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Modifications to DNA and his-
tone tails represent key epigen-

etic marks involved in establishing 
and maintaining cell identity and can 
be dysregulated in human diseases, 
including cancer. Two such modifica-
tions, tri-methylation of lysine-27 on 
histone H3 (H3K27me3) mediated by 
the Polycomb complex and hydroxy-
methylation of cytosines on DNA, have 
recently been shown to be dynami-
cally regulated during differentiation. 
Here, we show that global levels of 
5-hydroxymethylcytosine (5hmC) and 
H3K27me3 are highly correlated across 
a variety of somatic tissues. In multiple 
hierarchically organized tissues, both 
marks showed almost identical cell-by-
cell distribution patterns that exhibited 
a tight association with differentiation. 
In particular, tissue stem cell compart-
ments were characterized by low levels 
of both marks, whereas differentiated 
cell compartments exhibited high lev-
els of 5hmC and H3K27me3. This 
pattern of correlation between the two 
marks could be recapitulated in an in 
vitro model system of induced differen-
tiation in prostate epithelial cells. While 
the correlation between 5hmC and 
H3K27me3 levels is also maintained in 
human cancers, the degree of correla-
tion is reduced. These findings suggest 
a previously unappreciated link between 
5hmC and H3K27me3 regulation that 
should be explored in future mechanis-
tic studies.
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Introduction

Epigenetic modifications comprise a series 
of heritable changes in chromatin organi-
zation that do not affect the primary DNA 
sequence. Two of the best-studied classes of 
epigenetic marks are (1) modifications of 
the DNA molecule itself, such as methyla-
tion of the 5-position of cytosines (5 mC); 
and (2) posttranslational modifications of 
histone tails in nucleosomes. The complex 
interactions between such DNA methyla-
tion marks and histone modifications can 
regulate genome organization and can 
orchestrate tissue-specific gene expression 
patterns during development and dif-
ferentiation.1 Importantly, many disease 
states are characterized by alterations of 
epigenetic marks on DNA and histones; 
these alterations are often associated with 
aberrant genome organization and gene 
expression. Specifically, human cancers 
almost universally develop dysregulation 
of epigenetic marks, during both cancer 
initiation and disease progression.2

DNA methylation patterns in human 
health and disease have been extensively 
studied over the past four decades.3,4 In 
particular, it has recently been shown that 
methylated cytosines (5mC) in DNA can 
be further oxidized to 5-hydroxymethylcy-
tosine (5hmC). As a modified base, 5hmC 
has been detected in mammalian and viral 
genomes as early as the 1950s using crude 
fractionation methods.5 However, the 
recent discovery that members of the ten-
eleven translocated protein family (TET1, 
TET2, TET3) can enzymatically convert 
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distinct distribution pattern with a clear 
enrichment for terminally differentiated 
cells is highly reminiscent of the distribu-
tion recently described for H3K27me3.21 
Here we show that 5hmC and H3K27me3 
are tightly correlated on a cell-by-cell 
basis in multiple normal human tissues. 
Although to a somewhat reduced extent, 
this association is maintained in human 
cancers, where both marks are signifi-
cantly downregulated at a global level. 
These observations suggest a previously 
unappreciated link between 5hmC and 
H3K27me3.

Results and Discussion

Global levels and cellular localization 
of 5hmC and H3K27me3 are highly 
correlated. We previously showed that 
5hmC global content and global levels 
of H3K27me3 each track with differen-
tiation in multiple normal tissues in two 
separate studies.21 We therefore hypoth-
esized that these marks may be directly 
correlated with each other in stem and 
differentiated cell compartments. We 
began to explore this hypothesis by exam-
ining the levels of 5hmC and H3K27me3 
in colonic mucosa, which represents a 
prototypical example of a hierarchically 
organized epithelial tissue. In the hierar-
chically organized colonic epithelium, the 
crypts harbor the stem cell compartment 
where colonocytes are formed by asym-
metric division.22 Conversely, mature and 
terminally differentiated colonocytes are 
localized on the luminal side of the colon. 
We used previously validated immuno-
histochemical approaches developed by 
our group to evaluate the global levels 
of 5hmC and H3K27me3 in directly 
adjacent tissue sections from the human 
colon.20,21 Interestingly, we observed a 
high degree of concordance between 
5hmC and H3K27me3 levels, in which 
both marks were observed at high levels 
in terminally differentiated apical cells, 
whereas cells at the base of the colonic 
crypts showed greatly reduced staining 
of both marks (Fig. 1). This observation 
provided initial evidence for a potential 
co-regulation of 5hmC and H3K27me3 
during differentiation.

To further evaluate the degree of co-
localization of 5hmC and H3K27me3 on 

More generally, histone H3 lysine 27 
trimethylation (H3K27me3) is a well-
known histone modification regulated 
during ES cell differentiation and devel-
opment. H3K27me3 levels are thought 
to be regulated by the histone methyl-
transferase enhancer of zeste 2 (EZH2), 
as well as the lysine demethylases JMJD3 
and UTX.16 EZH2 is the catalytic sub-
unit of the polycomb repressive complex 2 
(PRC2), and trimethylation of H3K27 by 
PRC2 recruits the PRC1 complex, result-
ing in gene silencing during ES cell dif-
ferentiation.17 H3K27me3 is a polycomb 
mark usually associated with heterochro-
matin, and transcriptional repression and 
is known to be dysregulated in cancer.18,19

We have recently demonstrated that 
global levels of 5hmC are high in termi-
nally differentiated cells in most adult tis-
sues,20 suggesting a key role of 5hmC in 
tissue-specific differentiation. Conversely, 
the stem cell compartments in hierarchi-
cally differentiated tissues show greatly 
reduced 5hmC levels compared with their 
more differentiated counterparts. This 

5mC to 5hmC in a targeted manner has 
spurred a renewed interest in this DNA 
modification.6-8 Previous studies have sug-
gested that 5hmC plays a crucial role in stem 
cell biology and lineage-specific differentia-
tion.9,10 In an attempt to further elucidate 
the biological function of 5hmC, several 
groups developed novel methodologies to 
investigate the genome-wide distribution 
pattern of 5hmC in embryonic stem cells.11-

15 Taken together, these reports showed that 
5hmC can be found around the transcrip-
tional start sites of active and repressed gene 
promoters, suggesting that 5hmC could 
be involved in transcriptional regulation. 
Furthermore, 5hmC was enriched at genes 
whose promoters bear “bivalent” histone 
3 lysine 27 trimethylation (H3K27me3) 
repression marks and histone 3 lysine 4 tri-
methylation (H3K4me3) activation marks. 
This “bivalent” chromatin state is thought 
to poise gene loci for further epigenetic 
regulation, suggesting that 5hmC could be 
involved in the transcriptional regulation 
and fine-tuning of transcriptional output 
during ES cell differentiation.

Figure 1. 5hmC and H3K27me3 show highly similar distribution patterns in colonic mucosa. To 
evaluate the distribution of 5hmC and H3K27me3 in the colonic mucosa, adjacent sections of 
formalin-fixed paraffin-embedded colonic tissues were stained with 5hmC and H3K27me3-spe-
cific antibodies. Note that terminally differentiated epithelial cells toward the lumen of the colon 
(arrowheads) show strong staining for 5hmC and H3K27me3, whereas cells in the crypts (arrows) 
show very low levels of 5hmC and H3K27me3.
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(Fig. 2B, arrows) of the follicle exhibited 
a large number of cells with high 5hmC 
and H3K27me3 levels, whereas cells in 
the germinal center were mostly negative 
for both marks (Fig. 2B). Only a subset of 
cells in the germinal center showed high 
levels of 5hmC and H3K27me3 (Fig. 2B, 
arrowheads). This distinct distribution 
pattern could suggest that proliferating 
and maturing B-cells are characterized by 
low levels of 5hmC and H3K27me3.

Furthermore, in human testis, 5hmC 
and H3K27me3 showed an almost identi-
cal staining pattern (Fig. 2C). Both marks 
were present at high levels in terminally 
differentiated Sertoli cells within the 
tubuli seminiferi and in stromal cells sur-
rounding the tubuli. Spermatogonia and 
mature spermatids, however, were devoid 
of 5hmC and H3K27me3 staining. In 
each of these systems, prostate, lymphoid 

for 5hmC showed a slight cell-to-cell vari-
ability within the luminal cell compart-
ment, with some cells showing stronger 
staining intensities than others (Fig. 2A). 
Remarkably, these different staining lev-
els were also reflected in the H3K27me3 
staining, indicating a tight correlation of 
5hmC and H3K27me3, even at the level 
of individual cells.

As part of the immune system, lymph 
follicles are highly organized structures 
with distinct cellular organization pat-
terns, which enable B-cell proliferation and 
maturation. The germinal center (Fig. 2B, 
arrowheads), which shows a high density 
of proliferating B-lymphocytes, is sur-
rounded by the paracortex, which mainly 
consists of T-cells. Interestingly, the stain-
ing distribution of 5hmC and H3K27me3 
in such secondary lymph follicles showed 
a very distinct pattern. The marginal zone 

a cell-by-cell level, we used double-label 
immunofluorescence microscopy to detect 
both marks in the same tissue section.

Secretory glands of the adult prostate 
are lined by a two-layer epithelium com-
prised of a luminal (Fig. 2A, arrowheads) 
and a basal (Fig. 2A, arrows) cell com-
partment. Similar to the colonic mucosa, 
the basal cell layer harbors the regenera-
tive stem-like compartment, whereas the 
luminal cells are thought to be termi-
nally differentiated.23 As shown previ-
ously, 5hmC was abundant in the luminal 
cell compartment but greatly reduced in 
the basal cell compartment (Fig. 2A).20 
Similarly, global H3K27me3 levels were 
much higher in luminal cells as compared 
with basal cells of the prostate, suggesting 
a differentiation-dependent co-regulation 
of both marks in the prostatic epithelium. 
It is worth noting that the staining levels 

Figure 2. Immunofluorescence double labeling reveals a high degree of co-localization of 5hmC and H3K27me3 in differentiated adult tissues. Tis-
sue sections containing normal prostate epithelium, lymphoid tissue and testis were co-immunolabeled with antibodies specific to 5hmC (shown in 
green) and H3K27me3 (shown in red). (A) In normal prostate epithelium, 5hmC and H3K27me3 are present at high levels in the terminally differenti-
ated luminal cells (arrowheads). Note that basal cells (arrows) exhibit greatly decreased staining intensities for both marks. (B) In the activated lymph 
follicle, 5hmC and H3K27me3 are both present with very high concordance in distinct cell populations in the germinal center (arrowheads) and the 
marginal zone (arrows). (C) In cross sections of the human testis, 5hmC and H3K27me3 are present in Sertoli cells in the seminal tubules (arrowheads) 
and in stromal cells surrounding the tubuli (arrows), but not in spermatogonia or mature spermatids.
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reduction in 5hmC occurs independently 
of reductions in 5mC.20 This reduction of 
5hmC levels appears to be an early event; 
in some tumors, it occurs at the stage of 
pre-invasive lesions (Haffner et al. unpub-
lished data). Furthermore, recent evi-
dence suggests that the extent of 5hmC 
loss in tumor cells tracks with histopatho-
logical grade and appears to be a prognos-
tic indicator in glioblastoma multiforme 
and melanoma.34,36 The mechanism for 
this profound loss of 5hmC is currently 
under investigation, and several hypoth-
eses have been proposed. For instance, 
in 30% of myeloid malignancies, TET2 
appears to be inactivated by deletion or 
somatic mutations.37,38 This genetic inac-
tivation is associated with a decrease in 
5hmC levels.35 Consistent with a “driver” 
role for these mutations, Tet2-deficient 
mice show an enlargement of the hema-
topoietic stem cell compartment and 
develop myeloproliferative disorders.39 In 
solid tumors, however, mutations in TET 
genes are observed less frequently and 
are therefore not likely to contribute to 
the almost universally observed decrease 
of 5hmC. However, loss of 5hmC is fre-
quently accompanied by reduced mRNA 
expression of TET1, TET2 and TET3 
in a variety of solid tumors.32 Moreover, 
recent in vivo data also demonstrate 
that loss of TET1 and TET2 results in 
increased tumor growth and invasion and 
a global reduction in 5hmC, suggesting 
that TET1 and TET2 could function as 
tumor suppressor genes.36,40 Furthermore, 
metabolic alterations, such as the gen-
eration of TET-inhibitory metabolites 
like 2-hydroxyglutarate through mutant 
IDH1 and IDH2, have been recently 
discussed as potential causes for TET 
enzyme dysfunction and consequently 
5hmC loss in tumors.41,42

The role of 5hmC in epigenetic regula-
tion appears to be regulated by a complex 
network of enzymes.8,43,44 For instance, 
recent evidence suggests that 5hmC is 
likely to be an intermediate in an active 
de-methylation process in which the first 
step involves the oxidation of 5mC to 
5hmC. It was postulated that 5hmC could 
get further oxidized to 5-formylcytosine 
(5fC) or 5-carboxylcytosine (5caC) in a 
process that involves TET enzymes.9,43-48 
5fC and 5caC can then get excised by 

and absence/very low expression of the 
androgen receptor (AR) when cultured 
under standard cell culture conditions 
(2D culture) (Fig. 3). However, when 
cultured in a 3D matrix containing lam-
inin and collagen, RWPE-1 cells showed 
robust glandular differentiation charac-
terized by the formation of branching 
acini.25-27 This induced acinar differen-
tiation was associated with an increase of 
luminal differentiation specific markers 
such as AR (Fig.  3B). Strikingly, 5hmC 
and H3K27me3 levels were also greatly 
increased in the acinar structures gener-
ated in the 3D culture system, despite 
being almost undetectable under conven-
tional 2D culture conditions. Therefore 
this model system allows a partial reca-
pitulation of prostatic epithelial differen-
tiation and highlights the tight association 
of 5hmC and H3K27me3. Along these 
lines, it is worth noting that induced dif-
ferentiation in other model systems has 
been shown to lead to an accumulation of 
5hmC and reduction of 5mC specifically 
in enhancer and promoter regions, a step 
that might be required for establishing dif-
ferentiation specific chromatin states.28,29

Global 5hmC and H3K27me3 lev-
els are reduced in solid tumors. Tumor 
initiation and progression are associated 
with a wide range of genetic and epigene-
tic changes.2,30,31 Changes in DNA meth-
ylation patterns are almost universal in 
human cancers and can be found at early 
stages during tumor progression. The 
dysregulation of DNA methylation pat-
terns in cancers often involves both global 
DNA hypomethylation and gain of meth-
ylation marks in CpG islands.2 We have 
recently provided the first evidence that 
global 5hmC levels are greatly reduced 
in multiple human carcinomas compared 
with normal tissue.20 This finding was 
independently corroborated by a number 
of groups and expanded to other tumor 
types, suggesting that the bulk of the 
neoplastic cells in solid tumors including 
carcinoma of the breast, prostate, colon, 
malignant glioma and melanoma show 
profound decreases in 5hmC levels when 
compared with their differentiated nor-
mal counterparts.20,32-36 Moreover the loss 
of 5hmC is far more pronounced than 
the decrease in 5mC levels observed in 
many tumor types, suggesting that the 

tissue and testis, 5hmC and H3K27me3 
levels were highly correlated even at a cell-
by-cell level.

5hmC and H3k27me3 levels increase 
during induced differentiation in vitro. 
To recapitulate the changes in global 
5hmC and H3K27me3 levels in a model 
system of induced differentiation, we used 
the normal prostate epithelial line RWPE-
1.24 RWPE-1 cells show a basal like 
prostate epithelium phenotype character-
ized by low levels of 5hmC, H3K27me3 

Figure 3. In vitro differentiation of prostate 
epithelial cells is associated with increased 
5hmC and H3K27me3 levels. RWPE-1 prostate 
epithelial cells showed a basal cell like pheno-
type characterized by the absence of an-
drogen receptor (AR) expression and low to 
undetectable levels of 5hmC and H3K27me3 
when cultured under standard 2D culturing 
conditions. (A) Introduction of RWPE-1 cells 
in a 3D matrigel matrix induced formation of 
highly organized acinar structures (arrows) 
and ductal branching (arrowheads). This 
morphological differentiation was associated 
with an increase in AR levels and accumula-
tion of 5hmC and H3K27me3 (arrows). (B) 
shows representative micrographs of cross 
sections obtained from 2D cultures and 3D 
cultures. Note the high level of AR, 5hmC and 
H3K27me3 staining in the acinar epithelial 
structures formed in 3D cultures (arrows).
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loss H3K27me3 appeared overall much 
less pronounced. This was particularly 
evident in lower-grade lesions (Fig. 4). 
Furthermore, we also observed that single 
cells within the tumor that showed no 
detectable 5hmC levels showed strong 
staining for H3K27me3, suggesting at 
least a partial uncoupling of the tight cor-
relation of these two marks in cancer cells 
compared with normal tissues.

Interestingly, high levels of 5hmC and 
H3K27me3 can for the most part only be 
found in quiescent, non-proliferating cells. 
Replicating cells, however, show low levels 

in breast, ovarian, pancreatic and pros-
tate cancer and low levels of the mark 
have been associated with worse progno-
sis.18,21 Given the tight co-regulation of 
5hmC and H3K27me3 in normal tissue, 
we aimed to further investigate these two 
epigenetic marks in prostate, breast, colon 
and pancreatic cancer (Fig. 4). In line with 
previous reports, we observed a profound 
loss of 5hmC in neoplastic cells, whereas 
adjacent normal epithelial or stroma cells 
showed robust staining. H3K27me3 lev-
els appeared generally reduced in cancer 
samples; however, at close scrutiny, the 

thymine-DNA glycosylase TDG and base 
excision repair.47,49 Alternatively, it has 
been proposed recently that 5hmC could 
be deaminated by the DNA methyltrans-
ferases DNMT3a and DNMT3b and 
then further repaired in a process involv-
ing DNA-glycosylases and base excision 
repair.50 The complexity of 5hmC turn-
over and the potential dynamics of this 
process present multiple pathways that, if 
corrupted, could lead to reduced 5hmC 
levels in tumors.

Similar to 5hmC, global H3K27me3 
levels have also been shown to be reduced 

Figure 4. 5hmC and H3K27me3 levels are decreased in cancers. (A) Prostate adenocarcinoma (arrows) showed global decreased levels of 5hmC and 
H3K27me3 as compared to normal prostate luminal cells (arrowheads). Similarly, neoplastic cells in breast (B), colon (C) and pancreatic adenocarci-
noma (D) (arrows) were characterized by reduced 5hmC and H3K27me3 staining levels. Tumor associated stromal cells (arrowheads) showed high 
levels of 5hmC and H3K27me3. Note that the degree of loss between adjacent normal tissue and cancer cells was more pronounced for 5hmC and the 
correlation of 5hmC and H3K27me3 is less pronounced.
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images were captured using a CoolsnapEZ 
digital camera (Photometrics) and the 
Nikon NIS-Elements (Nikon) software 
package.

RWPE-1 cells were cultured in KSFM 
containing 0.2 ng/ml epidermal growth 
factor (EGF) and 25 mg/ml bovine pitu-
itary extract (Invitrogen). 3D culture 
experiments were performed as described 
previously27,52 and were either stained 
directly in situ with rhodamine phalloidin 
(Life Technologies) or embedded in paraf-
fin and processed for immunohistochem-
istry as described above.
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of 5hmC and H3K27me3, suggesting that 
both marks are not actively maintained 
during replication. This is in agreement 
with a recent report showing the passive, 
replication-dependent loss of 5hmC in 
murine pre-implantation blastomeres.51 It 
remains to be shown if passive replication-
dependent loss can also explain the 5hmC 
and H3K27me3 distribution patterns 
observed in normal adult tissues and the 
alteration of these patterns in cancers.

In conclusion, we show that global lev-
els of 5hmC and H3K27me3 are tightly 
co-regulated during hierarchical differen-
tiation in adult tissues. Furthermore, we 
show that in solid tumors both marks are 
decreased. Overall these findings suggest 
that 5hmC and H3K27me3 are linked by 
a yet unidentified mechanism.

Materials and Methods

Formalin-fixed paraffin-embedded tis-
sue sections were de-paraffinized and 
then steamed for 40 min in EDTA solu-
tion (Zymed) followed by 5 min incuba-
tion in 3.5 N HCl. Immunolabeling was 
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anti-mouse (Life Technologies) secondary 
antibodies. After nuclear counterstaining 
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