selecting significant voxels
from maps of correlations provides inflated estimates of effect
size (Vul et al., 2009; Kriegeskorte et al., 2010; cf. Lieberman et al.,
2009). Smaller sample sizes and more stringent correction for
multiple comparisons exacerbate the inflation (Yarkoni, 2009).
Thus, a study may report correlates with placebo analgesia in
many brain regions, but be useless for predicting placebo analge-
sia in new individuals. Multivoxel pattern-based approaches can
circumvent these issues, and are increasingly used for brain-based
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prediction and classification (Haxby et al.,
2001; Mitchell et al., 2008; Grosenick et
al., 2009).

We reanalyze data from two published
studies (Wager et al., 2004) using a pattern-
based regression technique, LASSO-princi-
pal components regression (LASSO-PCR),
designed to both estimate the predictive ac-
curacy of whole-brain patterns and provide
interpretable maps of which voxels reliably
contribute to prediction. We relate individ-
ual differences in placebo analgesia to both
anticipatory activity, which reflects expecta-
tion without nociceptive input and has im-
portant influences on nociception (Porro et
al., 2002; Koyama et al., 2005; Lorenz et al.,
2005; Berns et al., 2006; Keltner et al., 2006;
Brown et al., 2008a,b; Watson et al., 2009;
Atlas et al., 2010; Ploner et al., 2010), and
pain processing. In addition, to provide in-
sight into the nature of anticipatory re-
sponses, we compared the predictive power
of anticipatory activity in functional net-
works associated with cognitive control,
emotional appraisal, and pain.

Materials and Methods
Summary of analyses
A schematic summarizing the analyses we con-
ducted is shown in Figure 1A. Analyses 1–3 ex-
amined the relationship between placebo
analgesia and brain activity during pain anticipa-
tion. We first report standard voxelwise analyses
of anticipatory predictors of placebo analgesia
(analysis 1). This analysis uses a standard regres-
sion approach that is appropriate for inference,
but provides biased estimates of effect sizes (Vul
et al., 2009; Yarkoni, 2009; Kriegeskorte et al.,
2010). Supplementary analyses group significant
regions into functional networks (see supple-
mental Figs. 1–3, available at www.jneurosci.org
as supplemental material). In analysis 2, we use
a cross-validated, penalized regression proce-
dure, LASSO-PCR (see Regression techniques)
(see Fig. 1; supplemental Fig. 3, available at www.
jneurosci.org as supplemental material) to assess
how accurately anticipatory activity can predict placebo analgesia in an un-
biased fashion. In analysis 3, we assessed the contributions of anticipatory
activity within several previously identified brain systems thought to be crit-
ical for placebo analgesia (Benedetti et al., 2005; Vase et al., 2009). We com-
pared the predictive accuracy of anticipatory activity within anatomical
masks derived from meta-analyses of cognitive control, emotional appraisal,
and pain (high vs low noxious stimulus intensity). In analyses 4 and 5, we
examined the contributions of brain responses during painful stimulation.
In analysis 4, we used the average [placebo � control] contrast values in an
independent pain localizer as the outcome, and used LASSO-PCR to find
patterns of anticipatory activity that predicted the magnitude of placebo
effects on brain activity during pain. Finally, in analysis 5, we tested whether
changes in pain-related activity are predictive of analgesia. Together, these
analyses provide insight into (1) how anticipatory brain processes are related
to placebo analgesia; (2) how anticipatory brain processes are related to
placebo effects on brain activity during pain experience; and (3) how brain
activity during pain experience is related to placebo analgesia.

Participants
De-identified data from 47 participants were included in the reanalysis.
Twenty-four individuals from Princeton University participated in study

1, and 23 individuals from the University of Michigan participated in
study 2 (Wager et al., 2004). Participants gave voluntary consent in ac-
cord with the Declaration of Helsinki, and studies were approved by
Princeton University and University of Michigan institutional review
boards.

Procedure
Full details for procedures used in study 1 and study 2 have been published
previously (Wager et al., 2004). Briefly, study 1 participants underwent fMRI
while experiencing painful and nonpainful shocks on the right wrist. Sub-
jects were informed that the application of an “analgesic” skin cream would
reduce the pain intensity (placebo condition), whereas application of a “con-
trol” cream would not have any effect on pain intensity (control condition).
The same inert substance was applied in each case. The order of application
(analgesic vs control cream) was counterbalanced across subjects. On each
trial, a visual cue indicated whether the upcoming stimulation would be
painful or mild, and the subsequent anticipation period varied between 3
and 12 s. Following a 6 s stimulation period, participants rated overall pain
intensity on a visual analog scale from 1 to 10.

Study 2 participants underwent fMRI while experiencing painful heat
on the left forearm. Thermal heat was applied to a skin site with the

Figure 1. Overview of analyses and methods. A, A schematic showing which relationships were tested in each of analyses 1–5.
B, Standard multiple regression, in which each voxel is treated as a separate outcome measure, and multiple regression is used to
assess the effects of predictors of interest (e.g., placebo analgesia) and covariates on brain activity in that voxel. C, LASSO-PCR, in
which multiple brain voxels and covariates are entered in a single regression model as predictors of the outcome. Observations
(subjects) are split into training and test data in a cross-validation scheme. Training data are used to build the regression model and
estimate voxel weights (regression slopes), and test data are used to assess prediction accuracy. For the training data, PCA is
performed on the contrast maps of ranked placebo � control contrast values. Using LASSO regression, component scores ( V) are
regressed on placebo analgesia scores, and a set of weights (�, regression slopes) are obtained. The purpose of both PCA and LASSO
is to reduce the impact of multicollinearity, thus increasing prediction accuracy and yielding stable (low-variance) weights on
voxels that are neuroscientifically interpretable. Finally, the contrast data are extracted for test subjects and the model applied to
obtain a predicted outcome (e.g., placebo analgesia) score.
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“analgesic” cream and to a skin site with the “control” cream in different
blocks. Block order was counterbalanced across subjects. At the start of
each trial, the cue, “Get Ready,” was presented on the screen for 1 s,
followed by a jittered anticipation interval varying from 1 to 16 s
(mean � 9.77 s). Thermal stimulation was applied for 20 s (17 s at peak,
1.5 s ramp up and down), and after a brief jittered delay, participants
rated overall pain intensity on a 10-point numerically anchored visual
analog scale (VAS), similar to scales commonly used in clinical practice.
Fractional values, e.g., 7.72, were recorded on the computerized VAS and
analyzed.

The type of pain rating scale we used has the advantages of simplicity
and the ability to obtain reliable, repeated measurements for a wide range
of individuals (Chapman et al., 1985; Bijur et al., 2001) in a few seconds
during scanning. However, an important drawback is that use of these
scales assume that pain is a unidimensional experience characterized by
intensity (Bijur et al., 2001). Multidimensional inventories have shown
that pain can have a number of different qualities (Clark et al., 2002), the
most prominent of which have been sensory/discriminative and affec-
tive/unpleasantness aspects (Melzack and Casey, 1968; Price et al., 1987).
There is much evidence that the sensory and affective aspects of pain are
dissociable under some circumstances (Gracely et al., 1979; Price et al.,
1980, 1987); however, pain intensity and affect ratings are highly corre-
lated in many settings [e.g., r � 0.96 in a study by Coghill et al. (1999)].
There is also evidence that participants make VAS affect judgments based
on intensity, even when instructed otherwise, unless verbal anchors ob-
tained using cross-modality matching are used (e.g., Gracely et al., 1979),
and that pain intensity on a unidimensional scale is more closely related
to its emotional qualities than its sensory ones (Clark et al., 2002). We
considered measuring pain unpleasantness and intensity in pilot testing
for study 2, but intensity and affect ratings were correlated �0.9, consis-
tent with common findings in the literature. Thus, we chose to use a
single rating scale based on intensity. Thus, placebo analgesia scores in
this study may be driven by changes in either the intensity or unpleasant-
ness of pain, or both components.

Data analysis
All images underwent standard preprocessing (for details, see Wager et
al., 2004) and BOLD activity was estimated for each brain voxel within
each subject using a general linear model. For study 1, BOLD activity was
modeled for the anticipation epoch and during stimulation (pain), yield-
ing fMRI activation estimates for each period. For study 2, BOLD activity
was modeled separately for the trial onset cue, the anticipation period
(which varied in duration and was modeled with a variable-duration
epoch), early pain (0 –10 s), peak pain (10 –20 s), and late pain (10 s after
pain offset). All preprocessing and individual-subject level analyses were
identical to those reported in the original study (Wager et al., 2004).
Unless otherwise noted, we report results significant at p � 0.001 (one-
tailed, uncorrected) with a cluster extent threshold of three voxels. p �
0.001 (Z � 3.1) is the most common significance threshold in neuroim-
aging studies (Wager et al., 2007a). While this threshold does not ensure
a �0.05 chance of finding any false positives, it provides a balance be-
tween power and false positives more conducive to replication than the
use of very high thresholds.

Placebo analgesia was defined as the difference in average reported
pain for the placebo (P) condition relative to the control (C) condition
for each participant. A successful placebo manipulation should result in
lower pain reports for the placebo condition. As a result, larger differ-
ences in pain reports for the [C � P] contrast (and higher resultant
placebo analgesia scores) reflect stronger placebo effects on pain experi-
ence. Brain measures consisted of placebo effects on fMRI activity [P vs
C] during the anticipation period (Antic) and during pain administra-
tion (pain) for each study. In study 1, only one pain period was modeled:
6 s pain stimulation period. In study 2, painful stimuli were applied over
a period of 20 s, resulting in three separately modeled epochs (early, peak,
and late pain). The peak pain regressor from study 2 was used for the
combined analysis presented here.

In this paper, we focus specifically on placebo effects in anticipation
and on responses to noxious stimulation. Our previous paper published
with these data specifically assessed the effects of placebo on noxious

versus non-noxious stimuli and found that placebo responses were larger
for painful stimuli, and were nonsignificant for innocuous stimuli (Wa-
ger et al., 2004); this finding was replicated in a later study (Wager et al.,
2007b). In our previous work, we have found that there is little placebo
effect during nonpainful warmth in either pain reports or pain-evoked
brain responses. For this reason, many published papers focus on placebo
responses during painful stimulation alone (Lieberman et al., 2004; Price
et al., 2007; Craggs et al., 2008; Eippert et al., 2009a; Schweinhardt et al.,
2009; Watson et al., 2009). Therefore, we felt it most appropriate here to
focus on the comparison of most theoretical interest (and for which
we have complete data for both experiments), placebo effects during
painful stimulation. However, not all authors who have tested graded
painful stimuli have found placebo effects specific to pain (Kong et al.,
2006), and anticipatory responses may well be part of a more general
mechanism that does not only affect pain. These considerations mo-
tivated our focus on responses to noxious stimulation in the present
paper.

Because the two studies involved different procedures, pain stimuli
(shock vs thermal), and fMRI scanners, it cannot be assumed that the
pain intensity ratings or measured fMRI BOLD signals were similarly
scaled across the two studies. To collapse across study samples, we used a
nonparametric analysis that does not make strong assumptions about
scaling or the normality of the data. Within each study, fMRI BOLD data
from the [C � P] Antic and [C � P] pain contrast maps were rank-
ordered across participants. Ranking allowed us to conduct a multiple
regression equivalent of a nonparametric analysis, i.e., Spearman’s � or a
Kruskal–Wallis ANOVA, which operate on rank data. For each brain
voxel, the contrast values were replaced with their within-study rank (i.e.,
1–24 for study 1, and 1–23 for study 2), generating a set of rank images for
each contrast in each study. Rank images were combined across the
two studies, and [C � P] Antic and [C � P] pain contrasts were
analyzed separately. Behavioral data were likewise rank-ordered
within each study, such that the subject in study 1 with the highest
placebo analgesia score was given a ranking of 1 and the subject with
the lowest score was given a ranking of 24. The ranked data were used
for all analyses.

Regression techniques
We used two kinds of regression techniques: standard robust multiple
regression (“Standard regression”) and LASSO-PCR, described below.
For both techniques, in addition to placebo analgesia, the following
covariates were also included in all regression analyses: a study indi-
cator variable (“study,” study 1 vs study 2) and the treatment admin-
istration order (“order,” placebo or control first). For standard
multiple regression analyses, an order by placebo analgesia interac-
tion term was also included. The categorical variables (study and
order) were contrast coded (with values of 1 or �1), and the placebo
analgesia variable was centered before calculating the interaction
regressor.

Standard multiple regression. Robust general linear model estimation
was performed using iteratively reweighted least squares (IRLS) in Mat-
lab software (MathWorks), which yields valid p values while minimizing
the influences of outliers and violations of normality (Wager et al., 2005).
This process is shown graphically in Figure 1 B.

Network analysis. We conducted a cluster analysis on the suprathresh-
old regions from the standard regression analysis (Wager et al., 2007b,
2008) to provide information about the structure of interrelationships
among regions (i.e., functional connectivity). This analysis also provided
information on whether the voxels correlated with placebo analgesia
contain redundant information, or whether several separable networks
independently predict responses. If the former were true, then pattern-
based predictive analyses would likely offer little advantage over using
single regions. If, however, there are multiple networks that indepen-
dently predict placebo analgesia, then a pattern-based approach would
be advantageous because it can identify combinations of voxels/regions
that are more predictive than any single one alone. The cluster solution
revealed a best-guess estimate of five networks of intercorrelated regions
(see supplemental Fig. S1, available at www.jneurosci.org as supplemen-
tal material).
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LASSO-PCR. The standard regression approach described above can
identify regions that are correlated with placebo analgesia across studies, but
each voxel is treated independently, ignoring the influence of other voxels. In
the standard approach, placebo analgesia is the predictor, and brain data
from one voxel is the outcome. A different approach is needed to quantify
how much of the variance in placebo analgesia can be predicted by anticipa-
tory activity across sets of voxels. In the LASSO-PCR technique, placebo
analgesia is the outcome, and a set of voxels constitutes a set of predictors.

The LASSO-PCR technique was designed to overcome three obstacles
to providing unbiased estimates of predictive accuracy across large num-
bers of voxels. First, standard regression slopes (weights) are highly vari-
able, particularly with many predictors, reducing prediction accuracy as
the number of predictors increases. Second, predictors fit noise as well as
true effects, so a good fit to a particular dataset does not guarantee that
the model will predict accurately for new observations. A popular solu-
tion is cross-validation (Shao, 1993; Kohavi, 1995; Hastie et al., 2005), the
division of a dataset into two mutually exclusive partitions: a training set,
on which the regression model is fit, and a test set, on which the model’s
predictions are evaluated. Finally, with many voxels, multicollinearity
among the predictors (voxels) will render standard regression slopes
uninterpretable. The regression slopes are weights on voxels that consti-
tute a map of the direction and magnitude of contributions to the pre-
diction—thus, the multicollinearity issue must be addressed before the
regression procedure can yield maps of the contribution of each voxel to
the prediction that are neuroscientifically interpretable. Modern regres-
sion techniques used in machine learning can provide solutions to both
of these problems (Michalski et al., 1986; Bishop, 2006; Genkin et al.,
2007). Regularization techniques such as ridge regression and, more re-
cently, LASSO (least absolute shrinkage and selection operator)
(Tibshirani, 1996), shrink the regression weights toward zero, but in so
doing can stabilize the regression weights (i.e., reduce their variance) and
provide a principled way of selecting a subset of predictors.

The LASSO-PCR procedure, illustrated in Figure 1C, is a combination
of several established techniques chosen to work well for fMRI data.
Predictors consist of a (usually large) set of brain voxels (e.g., [P � C]
contrast values for anticipatory activity within cortical regions), and the
outcome is a single variable (e.g., placebo analgesia). Voxels in fMRI data
are highly correlated because they are grouped into networks. LASSO
regression would ignore that covariance and tend to select a few voxels,
which would reduce interpretability. To avoid this issue, LASSO-PCR
uses principal components analysis (PCA) to reduce the dimensionality
of the data first, and then uses LASSO regression on the component
scores. LASSO regularization provides a principled way of selecting a
subset of distributed components and weights on each that together best
explain the training data. LASSO has favorable properties compared with
ridge regression or best-subsets selection of predictors (Hastie et al.,
2005). Unlike ridge regression, it tends to select a subset of predictors,
simplifying the regression model and enhancing interpretability (Hastie
et al., 2005). Unlike best-subsets selection, it provides a smooth con-
straint on inclusion of each predictor in the regression model.

For the PCA step, we retained a full-rank set of components (45 com-
ponents). For LASSO regression of outcomes (Y ) on component scores
(S), we used the least angle regression algorithm (Efron et al., 2004) as
implemented in Matlab by Guilherme Rocha and Peng Zhao (http://
www.stat.berkeley.edu/�gvrocha/gvrocha_software.html). This amounted
to standard regression with component scores as predictors, i.e., Y � S�
� �, with S � XV for original data matrix X and eigenvector matrix V,
subject to an additional constraint on the L1-norm of �, i.e., �j��j� � c,
where c is a constant. This is accomplished by imposing a soft penalty on
the solution governed by a weight parameter, �. In practice, a minimal
penalty was used (� � 3 � 10 �5), so that results were close to the
standard PCA regression solution. For each analysis reported, we as-
sessed accuracy with the covariates alone (study 1 vs 2 and order of
placebo administration), the brain alone, and the combined brain and
covariates. The covariates never appreciably reduced the prediction error
in any analyses (they were never significantly correlated with the out-
come) and are not discussed further. Results from the brain data plus
covariates analyses are reported, though they were virtually identical to
the brain-data-only analyses in all cases.

Cross-validation. Cross-validation provides a minimally biased esti-
mate of predictive accuracy, even with complex or “overfit” models (in
this case, regression with many predictors). The data are divided into
training and test sets of independent observations (here, subjects). The
model is developed and all parameter estimates are chosen on the train-
ing data, and predictions are made for the test data. The training–test
split and model fitting are repeated so that each observation is used as a
test observation exactly once. This way, each observation is used for both
model selection and accuracy assessment, but because the training and
test data are separated and independent, even complex models cannot
“capitalize on chance,” and the procedure provides a minimally biased
estimate of the accuracy for predicting responses in new individuals. We
used a stratified fourfold cross-validation procedure (Kohavi, 1995), so
that the regression model was always fit on data from 3/4 of the
subjects and tested on the remaining 1/4. The analysis was repeated
four times (folds), each time leaving out a different subset of subjects.
The test sets were selected so that the set in each fold had approxi-
mately the same distribution on the outcome variables. This proce-
dure is known to underestimate the predictive accuracy (i.e., there is
a small bias toward zero), but provides less variable results than the
popular leave-one-out cross-validation scheme (Kohavi, 1995; Zeng
and Martinez, 2000).

Prediction accuracy assessment. We assessed accuracy in two ways: first,
by correlating predicted scores with observed outcome (e.g., placebo
analgesia scores), which provides an intuitive plot of the relationship,
and second, by assessing the PE (the mean squared deviation between
predicted and standardized observed scores). A PE of 1 indicates no
reduction in variance explained by the combined set of brain voxels. PE
scores above 1 indicate an increase in variance, i.e., including the brain
predictors is worse than not including them. This is possible because
using noisy predictors will increase the noise variance in the predicted
outcomes. PE scores below one indicate that the predictors are useful. We
compared PE with brain predictors (PEbrain) against PE under a “null
model” in which only the mean outcome score for the training dataset
was assumed to be known (PEnull). (In the null model, the predicted
outcome for each test observation was simply the mean of the outcome
scores for the training data.) We calculated variance explained by the
brain patterns as 1 � (PEbrain/PEnull).

Significance test for prediction and bias assessment. To test the overall
significance of the model and ensure that cross-validated prediction er-
rors were unbiased, we conducted a permutation test on the LASSO-PCR
procedure. For each of 1000 iterations, we permuted the outcome vari-
able and then repeated the cross-validated LASSO-PCR procedure. If the
prediction accuracy is unbiased, correlations between the predicted out-
come and actual outcome values for permuted data should be, on aver-
age, zero. These correlations were indeed near zero (r � 	0.02) for all
analyses, as expected, providing a validity check and ensuring that esti-
mates of prediction accuracy are unbiased. p values for the accuracy were
obtained by comparing the PE for the correct permutation with the
distribution of PE over the random permutations.

Localization of predictive voxels. The regression weights from the
LASSO-PCR procedure are projected back into voxel space (W �V�),
where W is a vector of voxel weights that is then reconstructed into a 3-D
image, and thus constitute a map of the magnitude and direction of each
voxel’s contribution to the prediction. To assess which voxels make reli-
able contributions, we performed a bootstrap test (bias-corrected and
accelerated; Efron and Tibshirani, 1993) taking 1000 samples with re-
placement from the paired predictor and outcome data and repeating the
cross-validated LASSO-PCR for each bootstrap sample. The bootstrap
provides a way of assessing p values based on the percentage of bootstrap
samples that fall above the critical test value of 0 in each voxel (see Wager
et al., 2009a for more details). Thresholding based on voxelwise p values
provides information about which voxels make the most reliable contri-
butions to prediction, though it is important to note that predictions are
made based on the full set of weights across all voxels.

Localization of pain-processing network from independent data
Pain-processing network (PPN) regions were localized by a mega-
analytic approach that assessed intensity processing across five experi-
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ments that all contrasted high- versus low-intensity noxious thermal
stimulation of the left volar forearm (total n � 114). All participants gave
informed consent and procedures were approved by the Columbia Uni-
versity Institutional Review Board. Individual subjects’ contrasts be-
tween high- and low-intensity painful stimulation (with temperatures
chosen individually for each subject based on a standardized adaptive
staircase calibration procedure) were transformed to z-scores across
image space within each individual (to avoid scaling issues resulting
from the use of different basis sets and pain epoch durations) and
normalized to MNI space using SPM5’s unified segmentation algo-
rithm. The group model included an intercept and covariates coding
for differences among the five studies. We included these normalized
images in a one-sample t test of [high � low intensity] contrast values
across the three different studies. Familywise error correction ( p �
0.05) using Gaussian random fields as implemented in SPM5 was used
to identify voxels showing a significant [high � low intensity] effect,
which was used to define the “pain-processing network.” The follow-
ing anatomical regions were found to comprise the PPN: bilateral
superior, inferior, and middle frontal gyrus; bilateral precentral gy-
rus; right middle and bilateral lateral orbitofrontal gyrus; bilateral
postcentral gyrus; bilateral supramarginal gyrus; bilateral superior
and middle temporal gyrus; right hippocampus; right parahippocam-
pal gyrus; left lingual gyrus; bilateral insular cortex; bilateral cingulate
gyrus; bilateral caudate; bilateral putamen; brainstem; and cerebel-
lum, bilateral thalamus, and medial thalamus. These results are
shown in supplemental Figure S4 (available at www.jneurosci.org as
supplemental material).

Analyses
Analysis 1: anticipatory predictors of placebo analgesia using standard multiple
regression. Across our pooled sample, we searched for patterns of
activity during anticipation of pain that were predictive of the mag-
nitude of reported placebo analgesia. We also conducted supplemen-
tary cluster analysis on the resulting regions to group them into
networks and test whether multiple networks make separable contri-
butions to placebo analgesia.

Analysis 2: anticipatory predictors of placebo analgesia using LASSO-
PCR. As discussed above, selecting voxels showing significant correla-
tions with placebo analgesia and then reporting their effect sizes is a
suitable way to test for nonzero correlations, but it produces biased esti-
mates of effect size. LASSO-PCR is suited to providing unbiased esti-
mates of how much of the variance in placebo analgesia can be predicted
by anticipatory activity across sets of voxels. The main goal of analysis 2
was to assess the predictive accuracy for new subjects based on patterns
across large areas of the brain specified a priori. A second goal was to
interpret the maps of LASSO-PCR predictive voxels and compare them
with the standard correlations in analysis 1. If the maps from the
pattern-based regression procedure are interpretable, the voxel
weights should be reliable and some of them should overlap with
those identified in analysis 1. However, because the pattern-based
analysis considers multiple brain predictors simultaneously, it is pos-
sible that it may reveal new regions that are not significant in the
standard multiple regression analysis, but are important in the con-
text of other brain predictors.

Accurate predictions depend not only on having strong predictive
signals in the data, but also on being able to identify the most predictive
variables a priori (i.e., there is a cost to including additional “junk” vari-
ables). Thus, accuracy would theoretically be improved if the most rele-
vant voxels could be identified before conducting analyses. We used
LASSO-PCR to make predictions about placebo analgesia scores from
large areas of the cortex selected a priori from the LONI anatomical
probabilistic atlas (Shattuck et al., 2008). The mask was based on results
from other studies of placebo, anticipatory anxiety, and cognitively gen-
erated emotion [based on results from Benedetti et al. (2005) and newer
published findings], but it made very weak assumptions about localiza-
tion: The mask covered very broad areas of the cortex, including prefron-
tal, parietal, and cerebellar regions.

Analysis 3: comparison of predictive accuracy of anticipatory activity in
regions associated with emotional appraisal, cognitive control, and pain.

LASSO-PCR provides an estimate of how well an ensemble of voxels
predicts a given outcome. We took advantage of this feature and com-
pared how accurately placebo analgesia was explained by anticipatory
activity within three a priori masks (voxel ensembles). The purpose was
to test whether regions associated with particular classes of tasks pre-
dicted placebo analgesia better than others, and thereby to gain some
insight into the functions of the brain networks subserving placebo an-
algesia. We defined masks based on meta-analyses for three types of
processes: emotional appraisal, executive working memory (which in-
volves multiple cognitive control and maintenance processes), and pain.
Though these systems have all been indirectly implicated in placebo- and
anticipation-based modulation of pain (Benedetti et al., 2005; Koyama et
al., 2005; Boly et al., 2007; Aslaksen and Flaten, 2008; Lyby et al., 2010), it
is unknown whether activity in these systems is predictive of the magni-
tude of placebo analgesia.

The masks for emotional appraisal and working memory were taken
from two previous meta-analyses: a meta-analysis of emotion involving
163 studies (Kober et al., 2008) and a meta-analysis of executive working
memory versus simple storage involving 60 studies (Wager and Smith,
2003). For pain, we used the PPN localizer described above (see Lo-
calization of pain-processing network), which produced results
highly consistent with other studies of noxious stimulus intensity
coding (Coghill et al., 1999; Peyron et al., 2000) (see supplemental
Fig. S4, available at www.jneurosci.org as supplemental material). We
ran LASSO-PCR within each mask, noting as the primary outcome
the variance in placebo analgesia explained by brain activity, com-
pared with the “null model.”

Analysis 4: anticipatory predictors of noxious stimulus-evoked pain-
processing network responses using LASSO-PCR. In addition to placebo
analgesia, which is a self-report-based measure, we related anticipatory
brain activity with individual differences in [C � P] activity during nox-
ious stimulation. We were particularly interested in whether anticipatory
activity predicted placebo effects on pain-evoked responses within re-
gions specifically responsive to noxious stimuli.

To form a simple, robust outcome measure, we extracted pain period
[C � P] contrast values for each subject in each voxel identified in the
PPN localizer contrast and averaged across voxels to obtain a single mea-
sure of placebo effects on PPN activity. We then used LASSO-PCR to
identify how accurately anticipatory activity predicts placebo effects on
pain-evoked responses, and to create a map of the strength of each voxel’s
contribution to the prediction.

Analysis 5: pain-period predictors of placebo analgesia. Finally, we used
the LASSO-PCR approach described above to assess the extent to which
pain-evoked responses predict placebo analgesia. We again used the PPN
localizer described in analysis 3 above as a mask. We also ran the LASSO-
PCR regression with a whole-brain mask, and compared the resulting
voxel weights with standard regression weights for the relationship be-
tween [C � P] activity during peak pain and placebo analgesia. This final
analysis allowed us to test whether pain-period activity predicted placebo
responses and whether the pattern of predictive voxels is consistent with
overall inhibition of the PPN in strong placebo responders or a more
complex pattern of changes.

Results
Anticipatory predictors of placebo analgesia (analyses 1–3)
Standard regression analyses (analysis 1)
Across the two studies, participants who reported greater placebo
analgesia [C � P] demonstrated greater placebo-induced antici-
patory activity [P � C] in the cerebellum, inferior parietal lobule,
and regions throughout the prefrontal cortex (PFC), including
the dorsolateral PFC (DLPFC), inferior frontal gyri (IFG), orbital
frontal cortex (OFC), anterior PFC, and supplementary motor
area (SMA) (red/yellow in Fig. 2A; see supplemental Table S1,
available at www.jneurosci.org as supplemental material). Each
of these prefrontal regions has been shown to exhibit placebo-
induced increases during anticipation in other voxelwise analyses
of placebo analgesia (Lieberman et al., 2004; Wager et al., 2004;
Watson et al., 2009; Lu et al., 2010).
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Individual differences in placebo analgesia were also predicted
by relative decreases during anticipation [C � P]. Greater pla-
cebo analgesia was associated with less placebo-related anticipa-
tory activity (Fig. 2A, blue) in a large area of the parietal
operculum and temporal cortex encompassing bilateral SII, as
well as right posterior and rostral dorsal anterior cingulate corti-
ces (rdACC)/anterior mid-cingulate (Vogt, 2005), as well as in
the temporal pole and subcortically in the globus pallidus (GP).
Our results show that relative placebo nonresponders show
greater responses in these areas in placebo than in control condi-
tions, whereas there is a relative suppression during the placebo
condition in strong placebo responders. Thus, these findings are
consistent with findings of engagement of these regions during
aversive pain anticipation (Koyama et al., 2005). Surface render-
ings of regions showing both positive and negative associations
with placebo analgesia are shown in Figure 3A, for comparison
with LASSO-PCR. Below, in Analysis 3, we present additional

results on whether these results are likely to be localized in “pain-
processing” regions.

Network analysis. Cluster analysis on the correlations among
significant regions (Wager et al., 2007b, 2008) revealed that they
were organized into a best-guess estimate of five networks (per-
mutation test p � 0.001, compared with the null hypothesis of no
functional grouping). Stepwise regression on these five networks
yielded a solution in which three of the five networks were inde-
pendent predictors of placebo analgesia, as shown in supplemen-
tal Figure S2 and supplemental Table 3 (available at www.
jneurosci.org as supplemental material). Anticipatory activity in
two of these networks—a frontal–parietal network (red in Fig. 3B
and supplemental Fig. S2, available at www.jneurosci.org as sup-
plemental material) and an anterior frontal region that formed its
own “network” (yellow)—was positively correlated with placebo
analgesia (anticipatory increases predict analgesia), whereas
anticipatory activity in an SII–temporal network (blue) was in-

Figure 2. Anticipatory predictors of placebo analgesia from standard regression. A, Surface figures (middle) illustrate regions where greater placebo related increases (warm colors) and decreases
(cool colors) during pain anticipation predicted greater placebo analgesia. Scatter plots (left) illustrate the relationship between average cluster activity during anticipation ( y-axis) and reported
placebo analgesia (x-axis). Examples are shown for the left DLPFC (positive correlation) and for the right SII region (negative correlation). BOLD activity reported on the y-axis ascends from top to
bottom, because activity is displayed relative to placebo condition, where the contrast values were negative when P � C and positive when C � P. The slices (right) show in greater detail that
increases predicted analgesia in the VLPFC and OFC, while decreases predicted analgesia in SII and a region encompassing the insula and superior temporal gyrus (STG). B, Regions in which
anticipatory activity was correlated with greater prescan expectations of analgesia in study 2. The scatter plot shows the negative correlation in pgACC/rmPFC, averaged across voxels.
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versely related to placebo analgesia (lower increases or deactiva-
tion associated with analgesia). More generally, these results
suggest that prediction approaches that jointly consider effects in
multiple brain regions may be appropriate.

Relationship with expectations. Correlations with prescan expect-
ancy ratings in study 2 revealed correlations between [P � C] differ-
ences in anticipatory activity and prescan expectancies of analgesia.
As shown in Figure 2B (and reported in supplemental Table S2,
available at www.jneurosci.org as supplemental material), VMPFC
and posterior cingulate showed less placebo-related (P � C) antici-
patory activity with stronger expectations of analgesia (blue in Fig.
2B), whereas ventrolateral prefrontal cortex (VLPFC) and
precuneus showed greater anticipatory increases with stronger ex-
pectations (orange/yellow) (cf. Lieberman et al., 2004). VLPFC cor-
relations with expectations are consistent with the findings above on
VLPFC prediction of placebo analgesia and with other published
findings (Lieberman et al., 2004). Notably, however, VMPFC results
did not predict analgesia in the standard regression results reported
above. We return to this issue below.

Lasso-PCR regression (analysis 2)
We next used LASSO-PCR to (1) assess the predictive accuracy
for new subjects based on patterns of activity across the cortex
and (2) interpret the maps of predictive voxels and compare them
with the standard regression results in analysis 1.

An unbiased estimate of predictive accuracy was obtained us-
ing LASSO-PCR within a broad a priori cortical mask con-
structed to cover general areas associated with placebo effects in
other studies. The mask included frontal, temporal, and opercu-
lar regions, covering much of the cortex but excluding motor,
occipital, and high parietal regions not thought to be associated
with placebo effects. Prediction– outcome correlations were r �
0.37 [a 12% reduction in PE, p � 0.03], and were different across
studies, as shown in Figure 4A. The correlation for study 1 was
r � 0.05 (an 11% increase in PE using brain activity), and the
correlation for study 2 was r � 0.64 (a 40% reduction in PE). A
separate LASSO-PCR analysis run on study 2 alone revealed a higher
correlation, r � 0.73 (Fig. 4B) (a 54% reduction in PE), suggesting

that placebo analgesia can be reliably predicted from anticipatory
activity in study 2. We note that the accuracy estimates are condi-
tional on having very little prior estimate of which brain voxels to
include in the analysis. These results should help to refine a priori
predictions for future studies, and increase prediction accuracy as
more precise prior information about the locations of predictive
brain regions becomes available.

The LASSO-PCR regression also provided maps of which vox-
els were important for predicting placebo analgesia, and we com-
pared these maps with the standard regression approach used in
analysis 1. Thresholded LASSO-PCR voxel weights (FDR q �
0.05 corrected, p � 0.016) yielded patterns that were similar to
the standard analysis. For comparison with the standard ap-
proach, surface renderings of the results are shown in Figure 3C
(compare with Fig. 3A,B). Placebo analgesia was most strongly
predicted by placebo-related anticipatory increases in the lateral
PFC and superior parietal cortex, pre-SMA, precuneus, and mid-
lateral OFC. Results of a direct comparison between LASSO-PCR

Figure 3. Anticipatory predictors of placebo analgesia, comparison across methods. A, Surface figures showing results for standard regression (analysis 1). B, Grouping of significant voxels in
analysis 1 into functional networks (see supplemental material, available at www.jneurosci.org, for details). Colors indicate distinct groups of intercorrelated regions. C, Weights (regression slopes)
reliably predictive of placebo analgesia in the LASSO-PCR analysis (FDR q � 0.05, p � 0.016). Predictions for new subjects are obtained by multiplying the entire weight map (not only the colored
regions) by the subject’s contrast values. The most reliably predictive voxels (colored) aid in interpretation of the functional anatomy of predictive systems. Yellow/red colors indicate positive effects,
greater placebo analgesia with greater placebo � control increases. Blue colors indicate negative effects, greater analgesia with reduced placebo � control activity (or placebo-related
deactivation).

Figure 4. Predictive strength of anticipatory activity: unbiased estimates using LASSO-PCR.
A, Predictive accuracy obtained from LASSO-PCR within an a priori cortical mask for studies 1
(blue) and 2 (red). The scatter plot shows observed placebo-analgesia scores ( y-axis) versus
predicted by the cross-validated analyses (x-axis). The accuracy estimate is minimally biased;
the cross-validation scheme is known to slightly underestimate predictive accuracy. B, Mini-
mally biased predictions from LASSO-PCR for study 2 alone. Predictive accuracy was substan-
tially stronger for study 2.
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and standard regression are shown in Figure
5. Figure 5A shows the overlap and disjunc-
tion between significant voxels in the
LASSO-PCR and standard brain–placebo
analgesia correlations. Positive voxel
weights are shown in red (LASSO), yellow
(standard regression), and orange (over-
lap), and negative voxel weights are shown
in dark blue (LASSO), cyan (standard re-
gression), and medium blue (overlap).

Overlap between the standard regression
and LASSO-PCR was observed in virtually
every distinct region; however, notably, an
area in the pregenual anterior cingulate
(pgACC) and nearby rostral medial pre-
frontal cortex (rmPFC) contributed to the
LASSO-PCR pattern, but was not identified
with standard regression in analysis 1. The
pgACC/rmPFC finding is meaningful, as
pgACC activity during anticipation was cor-
related with lower expectations of analgesia
(Fig. 2B), and has been shown to positively
relate to anticipatory anxiety in other set-
tings (Wager et al., 2009a,b), placebo-in-
duced opioid release (Wager et al., 2007b;
Eippert et al., 2009b), and placebo-related
increases during pain (Petrovic et al., 2002;
Bingel et al., 2006; Eippert et al., 2009b).

A more quantitative comparison be-
tween the standard regression and LASSO-
PCR maps is shown in Figure 5B. Voxel
weights for LASSO-PCR versus standard re-
gression are plotted for all in-brain voxels
(blue points), with some of the key regions
from the LASSO-PCR analysis color coded
(see figure legend for details). The relation-
ship between the two maps was strongly
linear, and regression weights for the
LASSO-PCR predictive regions were
consistent with the linear relationship
across the brain, validating the inter-
pretability of the LASSO-PCR maps,
even though the procedure uses many voxels (�170,000 in this
case) to predict a single outcome variable. Interpretable re-
gression weights are an advantageous feature of some regular-
ized regression techniques (Grosenick et al., 2009) that is not
generally shared by many other predictive algorithms.

A plot of the p values for LASSO-PCR versus standard regres-
sion, shown in Figure 5C, revealed two additional pieces of infor-
mation. First, low p values (significant voxels) tended to be lower
for LASSO-PCR than standard regression (see the figure legend
for details). Second, two regions identified in the LASSO-PCR
analysis—left OFC and the pgACC/rmPFC—showed much
lower p values in the LASSO-PCR regression than standard re-
gression, whereas others (e.g., SII) did not differ in significance
across the two analyses. This indicates that these two regions may
make a contribution to predictive accuracy that is masked unless
the contributions of other brain regions are controlled for.

Analysis 3: comparison of predictive accuracy of anticipatory activity
in regions associated with emotional appraisal, cognitive control, and pain
The goal of this analysis was to compare predictive accuracy in
consensus regions commonly activated by three types of psycho-

logical processes (emotional appraisal, cognitive control, and
pain processing) that have been implicated in placebo analgesia
to gain some insight into which other task types are associated
with the most highly predictive regions. The three a priori masks,
each derived from a meta-analysis, are shown in Figure 6A.

The results showed that the emotional appraisal mask was the
only one in which anticipatory activity predicted a significant
amount of the variance in placebo analgesia. For the executive
working memory mask, prediction– outcome correlations were
very low and not significant: r � 0.03 overall (PE � 1.18, p � 0.1,
a 38% increase in outcome variance relative to the null model, as
shown in Fig. 6B) and was low for both studies (r � �0.13 and
r � 0.19). For the emotional appraisal mask, prediction– out-
come correlations were significant and comparable to the cortical
mask results in analysis 2: r � 0.33 overall (PE � 0.95, p � 0.019,
a 9% reduction in outcome variance). As with the cortical mask
results in analysis 2, predictions were substantially better for
study 2 (r � 0.58, a 34% reduction in placebo analgesia error
variance) than study 1 (r � 0.07, a 10% increase in error vari-
ance). Finally, for pain-related voxels in the PPN mask, predic-
tion– outcome correlations were modest and not significant: r �

Figure 5. Direct comparison of standard regression (analysis 1) and LASSO-PCR voxel weights (analysis 2). A, Overlap between
standard regression weights in analysis 1 and LASSO-PCR results from analysis 2 at the same threshold ( p � 0.016). Positive
results unique to LASSO-PCR are shown in red, those unique to the standard regression in yellow, and the conjunction in orange.
Negative results unique for LASSO-PCR are shown in dark blue, unique for standard regression in light blue, and the overlap in
medium blue. Overlapping voxels were found in nearly all major regions of activation, except the pregenual cingulate/ventrome-
dial prefrontal effect unique to LASSO-PCR. B, A scatter plot of voxel weights (blue dots) for LASSO-PCR versus standard regression.
The black squares indicate the average standard regression weights within 30 evenly spaced LASSO-PCR weight bins, and the
dashed lines show 	1 SD. The colored squares show the joint weights for voxels in regions significant in the LASSO-PCR analysis
(at least 50 contiguous voxels), with 	1 SD error bars. The plot shows a strong and linear relationship between regression weights
for the two techniques, with results in key regions in line with the overall relationship across voxels. C, Two-dimensional histogram
of p values for LASSO-PCR (x-axis) versus standard regression ( y-axis). The colored contours indicate the log number of voxels with
p values in that region of the joint space, with higher voxel counts in red and lower ones in blue. The dashed shows the unity
relationship (equal p values) between maps. The predominance of low p value voxels above the unity line indicates lower p values
for the LASSO-PCR regression. Colored squares show p values for the regions plotted in B. Though all LASSO-PCR p values for the key
regions shown are necessarily low (they were chosen based on the LASSO-PCR results), some regions showed much higher
standard regression p values than others, indicating a masked relationship with placebo analgesia that is uncovered in LASSO-PCR
by controlling for other brain regions.
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0.22 overall (PE � 1.03, p � 0.1, a 6% increase in error variance;
r � 0.01 for study 1 and r � 0.45 for study 2). Thus, as shown in
Figure 6, B (prediction error variance) and C (scatter plots), only
the regions from the emotion meta-analysis predicted placebo
analgesia. On inspection, the working memory regions are lo-
cated in more posterior frontal and parietal regions than the re-
sults from both standard regression and LASSO-PCR analysis.

Analysis 4: unbiased estimates of the predictive accuracy of
anticipatory activity for PPN activity using LASSO-PCR
To assess how strongly anticipatory [P � C] activity predicted
placebo effects on brain responses during pain in the PPN, we
tested voxels that were localized using an independent dataset
(N � 114) that compared brain responses to subjectively cali-
brated high versus low-intensity noxious heat. We used anticipa-
tory activity in the broad a priori cortical mask defined above to
predict average [C � P] differences in the PPN during pain.
Cross-validated accuracy in this map was marginally significant
( p � 0.08), with moderate prediction– outcome correlations
overall (r � 0.27, 4% reduction in outcome variance) and for
each study (r � 0.39 for study 1, and r � 0.34 for study 2), as
shown in Figure 7A. Voxels with significant loadings (FDR q �
0.05 corrected) included the left dACC and right pre-SMA, sub-
genual cingulate, superior temporal, and multiple cerebellar ar-
eas (Fig. 7B). The pattern of voxels (i.e., the regression weights),
however, was uncorrelated with the pattern of anticipatory activ-
ity voxels that predicted placebo analgesia in analysis 2 (r � 0.03,
n.s.), paralleling a nonsignificant correlation between placebo
analgesia scores and [C � P] differences in average PPN activity
(r � 0.06, n.s.). The overlap plots in Figure 7C reveal almost no

overlapping significant voxels, suggesting that anticipatory pre-
dictors of placebo analgesia are qualitatively different from antic-
ipatory predictors of placebo effects on PPN responses. The only
overlap was in left IFG, pre-SMA, and left cerebellum. These
findings were confirmed by direct examination of the weights for
the two analyses, shown in Figure 7D. Regions with large weights
for predicting reported analgesia (from analysis 2, x-axis) had
near-zero weights for predicting placebo effects in PPN activity
(analysis 4, y-axis). This plot highlights the findings that placebo-
induced PPN reductions were predicted by anticipatory increases
(positive weights) in mainly midline structures, whereas the stron-
gest predictors for reported pain included increases mainly in or-
bitofrontal areas (and decreases in some midline areas). Likewise,
PPN effects were predicted by relative anticipatory decreases (nega-
tive weights) in DLPFC, whereas placebo analgesia was predicted by
increases in a nearby, more ventral part of DLPFC/IFC. Overall, the
results suggest that reported analgesia and placebo effects in pain-
related responses are quite distinct outcomes.

Analysis 5: predictors of placebo analgesia during peak pain
using LASSO-PCR
To assess how strongly placebo effects in PPN activity during pain
experience predicted placebo analgesia, we used the LASSO-PCR
algorithm on peak-pain-period activation in voxels identified in
the independent PPN localizer. Cross-validated accuracy in this
map was significant ( p � 0.03), as shown in Figure 8A, with
moderate prediction– outcome correlations overall (r � 0.35, 2%
reduction in PE) and correlations that appeared to be stronger for
study 2 (r � 0.55, 24% reduction in PE) than study 1 (r � 0.18,
16% inflation of PE). Based on the small reduction in variance,

Figure 6. LASSO-PCR based accuracy for predicting placebo analgesia from anticipatory activity within three a priori sets of regions. A, Regions identified in each meta-analysis. Blue, Consistent activations
relatedtoexecutiveworkingmemoryinameta-analysisof60studies(WagerandSmith,2003).Red,Consistentactivationsrelatedtoemotionaltasksinameta-analysisof163studies(Koberetal.,2008).Yellow,
Results from a mega-analysis of 114 participants who underwent a thermal pain challenge in our laboratory (the pain-processing network localizer; see supplemental Fig. 4, available at www.jneurosci.org as
supplemental material). B, Prediction accuracy from LASSO-PCR for each set of regions, compared with the “null” model based only on training-set placebo analgesia scores. Only the emotion-related regions
showed an above-chance (*p � 0.05) reduction in prediction error. C, Prediction (x-axis)– outcome ( y-axis) scatter plots for each set of regions.
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the predictive accuracy is currently not large enough to be of
practical use. However, the significant results can still be of value
in understanding the relationship between brain activity and pla-
cebo analgesia. The voxel weights, shown in Figure 8B, reveal that
greater placebo analgesia is associated with larger placebo-
induced decreases (blue) in anterior cingulate, but also with rel-
ative placebo-induced increases (or smaller decreases; yellow) in
dorsal anterior and posterior insular cortices. Thus, a simple pat-
tern of reductions throughout pain-processing regions does not
appear to characterize large placebo responders.

Interestingly, standard regression predictors of placebo an-
algesia did not show any significant results in the PPN regions.
Rather, strong placebo analgesia was predicted by placebo-
induced decreases in several limbic and paralimbic regions
thought to play a central role in positive and negative rein-
forcement value. These regions, shown in supplemental Figure
S5 (available at www.jneurosci.org as supplemental material)
and listed in supplemental Table S4 (available at www.
jneurosci.org as supplemental material), include ventral and
dorsal striatum, amygdala, ventral anterior insula, ventrome-
dial PFC, mid-lateral OFC, anterior midbrain, thalamus, pos-
terior cingulate, and the PFC, including the IFG and dorsal
MPFC.

To compare the standard regression and LASSO-PCA re-
sults, we ran the LASSO-PCA algorithm with a whole-brain
mask and compared the results to the standard regression
solution (Fig. 8C). Using whole-brain patterns, the prediction
was significant overall but not as strong as the PPN-mask
results (prediction– outcome r � 0.25, r � 0.04 for study 1 and
r � 0.44 for study 2, p � 0.04, a 3% reduction in PE). Areas of
overlap across standard regression and LASSO-PCR included
VMPFC, posterior lateral OFC, striatum, and posterior cingu-
late. In each region, relative decreases in pain-related re-
sponses were associated with greater placebo analgesia. By
contrast, in the dorsal anterior insula, relative increases in
pain-related responses were associated with greater placebo
analgesia (the same results were obtained with the PPN mask).
The fact that these patterns contributed highly to predictive
accuracy both when LASSO-PCR was conducted within the
PPN mask and when it was conducted across the whole brain
provides further evidence of the stability of the LASSO-PCR
procedure. These findings underscore the general conclusion
that large placebo responses are characterized by changes in
value-processing circuits rather than a broad inhibition of
input to the PPN.

Figure 7. Anticipatory activity predicting placebo effects in average PPN responses from LASSO-PCR (analysis 4). A, Prediction (x-axis)– outcome ( y-axis, average [placebo � control] contrast
within PPN) scatter plots for each study. B, Map of predictive voxel weights. Colors are as in Figure 3. C, Overlap and dissociations between regions predictive of placebo analgesia in analysis 2 and
average placebo effects in PPN (analysis 4). Positive results unique to placebo analgesia are shown in red, those unique to effects in PPN in yellow, and the conjunction in orange. Negative results
unique for placebo analgesia are shown in dark blue, unique for effects in PPN in light blue, and the overlap in medium blue. Effects were largely non-overlapping, except in pre-SMA, left inferior
frontal gyrus, and cerebellum, suggesting that placebo analgesia and placebo effects in PPN reflect qualitatively distinct anticipatory processes. D, Scatter plot of LASSO-PCR weights predicting
reported analgesia (x-axis) versus those predicting PPN effects ( y-axis). Colors and lines are as in Figure 5B. This plot shows an essentially null relationship between voxel weights for the two
outcomes. CB, Cerebellum; APFC, anterior prefrontal cortex; see the text for other abbreviations.
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Discussion
Individual variability in placebo responses has been a central is-
sue for many years (Beecher, 1955). Placebo response rates are
high in some disorders (Benedetti, 2007)— particularly in pain
(Vase et al., 2009), depression (Kirsch et al., 2008; Sneed et al.,
2008; Rutherford et al., 2010), and Parkinson’s disease (de la Fuente-
Fernandez et al., 2001; Benedetti et al., 2004; Lidstone et al., 2010).
Unexplained variability makes it challenging to control placebo re-
sponses in clinical trials and capitalize on them in clinical care.

Brain-based measures offer a new way of understanding indi-
vidual differences in placebo responses (Scott et al., 2007, 2008;
Wager et al., 2007b; Eippert et al., 2009a,b; Schweinhardt et al.,
2009). However, previous work has been limited because the pro-
cedures used were designed to detect nonzero effects, but not to
estimate predictive accuracy (Vul et al., 2009; Yarkoni, 2009).
Thus, post hoc estimates of brain–placebo correlation strengths
are likely inflated, and how accurately patterns of brain activity
can predict placebo responses is unknown.

To address this gap, we pooled data from two fMRI studies of
placebo analgesia (Wager et al., 2004) (N � 47) and used a regu-
larized regression approach (LASSO-PCR) to predict placebo
analgesia using all the voxels in an a priori set of regions simulta-
neously. The technique yields a single test of predictive accuracy

integrating across voxels and can be applied to new subjects’ data.
It also provides interpretable maps across voxels, as suggested by
the close correspondence between LASSO-PCR and standard re-
gression voxel weights.

What makes a placebo responder?
Large placebo analgesia was associated with relative increases
during pain anticipation in DLPFC, VLPFC, OFC, superior pari-
etal cortices, precuneus, and lateral cerebellum. Increases in some
regions were also correlated with prescan expectations of analge-
sia. These findings extend earlier reports of anticipatory placebo
responses (Wager et al., 2004; Watson et al., 2009; Lu et al., 2010)
by showing a direct relationship with individual differences.
Conversely, larger placebo analgesia was related to reduced an-
ticipatory responses in SII/temporal regions, possibly reflecting
preparatory attentional shifts away from pain (Miron et al., 1989;
Quevedo and Coghill, 2007; Buhle and Wager, 2010).

These effects are broadly consistent with changes in several
types of mental process, including changes in attention, emo-
tional appraisal, or pain-specific mentation, all of which may
cause analgesia (Wiech and Tracey, 2009). However, only con-
sensus regions involved in emotional appraisal [as identified by
meta-analysis (Kober et al., 2008)] were found to predict placebo

Figure 8. Activity during peak pain (placebo � control) predicting placebo analgesia, from LASSO-PCR (analysis 5). A, Prediction (x-axis) versus outcome ( y-axis, placebo analgesia) scatter plots
for each study. B, The left panel shows the PPN mask that constituted the set of predictors, and the right panel shows the most predictive voxel weights ( p � 0.001). Blue indicates areas in which
larger placebo-induced decreases during pain predicted placebo analgesia. Yellow/orange indicates areas in which smaller decreases or relative placebo-induced increases predicted placebo
analgesia. C, Overlap and dissociations between regions associated with placebo effects in PPN in the LASSO-PCR analysis versus standard regression. Positive results unique to LASSO-PCR are shown
in red, those unique to standard regression in yellow, and the conjunction in orange. Negative results unique for LASSO-PCR are shown in dark blue, unique for standard regression in light blue, and
the overlap in medium blue. Effects overlapped in posterior cingulate (relative decreases predicted analgesia) and anterior insula (relative increases predicted analgesia), but effects in dorsal
cingulate and posterior insula, among other regions, were unique to the LASSO-PCA solution.
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analgesia. Surprisingly, regions activated in executive working
memory and cognitive control tasks (Wager and Smith, 2003)
were not predictive, nor was anticipatory activity in PPN. Thus,
anticipatory placebo-related activity seems most strongly associ-
ated with affective appraisal processes.

Anticipatory [placebo � control] decreases (or smaller re-
sponses) in pgACC/rmPFC also predicted placebo analgesia and
were correlated with high prescan expectations of analgesia. The
pgACC is a site of placebo-induced opioid release (Zubieta et al.,
2005; Wager et al., 2007b; Eippert et al., 2009b). Anticipatory
pgACC activity has been associated with anticipatory anxiety
(Porro et al., 2003; Wager et al., 2009a), which itself is associated
with reduced placebo analgesia (Lyby et al., 2010) and emotional
modulation of peripheral responses (Lane and Wager, 2009). Re-
cently, we found that high pain expectancy caused anticipatory
increases in a nearby region of medial OFC, which mediated
effects on PPN activity (Atlas et al., 2010).

These anticipation-related findings contrast with pgACC/rm-
PFC findings during pain. Several studies show placebo-induced
increases during pain (Petrovic et al., 2002; Bingel et al., 2006;
Eippert et al., 2009a) and emotional stimulus processing
(Petrovic et al., 2005), and relative increases with low pain expect-
ancy that mediate reduced pain report (Atlas et al., 2010). These
findings are not necessarily incompatible: Large placebo effects
are associated with reduced anticipatory activity in pgACC (and
neighboring regions) and larger subsequent increases during
pain. However, further research is necessary, as relationships be-
tween brain activity and affective valence may be complex. For
example, VMPFC connectivity with periaqueductal gray has been
associated with both placebo (Bingel et al., 2006; Wager et al.,
2007; Eippert et al., 2009b) and anticipatory physiological re-
sponses during threat (Wager et al., 2009b).

Perhaps surprisingly, large placebo responses were not char-
acterized by larger decreases in pain responses throughout pain
intensity-encoding regions. PPN activity during noxious stimu-
lation did predict a meaningful amount of the variance in placebo
analgesia; however, the predictive pattern involved both reduc-
tions in cingulate cortex and increases in anterior and dorsal
posterior insula. Cingulate decreases are consistent with a central
role for the cingulate in pain affect (e.g., Rainville et al., 1997).
Dorsal anterior insula increases might be explained in terms of
the cognitive/motivational demand of placebo appraisal, as this
area responds to a diverse array of tasks involving judgment,
appraisal, and cognitive control (Wager and Barrett, 2004;
Moulton et al., 2005). However, placebo-related increases in
somatosensory-specific posterior insula are harder to explain
(Hua et al., 2005). Overall, the complex pattern of predictive
pain-related responses may indicate an altered process of pain
evaluation in strong placebo responders, rather than a blockade
of noxious input [but cf. Matre et al. (2006) and Eippert et al.
(2009b)].

Other results also suggest that reported placebo analgesia and
placebo effects on noxious stimulus-evoked brain responses are
distinct outcomes. These two outcomes were both uncorrelated
and associated with different brain regions. Placebo effects on
PPN responses were predicted by anticipatory increases in medial
structures, including anterior cingulate, ventral cerebellum (sup-
plemental Fig. S6, available at www.jneurosci.org as supplemen-
tal material), and subgenual cingulate, paralleling findings of
placebo-enhanced functional connectivity between subgenual
cingulate and periaqueductal gray (Bingel et al., 2006). Com-
monalities between predictors of reported analgesia and placebo
effects on PPN activity appeared to be pre-SMA and VLPFC,

which are both reliably engaged and coactivated with nucleus
accumbens during emotion regulation (Wager et al., 2008) as
well as involved in internally motivated action (Alexander et al.,
2007).

How well can brain activity predict placebo responses?
Pattern-based prediction using anticipatory activity explained
about 12% of the variance in placebo analgesia for new subjects
(�40% for study 2). While it appears relatively modest at first
glance, we believe this result is quite encouraging, as placebo
analgesia is a complex process likely to be determined by multiple
personality traits, including optimism (Geers et al., 2005; Morton
et al., 2009), suggestibility (De Pascalis et al., 2002), and approach
orientation (Schweinhardt et al., 2009) as well as prior treatment
experiences (Colloca and Benedetti, 2006) and in-the-moment
expectancies (Zubieta et al., 2006). To provide a comparison
from another field, Manolio et al. (2009) recently reviewed efforts
to predict the incidence of complex diseases using genomewide
association studies. Even in the most successful cases, the modal
percentage of variance explained was �5%. In the current study,
the predictive accuracy was reduced by the lack of specific prior
knowledge: To provide an unbiased estimate, we were forced to
specify an a priori mask that included much of the brain (and pay
a price in accuracy), but the study results provide more informa-
tive priors for future tests.

Limitations and future directions
This study provides little information on how predictive brain
patterns map onto trait-level characteristics [e.g., optimism;
(Geers et al., 2005; Morton et al., 2009)]. In addition, the pain
intensity ratings used to assess placebo analgesia likely involved
both sensory and affective information (see Materials and Meth-
ods); thus, the brain patterns that predict placebo analgesia might
differ for different individuals, depending on which aspects of
pain were judged. Also, it is unknown how these results will gen-
eralize to other populations (such as those with chronic pain) and
other types of placebo effects, such those arising from long con-
ditioning (Benedetti et al., 2003).

Finally, predictions were substantially more accurate for study
2 than study 1, particularly in analyses of anticipatory responses.
Among other differences, study 2 involved a conditioning proce-
dure as part of the placebo manipulation, which introduced a
potentially different process (Colloca et al., 2008, 2010) and in-
creased placebo responses overall. It also used a long-duration
(20 s) pain stimulus [associated with larger placebo effects (Vase
et al., 2009)] and unpredictable anticipatory intervals. In addi-
tion, subjects in study 2 were preselected as placebo responders,
and thus “nocebo” responders were largely screened out (Scott et
al., 2008). Variability related to conditioning, participant charac-
teristics, and other factors should be systematically investigated.

Overall, these results provide more precise anatomical infor-
mation for use in future studies and a statistical framework for
making predictions and improving them systematically as more
data becomes available. Thus, they provide a stepping stone to a
better understanding of the sources of individual differences in
placebo analgesia.
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