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Abstract
Relaxation dispersion spectroscopy is one of the most widely used techniques for the analysis of
protein dynamics. To obtain a detailed understanding of the protein function from the view point
of dynamics, it is essential to fit relaxation dispersion data accurately. The grid search method is
commonly used for relaxation dispersion curve fits, but it does not always find the global
minimum that provides the best-fit parameter set. Also, the fitting quality does not always improve
with increase of the grid size although the computational time becomes longer. This is because
relaxation dispersion curve fitting suffers from a local minimum problem, which is a general
problem in non-linear least squares curve fitting. Therefore, in order to fit relaxation dispersion
data rapidly and accurately, we developed a new fitting program called GLOVE that minimizes
global and local parameters alternately, and incorporates a Monte-Carlo minimization method that
enables fitting parameters to pass through local minima with low computational cost. GLOVE also
implements a random search method, which sets up initial parameter values randomly within user-
defined ranges. We demonstrate here that the combined use of the three methods can find the
global minimum more rapidly and more accurately than grid search alone.
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Introduction
Analysis of protein dynamics is a highly topical area that aims at an understanding of the
detailed mechanisms by which proteins function (Karplus 2010). Relaxation dispersion
NMR spectroscopy is one of the most powerful techniques available for quantitation of

Correspondence to: Peter E. Wright, wright@scripps.edu.

NIH Public Access
Author Manuscript
J Biomol NMR. Author manuscript; available in PMC 2014 July 01.

Published in final edited form as:
J Biomol NMR. 2013 July ; 56(3): 275–283. doi:10.1007/s10858-013-9747-5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



protein dynamics (Tollinger et al. 2001; Loria et al. 1999), providing site-specific
information on chemical (conformational) exchange processes in proteins on μs–ms time
scales. Detailed insights into the thermodynamics and kinetics of many important biological
processes, including enzyme catalysis (Bhabha et al. 2011; Henzler-Wildman et al. 2007;
Boehr et al. 2006), protein-protein interaction (Vallurupalli et al. 2008; Sugase et al. 2007a;
Sugase et al. 2007b), and protein folding (Yanagi et al. 2012; Meinhold DW and Wright PE
2011), have been obtained from relaxation dispersion experiments. An advantage of this
method is that it can probe low-populated excited states that are invisible to conventional
biophysical methods. Structural information on the invisible excited state is also obtained in
the form of the chemical shift differences between the ground and excited states.
Remarkable progress has recently been made in development of methods for determination
of three-dimensional structures of low-populated (excited) states using the chemical shift
differences obtained from relaxation dispersion experiments as conformational restraints
(Neudecker et al. 2012; Bouvignies et al. 2011).

Needless to say, it is crucial to fit relaxation dispersion data accurately for a good
understanding of protein functions in the light of a dynamic structure. Several computer
programs to analyze relaxation dispersion data have become publicly available, such as
GUARDD (Kleckner and Foster 2011), NESSY (Bieri and Gooley 2011), CATIA (http://
pound.med.utoronto.ca/~flemming/catia/), and CPMGFit (http://cpmcnet.columbia.edu/dept/
gsas/biochem/labs/palmer/software/cpmgfit.html). These programs fit relaxation dispersion
curves to the theoretical equation using the Levenberg-Marquardt algorithm or the interior-
point algorithm (Press et al. 2007). Although these algorithms are widely used for non-linear
least square fitting, a common drawback is that they often become trapped in local minima,
resulting in incorrect fitted parameters. This issue is more serious in global fits, in which
some parameters, such as the exchange rate and population in relaxation dispersion curve
fitting, are shared among multiple datasets (e.g. dispersion data for multiple residues),
because more local minima exist in the parameter space. (Note that the terms “global” and
“local” are used for both the minimum least-squares errors and for fitting parameters in this
paper. The terms “global minimum” and “local minimum” represent the minimum least-
squares errors, and “global parameter” and local parameter” represent fitting parameters.) To
find the global minimum that provides the best-fit parameter values, the dataset should be
fitted multiple times from different initial parameter sets within a certain parameter space.
To explore the whole parameter space, the aforementioned programs use the grid search
method, in which each parameter range is divided by a user-specified grid size, and the
dataset is fitted from the parameter sets on all grid points. The grid search, however, fails to
find the global minimum in cases where there is a local minimum between the global
minimum and the grid point nearest to it. Whether such a local minimum exists or not
depends on how large the parameter ranges are and how many grid points are defined. To
avoid such local minima, the grid sizes should be sufficiently large. An increase in the grid
size, however, requires longer computational time. Grid sizes are usually uniformly
increased for all parameters because it is difficult to determine which parameter requires a
larger grid size before the fit. The grid search is usually time-consuming, particularly for
global fits because of the large number of local minima. Therefore an alternative method
that can pass through local minima is desirable, to find the global minimum with lower
computational cost.

Here, we demonstrate fast and accurate fitting of relaxation dispersion data using a newly
developed software package GLOVE (global and local optimization of variable
expressions). GLOVE, a non-linear least square-fitting program utilizing the Levenberg–
Marquardt algorithm, is capable of hybrid local and global fits of relaxation dispersion data.
To enable the fitting parameters to pass through local minima, we implemented a new fitting
method that minimizes global parameters and local parameters alternately. Using this
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method, a parameter set that becomes trapped in a local minimum during the minimization
of the global parameters can be further minimized in the subsequent minimization of local
parameters. In the following round of the minimization process, the global parameters will
also be further minimized. Although this minimization method is powerful, it cannot
minimize a parameter set trapped in local minima of both global and local parameters. Thus,
we also incorporated the Monte Carlo-minimization method (Metropolis et al. 1953;
Kirkpatrick S 1983; Li and Scheraga 1987) within GLOVE, which can pass through local
minima by adding random values to the parameter set, followed by additional minimization.
Moreover, the grid search method and the random search method, which selects initial
parameter values randomly from within the user-defined ranges, were also implemented in
GLOVE. We fitted experimental relaxation dispersion data using these methods and several
combinations of them. None of the fits using solely a grid search found the global minimum,
whereas almost of all fits converged to the global minimum as long as the new minimization
method was used at the end of the fits. Furthermore, starting Monte Carlo-minimization
from a local minimum found by random search reached the global minimum more rapidly
than other methods.

Theory and Methods
The GLOVE program

In what follows, characters written in Courier New represent the GLOVE related
computational words such as command, keywords, and options used in the command lines,
GLOVE input files or GLOVE output files.

GLOVE is a command line C++ program developed to solve non-linear least square
problems rapidly and accurately utilizing the Levenberg–Marquardt algorithm (LMA). For
relaxation dispersion curve fitting, LMA minimizes iteratively the following target function:

(1)

where R2
i,exp and R2

i,calc are experimental and calculated effective R2 relaxation rates, R2
eff,

respectively, and σi is the estimated experimental uncertainty described below.

GLOVE has five methods (ONE, ONEEX, GRID, RANDOM, and MCMIN) to set up initial
parameter values, which are subsequently minimized using LMA. These methods can be run
sequentially in any order, and the same method can be repeated. The best-fit parameter set
that provides the lowest χ2 value is stored in the memory, and is replaced with a better
parameter set whenever one is found during a fit.

ONE is a single point minimization starting from the lowest limit, or an initial value
optionally defined in the input file. Global and local parameters are separated, and they are
minimized alternately. Once the minimization becomes trapped in a local minimum, usually
during the minimization of global parameters, the fit stops. ONEEX is the same as ONE
except that the fit does not stop until both global and local parameters become stuck in local
minima. In the case of global fits, ONEEX provides better results than ONE, but it is much
slower to converge than ONE. The GRID, RANDOM and MCMIN methods adopt the same
stopping condition as ONE because these methods are designed to search the parameter
space rapidly at the initial and middle stages of a fit.

GRID represents the grid search method. It was designed to search global parameters and
local parameters separately for a global fit. Initially, global parameters are fixed to a grid
point, and local parameters of each dataset are optimized using the grid search algorithm.
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Subsequently, the global parameters are unfixed, and all parameters including global
parameters are minimized starting from the optimized local parameters. This process is
repeated until all grid points of the global parameters have been examined.

RANDOM and MCMIN correspond to the random search method and the Monte Carlo-
minimization method, respectively. RANDOM chooses initial values randomly from the
user-defined parameter range, followed by minimization. It is used for searching the global
minimum roughly from the whole parameter space. The fit using RANDOM is repeated by
the user-defined iterations. In contrast to RANDOM, MCMIN is used for searching more
finely for the global minimum, starting from the vicinity of the current best-fit parameter set
found by RANDOM (or other methods). A detailed description of MCMIN is given in the
next section.

The Monte Carlo minimization
The Monte Carlo-minimization method is a version of the simulated annealing protocol
utilizing the Metropolis criterion (Metropolis et al. 1953; Kirkpatrick S 1983). It has been
successfully applied by Scheraga and co-workers to find the minimum energy structure in a
peptide folding simulation (Li and Scheraga 1987) by randomly changing a dihedral angle
among all the variable dihedral angles, followed by energy minimization to bypass large
energy barriers. The energy-minimized conformation is examined by the Metropolis
criterion to compare it with the previously accepted conformation. The GLOVE version of
the Monte Carlo-minimization (MCMIN) defines the initial parameter values as the current
best-fit parameter values plus or minus random values that distribute in a Gaussian manner,
enabling the parameter set to pass through a local minimum (Figure 1). The new parameter
set is minimized using LMA, and is accepted if χ2 is smaller than that of the current best-fit
parameter set. The MCMIN calculation continues to run as long as MCMIN finds a better
parameter set (passes through a local minimum) within the user-specified number of
iterations, typically set to more than 5. Namely, the iteration count of the MCMIN
calculation is reset to 0 if χ2 decreases. The amplitudes of the random values are controlled
by a scaling factor defined in the GLOVE input file. Note that it is important to choose an
appropriate scaling factor to minimize χ2 efficiently. If the scaling factor is too small, local
minima cannot be passed through. On the other hand, if the scaling factor is too large, the
new parameter set becomes quite different from the current best-fit parameter set, resulting
in a significant increase in χ2. To find the global minimum rapidly and accurately, MCMIN
should be run repeatedly with successive reductions in the scaling factor. At the initial stage
of fitting, the fitting parameters are usually far from the best-fit values, and thus the scaling
factor should be set to a large value. At later stages, the variation of the parameters should
be smaller as the parameters approach the global minimum.

Fitting model for a two-state exchange
Although GLOVE incorporates many fitting models, including two- and three-state
exchange models, here we describe the Carver and Richards equation (Carver and Richards
1972), which is most frequently used for relaxation dispersion curve fitting, and its
implementation in GLOVE. Other fitting models are described in Supporting Information.

The Carver and Richards equation, called Richards in GLOVE, calculates well-
approximated R2

eff values for all exchange regimes of a two-state exchange model

( ) under the experimentally accessible condition. The original equation is
represented as
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(2)

where Δω represents the chemical shift difference between the two states in units of rad·s−1,
R2A

0 and R2B
0 represents intrinsic transverse relaxation rates of the states A and B,

respectively. Although the intrinsic transverse relaxation rates of the two states can be
different, they are usually assumed to be the same, i.e., R2

0 = R2A
0 = R2B

0. The assumption
has little effect upon the analysis of the exchange when the exchange rate is much faster
than the difference between R2A

0 and R2B
0 (kex ≫|R2A

0 − R2B
0|). In addition to the

assumption on R2
0, GLOVE adopts kex (sum of the forward and backward rates, kAB + kBA)

and pApB (product of the two populations, pA × pB) instead of kAB and kBA to reduce the
parameter spaces around the commutable kAB and kBA, enhancing the computational
efficiency and stability. The population of state B, designated as the lower-populated state,

is calculated according to the formula . The exact equation used in
GLOVE is represented as

(3)

Partial derivatives of R2
eff with respect to all fitting parameters are calculated analytically

for LMA in GLOVE, and therefore the fit is faster than would be the case where they are
derived numerically according to:

(4)

where x represents a fitting parameter and Δ is a small value.

Processing relaxation dispersion data using the GLOVE software package
We now describe briefly how R2 relaxation dispersion data are processed using the GLOVE
software package, together with some important tips (Figure 2). Relaxation dispersion
spectra are measured using a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with a
constant relaxation time of TCPMG (Vallurupalli et al. 2008). All spectra are processed with
the same parameters: solvent suppression, apodizations, Fourier transformation, phase
correction and baseline correction. It should be noted that the order of the baseline
correction should be minimum; otherwise, intensities of small signals might be modified
significantly. Linear prediction should not be used since it is not suitable for quantitative
analysis of NMR data.
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Integrated peak intensities of non-overlapped peaks are obtained typically as a sum of
intensities at 3 × 3 grid points centered on the peak top. This can be achieved using the
program pkfit included in the GLOVE software package. An error in a peak intensity, εI, is
evaluated from the standard deviation of noise amplitudes in each spectrum and differences
in peak intensities of duplicated spectra. A pkfit output file contains the magnetic field B0
(in units of MHz), TCPMG (s), 1/τCP (s−1), and peak intensities of all resonances at each 1/
τCP value. τCP represents the delay between successive 180° pulses in the CPMG pulse
train. It should be noted that some research groups define τCPMG as a half delay between
two 180 pulses, and use νCPMG = 1/(4τCPMG) instead of 1/τCP for the horizontal axis of a
relaxation dispersion plot. νCPMG can be converted to 1/τCP according to the equation: 1/
τCP = 2νCPMG. R2

eff rates are calculated from the obtained peak intensities using the
program cpmg2glove according to the formula:

(5)

where I(τCP) represents peak intensity at a particular τCP delay, and I0 is the intensity in the
reference spectrum. An error of R2

eff is calculated from εI as (Ishima and Torchia 2005)

(6)

The program cpmg2glove creates a GLOVE input file, which contains fitting procedure,
fitting parameters, and experimental data, from single or multiple sets of intensities
measured under different experimental conditions, such as magnetic field, temperature, and
sample concentration.

GLOVE fits the relaxation dispersion data according to the input file, and outputs a
summary of the result in a text file and graphical plots in the Xmgr or Grace format (http://
plasma-gate.weizmann.ac.il/Grace/). Although GLOVE creates an Xmgr file for each
resonance (residue) in the dataset, these can be merged into a single PDF file with a reduced
graph size using the program mplot to facilitate comparisons of the relaxation dispersion
profiles. GLOVE also reports a reduced χ2 value (χ2 divided by the degrees-of-freedom) to
the standard output, or a monitor, in real time during a fit. Standard deviations of fitting
parameters are calculated using the covariance matrix method by default, and optionally
calculated using the Monte Carlo and/or jackknife methods (Press et al. 2007; Mosteller and
Tukey 1968).

Demonstration of relaxation dispersion curve fitting
To demonstrate the performance of GLOVE, we fitted 110 (= 55 resonances × 2 magnetic
fields) 15N R2 relaxation dispersion profiles of the KIX domain of CREB-binding protein.
KIX is known to interconvert with a non-native conformation through a two-state exchange
mechanism (Schanda et al. 2008). The relaxation dispersion data were recorded previously
(Matsuki et al. 2011) on Bruker DRX600 and DMX750 spectrometers at 25°C using 0.5
mM [15N]-KIX. Two-dimensional data sets with 1024 × 64 (t2 × t1) complex points were
acquired at τCP = 10, 5, 3.33, 2.5, 2.0, 1.66, 1.43, 1.25, 1.0, 0.83, 0.71, 0.63, 0.55, 0.50, 0.4,
and 0.33 ms with a constant relaxation time of TCPMG = 40 ms.

We tested the fitting speed and the accuracy using the methods ONE, ONEEX, and GRID,
and the combination of the methods GRID+ONEEX, RANDOM+ONEEX, MCMIN
+ONEEX, and RANDOM+MCMIN+ONEEX. It should be noted that we always validate
newly developed fitting methods and models using synthetic data with and without random
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noise. In the case of the combined method RANDOM+MCMIN+ONEEX, which shows the
best performance as described below, the best-fit parameters were identical to the input
parameters if no error was added to the synthetic data. Even with 5% random error of
effective R2 rates, we confirmed that the best-fit parameters were in excellent agreement
with the input parameters (Supporting Table S1).

All the relaxation dispersion profiles of KIX were globally fitted to Equation 3, in which kex
and pApB were specified as global parameters. Parameter ranges were set to 100–2500 for
Δω, 5–4000 for kex, and 0.005–0.09 for pApB. The initial R2

0 rate was estimated as the
lowest R2

eff rate of each relaxation dispersion dataset. The minimization using ONE,
ONEEX and MCMIN started from the lower limits of the parameters. For GRID, the fitting
tests were conducted for grid sizes of Δω, kex, pApB ranging from 2 to 20. The iterations of
RANDOM and MCMIN were set to 20 and 5, respectively when they were used solely or
combined with ONEEX, and the iteration of RANDOM was set to 5 when it was used in
combination with MCMIN. MCMIN was repeated three times, reducing the scaling factor
sequentially from 0.1 to 0.001 by a factor of 0.1. RANDOM and MCMIN use random
number generators, providing different results every time; therefore, the fitting tests using
RANDOM or MCMIN were repeated ten times, and the average and standard deviations of
the reduced χ2 and computational time were calculated. Standard deviations of the fitted
parameters were estimated using the covariance matrix method.

All tests were performed on Apple iMac with dual 3.4 GHz Intel Core i7 processors using
the GLOVE executable binary compiled by the Intel C++ compiler.

Results and Discussion
To address which method or which combination of methods fits the data the most rapidly
and most accurately, we carried out global fits of 110 relaxation dispersion profiles of KIX
using the methods implemented in GLOVE and combinations of them. Since the reduced χ2

value converged to 1.45047 as the lowest value in many tests, we considered this value to be
the global minimum. The global parameters kex and pApB converged to 600 ± 5 s−1 and
0.0343 ± 0.0002, respectively when the reduced χ2 value was 1.45047. Thus, these values
were considered to be the best-fit parameter values. Figure 3 shows representative relaxation
dispersion profiles and the best-fit curves. The graphical plots were created in PDF format
using the GLOVE software package, and were not modified except for the file format
conversion.

The fitting protocol ONE, which is a single point minimization starting from the lower limits
of the parameters, could not find the global minimum (Table 1). This outcome means that
relaxation dispersion curve fitting has a local minimum problem, and thus, well estimated
initial values or multiple fits from different initial parameters are required to find the global
minimum. ONEEX provided a smaller reduced χ2 value than ONE, but it also failed to find
the global minimum, and the computational time was very long. ONEEX should not be used
for the initial stage of a fit although ONEEX shows a very good performance at the final
stage of a fit, as described below.

We then focused on the grid search method, which is commonly used by other programs to
fit relaxation dispersion data, and examined how many grid sizes are required to find the
global minimum by fitting the test data with grid sizes ranging from 2 to 20. However, none
of the fits reached the global minimum (Figure 4A). A grid size of 11 provided the lowest
reduced χ2 value of 1.45056, which is very slightly higher than that of the global minimum.
The resulting global parameters kex and pApB (603 ± 5 s−1 and 0.0342 ± 0.0002,
respectively) were the same as the best-fit values within the uncertainties. However, when
the grid size was increased from 11 to 18, the fitted kex and pApB (515 ± 5 s−1 and 0.0366 ±
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0.0002) were obviously far from the best-fit values. Note that the fitting quality (reduced χ2

value) did not always improve with the increase of grid size although the computational time
increased collinearly with the total grid size (Figure 4B). Interestingly, application of
ONEEX following GRID always reached the global minimum with an additional
computational time of less than 1 minute (Figure 4A). Therefore, ONEEX is suitable to use
at the final stage of a fit to converge the parameters to the global minimum.

Fits using RANDOM or MCMIN alone failed to find the global minimum, despite the fact
that the fits were repeated ten times for each method (Table 1). However, if ONEEX was
used after RANDOM, the fits always converged to the global minimum. Furthermore, the
combined method RANDOM+MCMIN+ONEEX found the global minimum much faster
than any other method. On the other hand, the fit starting with MCMIN followed by
ONEEX resulted in larger reduced χ2 values, and the computational time was extremely
long. The reason is twofold. Firstly, MCMIN was designed to optimize the parameters more
finely than RANDOM, and the tests started from the lower limits of the parameters that are
far from the best-fit values, hence MCMIN failed to find the global minimum. Nevertheless,
the combined method MCMIN+ONEEX could find the global minimum if an additional
MCMIN calculation with 10 iterations and scale of 1 was added prior to the MCMIN
+ONEEX calculation; however, this MCMIN+MCMIN+ONEEX calculation did not search
the parameter space as efficiently as RANDOM+MCMIN+ONEEX (data not shown).
Secondly, ONEEX takes a long time to converge to a global or local minimum. Indeed, the
computational time of the combined methods including ONEEX was spent mainly on the
ONEEX stage. Therefore, before the ONEEX calculation, the fitting parameters should be
optimized to be as close as possible to the global minimum in order to shorten the
computational time. The reason why the computational time of RANDOM+MCMIN
+ONEEX was shorter than that of the other methods is that the reduced χ2 value before
ONEEX was the smallest.

Using the combined method RANDOM+MCMIN+ONEEX, we have already succeeded in
fitting a large number of relaxation dispersion datasets (Bhabha et al. 2011; Meinhold DW
and Wright PE 2011; Sugase et al. 2007b; Boehr et al. 2006), including fits of a three-state
exchange model which describes coupled folding and binding processes of an intrinsically
disordered protein (Sugase et al. 2007a). This combined method should be widely applicable
to the analysis of relaxation dispersion data. Furthermore, GLOVE was developed to solve
general non-linear least-square problems, and has built-in functions for the analysis of
CLEANEX-PM (Hwang TL et al. 1998), and R1 and R2 relaxation data. Of course, the
combined RANDOM+MCMIN+ONEEX method will also be useful for fitting such data.
Since other functions can readily be added, GLOVE will undoubtedly find wide applications
for the analysis of a broad range of experimental data.

For a computer required for GLOVE, we used a relatively fast computer in performing the
above tests of GLOVE. For comparison, we also ran a test fit using the GLOVE executable
binary compiled by g++ for RANDOM+MCMIN+ONEEX, which showed the best
performance in finding the global minimum, on an old and slow computer (Cygwin running
on Windows Vista PC with a 2.2 GHz Intel Core2 Duo processor). This test was repeated
ten times, but always converged to the global minimum with a computational time of 202 ±
52 second. As this computational time would still be tolerable, GLOVE could be used on a
broad range of computers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Sugase et al. Page 8

J Biomol NMR. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (to K.S.) from the MEXT
of Japan and by grant GM075995 (to P.E.W.) from the National Institutes of Health. J.L. was supported by
postdoctoral fellowship grant PF-05-056-01 from the American Cancer Society. GLOVE is available upon request
to the authors.

References
Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE. A dynamic

knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis.
Science. 2011; 332:234–238. [PubMed: 21474759]

Bieri M, Gooley PR. Automated NMR relaxation dispersion data analysis using NESSY. BMC
Bioinformatics. 2011; 12:421. [PubMed: 22032230]

Boehr DD, McElheny D, Dyson HJ, Wright PE. The dynamic energy landscape of dihydrofolate
reductase Catalysis. Science. 2006; 313:1638–1642. [PubMed: 16973882]

Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Vernon RM, Dahlquist FW,
Baker D, Kay LE. Solution structure of a minor and transiently formed state of a T4 lysozyme
mutant. Nature. 2011; 477:111–114. [PubMed: 21857680]

Carver JP, Richards RE. A general two-site solution for the chemical exchange produced dependence
of T2 upon the Carr-Pursell pulse separation. J Magn Reson. 1972; 6:89–105.

Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko
GA, Karplus M, Hübner CG, Kern D. Intrinsic motions along an enzymatic reaction trajectory.
Nature. 2007; 450:838–844. [PubMed: 18026086]

Hwang TL, van Zijl PC, Mori S. Accurate quantitation of water-amide proton exchange rates using the
phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC
(FHSQC) detection scheme. J Biomol NMR. 1998; 11:221–226. [PubMed: 9679296]

Ishima R, Torchia DA. Error estimation and global fitting in transverse-relaxation dispersion
experiments to determine chemical-exchange parameters. J Biomol NMR. 2005; 32:41–54.
[PubMed: 16041482]

Karplus M. Dynamical aspects of molecular recognition. J Mol Recognit. 2010; 23:102–104.
[PubMed: 20151415]

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science. 1983; 220:671–
680. [PubMed: 17813860]

Kleckner IR, Foster MP. GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG
RD NMR data. J Biomol NMR. 2011; 52:11–22. [PubMed: 22160811]

Li Z, Scheraga HA. Monte Carlo-minimization approach to the multiple-minima problem in protein
folding. Proc Natl Acad Sci USA. 1987; 84:6611–6615. [PubMed: 3477791]

Loria JP, Rance M, Palmer AG. A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for
characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc. 1999; 121:2331–2332.

Matsuki Y, Konuma T, Fujiwara T, Sugase K. Boosting protein dynamics studies using quantitative
nonuniform sampling NMR spectroscopy. J Phys Chem B. 2011; 115:13740–13745. [PubMed:
21992609]

Meinhold DW, Wright PE. Measurement of protein unfolding/refolding kinetics and structural
characterization of hidden intermediates by NMR relaxation dispersion. Proc Natl Acad Sci USA.
2011; 108:9078–9083. [PubMed: 21562212]

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller M, Teller E. Equation of State Calculations by
Very Fast Computing Machines. J Chem Phys. 1953; 21:1087–1092.

Mosteller, F.; Tukey, J. Data analysis, including statistics. In: Lindzey, G.; Aronson, E., editors.
Handbook of social psychology. 2. Vol. 2. Addison-Wesley; Reading: 1968. p. 80-203.

Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P, Zarrine-Afsar A, Sharpe S, Vendruscolo
M, Kay LE. Structure of an intermediate state in protein folding and aggregation. Science. 2012;
336:362–366. [PubMed: 22517863]

Sugase et al. Page 9

J Biomol NMR. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Press, WH.; Teukolsky, SA.; Vetterling, WT.; Flannery, BP. Numerical recipes 3rd edition: The art of
scientific computing. Cambridge University Press; 2007.

Schanda P, Brutscher B, Konrat R, Tollinger M. Folding of the KIX domain: characterization of the
equilibrium analog of a folding intermediate using 15N/13C relaxation dispersion and fast 1H/2H
amide exchange NMR spectroscopy. J Mol Biol. 2008; 380:726–741. [PubMed: 18565542]

Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically
disordered protein. Nature. 2007a; 447:1021–1025. [PubMed: 17522630]

Sugase K, Lansing JC, Dyson HJ, Wright PE. Tailoring relaxation dispersion experiments for fast-
associating protein complexes. J Am Chem Soc. 2007b; 129:13406–13407. [PubMed: 17935336]

Tollinger M, Skrynnikov NR, Mulder FA, Forman-Kay JD, Kay LE. Slow dynamics in folded and
unfolded states of an SH3 domain. J Am Chem Soc. 2001; 123:11341–11352. [PubMed:
11707108]

Vallurupalli P, Hansen DF, Kay LE. Structures of invisible, excited protein states by relaxation
dispersion NMR spectroscopy. Proc Natl Acad Sci USA. 2008; 105:11766–11771. [PubMed:
18701719]

Yanagi K, Sakurai K, Yoshimura Y, Konuma T, Lee YH, Sugase K, Ikegami T, Naiki H, Goto Y. The
Monomer-Seed Interaction Mechanism in the Formation of the β2-Microglobulin Amyloid Fibril
Clarified by Solution NMR Techniques. J Mol Biol. 2012; 422:390–402. [PubMed: 22683352]

Sugase et al. Page 10

J Biomol NMR. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Schematic representation of the Monte-Carlo minimization method implemented in
GLOVE. The dashed line arrow represents the Monte-Carlo process that adds random values
to the current best fit parameters, enabling the parameters to pass through a local minimum.
The reduced χ2 value usually increases in this step. The new parameter set is subsequently
minimized as represented by the curved solid arrow.
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Figure 2.
Procedure for the analysis of relaxation dispersion data. The programs included in the
GLOVE software package are shown in Courier New font. The main part of the data fitting
using the GLOVE program, whose executable command is glove, is shown as the grey
background.
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Figure 3.
Representative 15N relaxation dispersion profiles for KIX with the best-fit curves. The
relaxation dispersion data were collected at 15N frequencies of 60.83 MHz (black line) and
76.01 MHz (red line). The plots were initially created by GLOVE for individual residues,
and merged using mplot into a single PDF file. The numbers followed by “-HN” on the
upper left of the plots are the residue number.
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Figure 4.
Fitting accuracy and speed using the grid search method. (A) The reduced χ2 values of the
fits using the methods GRID (black) and GRID+ONEEX (red) plotted against the grid size.
The inset is an enlarged view of the same plot. The symbols have been omitted for clarity.
(B) The computational time for the fits using GRID (black) and GRID+ONEEX (red)
plotted against the grid size. The vertical scale is shown on the left-hand side of the plot. The
green line represents the total grid size Ntotal, whose vertical scale is shown on the right-

hand side of the plot. Ntotal is calculated as: , where Ni
global and

Nj,k
local represents the grid sizes of the i-th global parameter and the k-th local parameter in

the j-th dataset, respectively.
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Table 1

Speed and accuracy tests of relaxation dispersion curve fitting

Method Reduced χ2 valuea Computational time (s)

ONE 14.9719 0.3

ONEEX 9.82986 1036

RANDOM 2.06638 (0.78064)
62 (9)d

 + ONEEXb → 1.45047 (0)c

RANDOM 3.70891 (0.84149)

38 (12)d + MCMIN → 1.45052 (0.00008)

 + ONEEXb → 1.45047 (0)c

MCMIN 9.54153 (3.05157)
2924 (2398)d

 + ONEEXb → 8.93963 (3.12073)c

a
The initial reduced χ2 value is 88.7611.

b
The tests were repeated ten times

c
The average of the reduced χ2 values after each method is shown with the standard deviation in parentheses. The arrows indicates that the fitting

parameters were sequentially minimized using the method written on the same line in the Method column

d
The average total computational time is shown with the standard deviation in parentheses.
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