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Abstract
Research on alcohol and drug dependence has shown that the development of addiction depends
on a complex interplay of psychological factors, genetic or epigenetic predisposing factors, and
neurobiological adaptations induced by drug consumption. A greater understanding of the
mechanisms leading to alcohol abuse will allow researchers to identify genetic variation that
corresponds to a specific biological vulnerability to addiction, thus defining robust
endophenotypes that might help deconstruct these complex syndromes into more tractable
components. To this end, it is critical to develop a translational framework that links alterations at
the molecular level, to changes in neuronal function, and ultimately to changes at the behavioral
and clinical levels. Translational phenotypes can be identified by the combination of animal and
human studies designed to elucidate the neurofunctional, anatomical and pharmacological
mechanisms underlying the etiology of alcohol addiction. The present article offers an overview of
medication development in alcoholism with a focus on the critical aspect of translational research.
Moreover, significant examples of promising targets from neuropeptidergic systems, namely
nociceptin/orphanin FQ and neuropeptide S are given.
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Introduction
Alcoholism is one of the most widespread form of addiction and has one of the highest
negative social, medical and economical impact on our societies In recent years several
approaches have been investigated to help alcohol abusers to not only control alcohol
drinking but also alcohol cravings and relapse. Medications such as disulfiram, naltrexone
(injectable or oral), and acamprosate have been developed and approved for the treatment of
alcoholism [1]. While all of these medications have demonstrated effectiveness in reducing
alcohol abuse, there are limitations associated with each option, such as limited efficacy,
occurrence of side effects and high dropout rates Clearly, the continued development of
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effective pharmacotherapies for alcohol dependence is needed. Drug development, which is
classically carried out by the pharmaceutical industry is a complex process that requires a
multilevel approach, is extremely expensive and takes several years. Compared to other
disease areas the pharmaceutical industry has historically invested limited resources in drug
development programs for alcoholism, which may explain, at least in part, the paucity of
approved medication so far available. Several factors may explain the lack of interest in
developing medication for alcoholism by private industry. First is the stigma that is still
associated with alcoholism and addiction in general. There are problems associated with the
coverage of the medication costs by the private insurance or the public health systems and,
differently from other diseases, little desire to treatment by a substantial proportion of
patients that is unable to recognize alcoholism as a medical condition.

A second important limitation is the complexity of the disease which dramatically reduce the
expectation of the industry to successfully develop a medication from lab to marketplace.
Over the years, preclinical research has identified a large number of promising biological
targets for alcoholism and several promising molecules are available. However, the limited
number of medication successfully developed so far, as well as the lack of a well validated
development path severely limit the interest of the pharmaceutical industry in this area. The
development of a clear and well structured translational approach for medication
development is a major challenge in alcohol addiction research (Fig.1). The present article
offers an overview of the-state-of-art in medication development in alcoholism focusing on
critical aspect of translational research. Moreover, significant examples of promising targets
from neuropeptidergic systems, namely nociceptin/orphanin FQ (N/OFQ) and neuropetide S
will be presented.

Brain Imaging Technologies a Bridge Between Preclinal and Clinical
Research

Neuroimaging methods have been extensively applied to study the human brain and its
structural and functional organization in healthy and disease states. Imaging techniques
enable the researcher to explore endophenotypes that are more proximal to the biological
mechanisms underlying the risk for the development of alcohol use disorders. An important
advantage of the neuroimaging approach is that the output does not rely on subjective
reports of an effect, but rather measure a biologically-based expression of the phenotype.
Recent developments have extended this approach to animal models, thus paving the way to
a translational use of neuroimaging techniques to bridge clinical and preclinical research.

Among the various imaging modalities, two have emerged as particularly impactful in
addressing psychiatric disorders like addiction and alcohol dependence, and amenable to
application in both humans and laboratory animals: Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET).

Brain imaging techniques have been extensively used to investigate morphological,
metabolic and functional changes associated with alcohol abuse in humans. Morpho-
anatomical studies have revealed reduced grey matter (GM) volume in alcoholic patients, in
the frontal lobes, the cerebellum and the limbic system showing the most pronounced
abnormalities [2–6]. Such alterations have been recently demonstrated to be predictive of
relapse risk, suggesting a significant role for grey matter shrinkage in clinical outcomes in
alcoholism [•5]. White matter abnormalities as well as numerous functional and neuro-
metabolic deficits (reviewed by [2]) have also been reported in heavy consumers of alcohol
[7,8]. Reduced resting-state metabolism in frontal-parietal, orbitofrontal cortex and striatal
areas in active and abstinent alcohol-abusers has also been reported [9–11].
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An unanswered question in alcohol research is whether these alterations are the sole
consequence of chronic alcohol use, or also represent an innate factor contributing to
biological propensity toward ethanol addiction. Recent neuorimaging studies have begun to
address this question. Individuals at high-risk for alcohol dependence have been shown to
have altered sensitivity of the reward circuitry [12–14], and reductions in cortical and
thalamic grey matter volumes [15], two features commonly observed in abstinent alcoholic
patients. Importantly, the presence of shared fronto-striatal abnormalities has also been
recently reported in drug-naïve siblings of psycho- stimulant drug abusers [16]. These
preliminary findings highlight a putative role for inborn morpho-functional brain
abnormalities in the aetiology of alcohol-dependence.

Neuroimaging studies in preclinical species exploring the role of heritable brain
abnormalities as a vulnerability factor for alcoholism have only very recently started
appearing in the literature [••17]. The genetically selected alcohol preferring msP rat was
chosen as an established selection-based model for the investigation of the neurobiology of
alcoholism closely mimicking several fundamental aspects of human disease such as the
occurrence of binge-like ethanol drinking [18], psychological withdrawal symptoms
escalating alcohol intake upon abstinence and highvulnerability to stress-mediated relapse
[19]. Importantly, the model also reproduces important comorbid states pervasively
associated with alcoholism, such as increased sensitivity to stress, anxious phenotype and
depressive-like symptoms [18,19].

Structural and functional MRI was applied to study alterations in brain morphometry and
basal metabolism in this model. msP rats exhibited reduced grey matter volume in the
thalamus, ventral tegmental area, insular and cingulate cortex, consistent with observations
in abstinent alcoholics and in individuals at high risk of alcohol dependence [••17]. As the
animals imaged in this study were alcohol-naïve, this work suggests that some of the
morpho-functional alterations documented in alcoholics may reflect a pre-existing
endophenotype predisposing to alcohol addiction. Recent clinical data lends preliminary
evidence to this hypothesis.

While MRI approaches will give information about the morphoanatomical alterations related
to alcohol dependence, and can help establish a link between behavior and brain circuits,
they do not provide specific information about its neurochemical determinants. To this end,
molecular PET-imaging represents a powerful means to explore the neurochemistry of
addiction, and the specific receptor and neurotransmitter systems involved. However, PET
imaging relies on the availability of selective radiotracer ligands. Currently, no more than 25
targets can be quantified in the human brain, and dopamine is the only system for which
transmitter-sensitive radioligands have been extensively used. With regard to peptidergic
neurotransmission the only PET ligand available until recently was [11C]carfentanil which
allowed the exploration of mu opioid receptor (MOP) receptor function in brain diseases
including addiction [20].

A new advancement in the study of opioid peptide neutrasmission is the very recent
development of PET radioligands for the kappa opioid receptor (KOP) and the N/OFQ
receptor (NOP) [••21,••22]. The availability of these new tools will allow investigators to
better determine the role of these receptors in psychiatric research. For example, referring to
alcoholism, they could be used to investigate if KOP and NOP receptors may have an
abnormal distribution in alcoholic patients, thus providing evidence of the involvement of
abnormal peptidergic neurotransmission in the aetiology of alcohol dependence; but
avalibility to these ligands will also facilitate the development of drugs targeting this system.
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Neuropeptide systems as a target of novel medication for alcoholism
Neuropeptides have always received much attention in the alcohol field, the main reason
being the early discovery of the key role of opioid neurotransmission in mediating alcohol
reward, withdrawal-induced dysphoria and relapse [23,24]. Over the years, in addition to
opioids, the involvement of several other neuropetidergic systems in the physiophathology
of alcoholism has been documented. Some of these neurotransmitter systems are now under
deep scrutiny because they are considered as highly promising targets for medication
development. For some of these neuropeptide targets (i.e., Corticotrophin Releasing Factor
receptor 1 and Neurokinin receptor 1), clinical stage molecules are already available and
initial studies in humans have been already carried out or are underway. Medication
development programs and translational approaches related to these targets have been
recently covered by comprehensive studies and will not be the focus in the present review
(for review see: [25,26]. Here, we will focus instead on two less explored but highly
promising peptidergic systems, the nociceptin/orphanin FQ and the neuropeptide S, that are
currently being subjected to intense exploration and are considered highly promising targets
for medication development in alcohol addiction.

Nociceptin/Orphanin FQ System
Nociceptin/orphanin FQ is a 17 amino acid neuropeptide, structurally related to the opioid
peptide dynorphin A and binds to its cognate receptor opioid receptor-like1 (ORL1) now
named NOP receptor.

N/OFQ and NOP receptors are widely distributed in the brain, where they are largely co-
expressed .. Despite being opioid-like, N/OFQ acts in the brain to produce functional anti-
opioid effects. For instance, it blocks opioid-induced supraspinal analgesia [27], morphine-
induced conditioned place preference [28,29] and morphine induced increases in
extracellular dopamine levels in the nucleus accumbens [30].

Moreover, activation of NOP receptors by N/OFQ or by synthetic agonists produces
anxiolytic-like effects [31,32] that appear to be particularly robust under stressful conditions,
such as e.g. during alcohol withdrawal [•33]. This may depend upon the ability of N/OFQ to
act as a functional antagonist for extrahypothalamic actions of Corticotrophin Releasing
Factor (CRF) and CRF1R receptor activation [34,35].

Consistent with the anti-opioid nature of N/OFQ it has been shown that activation of the
NOP receptors blunts the reinforcing and motivational effects of alcohol across a range of
behavioral measures, including alcohol intake [36], conditioned place preference [37] and
relapse to alcohol seeking triggered by alcohol associated cues [38]. Whereas, in agreement
with its antiCRF properties it has been shown that N/OFQ administration prevents foot-
shock stress-induced reinstatement of alcohol seeking in the rat [39].

Studies in msP rats have shown that they are particularly sensitive to suppression of alcohol
drinking and relapse by N/OFQ and N/OFQ analogues [36,38,40]. msP rats exhibit high
innate sensitivity to stress, and high measures of both anxiety- and depression-like behaviors
that are ameliorated by alcohol consumption [18]. Hence, N/OFQ effects in msP rats are in
part likely due to its ability to alleviate a negative emotional state that otherwise provides an
incentive for negatively reinforced alcohol consumption. If this hypothesis is correct, one
could predict that a NOP agonist might be particularly efficacious in alcoholic patient that
drink to self-medicate from a negative affective state or for tension reduction purposes.

From the translational point of view, an exciting recent development was the discovery that
buprenorphine, a drug currently employed for pain management and heroin addiction
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treatment, in addition to its ability to activate MOP and to block KOP receptors at higher
dose it also activates NOP receptors [41,42]. Interestingly, similar to prototypical MOP
agonists, buprenorphine at low doses increased ethanol consumption in the rat, an effect that
was blocked by co-administration of the MOP preferential antagonist naltrexone [43–45]. At
higher doses, buprenorphine markedly reduced alcohol intake and this effect was blocked by
the selective NOP antagonist UFP 101 but not by naltrexone. These findings indicate that at
low doses buprenorphine increases alcohol intake via stimulation of classic opioid receptors,
while at higher doses reduces it via activation of NOP receptors [•46]. An intriguing finding
from studies on heroin addicts was that treatment with buprenorphine also attenuates alcohol
consumption in these patients [47,48] whereas methadone, the other opioid agonist used to
treat heroin addiction, appears to be less efficacious on alcohol and in some studies was
even shown to increase drinking [47,49]. Although these findings point to the possibility that
NOP receptor activation by buprenorphine is responsible for these effects on alcohol in the
absence of clinically available N/OFQ antagonists this hypothesis hard to demonstrate.

Very recently, 11C-NOP-1A, a new radioligand for the nociceptin/orphanin FQ peptide
receptor, with high affinity (Ki, 0.15 nM) and adequate lipophilicity (measured logD, 3.4)
for PET brain imaging has been developed [••21]. Using this ligand, it is possible to evaluate
if the high doses of buprenorphine that attenuates alcohol and cocaine consumption will
displace 11C-NOP-1A from NOP receptors. This study will help to further clarify the
potential of NOP receptors as a treatment target for alcoholism and possibly other forms of
addiction opening new vistas for drug development programs on this peptidergic system.
Non-peptide, orally available and brain penetrant NOP receptor agonists have been
developed, and seem to have acceptable safety and tolerability. Some of these are in
relatively advanced stages of development, and may soon become ready for clinical
evaluation (Table 1).

Neuropeptide S system
A new interesting area of research in the field of neuropeptides is offered by the relatively
recent deorphanization of the G-protein coupled receptor 154 (GPR 154), currently named
the NPS receptor (NPSR), and that is activated by a 20 aa peptide named neuropeptide S
(NPS) [50]]. NPS precursor mRNA is expressed in about 500 cells localized only in the
brainstem [51,52]. Whereas NPSR is widely expressed in brain areas important in regulating
affective responses, emotions and cognition such as the amygdala the hippocampus and the
hypothalamus [51–53].

Recent preclinical findings suggest a strong role for the NPS system in drug abuse (see for
review [54]). For example neurochemical studies have shown that central injection of NPS
facilitates corticomesolimbic DA neurotransmission, a hallmark of reward [55,56]. But, ICV
NPS administration induced neither place preference nor aversion [57], suggesting that NPS
is devoid of direct rewarding properties. When given to rats trained to lever press for
cocaine NPS did not influence drug self-administration [•58]. Cocaine self-administration
was also unaffected by the selective NPSR antagonist SHA 68 [•58–60]. Central
administration of NPS has also been found to leave alcohol self-administration unaffected in
non-dependent Wistar rats. However, NPS decreased alcohol drinking in alcohol-preferring
(P) rats but not in the non-preferring (NP) control line [61]. Similar results were found in
msP alcohol preferring rats [54]. The P and the msP rat are both highly stress-reactive, and
show increased measures of anxiety-like behavior. It has been hypothesized that their
escalated alcohol drinking is in part negatively reinforced by alcohol’s ability to relieve
negative emotional states [18,19,62]. Hence it is possible that, in alcohol preferring rats,
NPS decreases alcohol consumption through its anxiolytic-like properties.
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One of the most striking features of NPS pharmacology in relation to addiction is its ability
to promote relapse to drug seeking. For instance, it was shown that NPS, given ICV or into
the LH potentiated relapse to alcohol seeking induced by cues; an effect apparently mediated
by activation of the orexin-1 (OX1) receptor system [54].

Studies on cocaine have confirmed the permissive role of NPS in relapse to drug seeking.
[•58,63]. Whereas administration of the NPSR antagonists reduced reinstatement of cocaine
seeking [•58,60].

A link between the NPS system and alcohol withdrawal has been also described. Over-
expression of NPSR transcript was observed at 12 hours and at one week after completion of
a five day alcohol intoxication cycle [64]. Accordingly, anxiolytic-like effects of NPS were
more pronounced in rats with a history of alcohol dependence than in controls [64]. This
finding was confirmed in another study in which it was shown that the anxiolytic and anti-
depressant effects of NPS are enhanced in abstinent previously alcohol exposed mice [•65].
Overall, these data suggest that elevation of NPSR expression following a history of alcohol
dependence may represent a neuroadaptive mechanism that attempts to compensate for the
increased anxiety in animals. This neuroadaptation may set up a dynamic in which increased
NPS neurotransmission, initially induced to compensate for withdrawal anxiety persists and
promotes relapse during later stages of abstinence.

Hence, of particular interest is the possibility that NPSR antagonists may be useful in the
treatment of drug craving and relapse in dependent individuals. Development of selective
heterocyclic brain penetrant small molecules are underway. At present NPSR antagonists
that can be used as tools to probe the biology of the NPS system have been developed [59].
Hopefully, in the near future compounds for clinical evaluation will be available to be tested
in addicted patients (Table 2).

Conclusions and Remarks
Processes involved in the development of alcoholism are thought to reside largely in the
brain and they are the result of complex interactions between genetic and environmental
determinants. To successfully move new drugs in alcoholism from lab to patient it is
important to establish appropriate drug development strategies and to delineate a clear path
for the development. Availability of well validated animal models and human laboratory
paradigms with surrogate markers predictive of clinical efficacy are two important
conditions. While neuroimaging methods can provide a novel and powerful tool to
investigate and define a translational phenotype for alcohol dependence in preclinical
species and in humans, a major excitement in the field of alcohol addiction is the preclinical
characterization of a number of biological targets of potential interests; among those several
neuropeptidergic systems, including N/OFQ and NPS. Novel imaging tracers selective for
neuropeptide-sensitive receptors are currently being developed. Their availability will
provide further possibilities to study the implication of these neuropeptides in the aetiology
of alcohol addiction and will be of fundamental importance for the development of new
compounds aimed at targeting these systems.
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Highlights

• Traslational medicine has a major significance in drug development on
alcoholism.

• Brain imaging techniques are fundamental in bridging between preclinical and
clinical research.

• Neuropeptidergic systems are promising for drug development in alcoholism.
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Figure 1.
Schematic representing the critical steps of translational research. A relatively large number
of biological targets and promising chemical entities are available for preclinical
investigation. The availability of well validated animal models is critical to screen these
molecules. A limited number of molecules with satisfactory pharmacological and
toxicological profile are moved into the clinic. Human laboratory paradigms can be used to
provide initial evidence of efficacy in humans. The utilization of appropriate surrogate
markers that possibly overlap preclinical endpoints (i.e, alcohol intake, cue- and stress-
induced alcohol craving) is fundamental to translate preclinical findings into meaningful
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clinical information. Brain imaging techniques play a critical role in bridging preclinical and
clinical research: their use provides an unprecedented help in new medication development .
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Table 1

Compounds targeting the N/OFQ system, relative developmental stage and effects on addiction.

Agonist Chemical entity Effects on drug taking and relapse Dev. phase Ref.

N/OFQ peptidic ↓ Alcohol intake Preclinic 36, 38

Ro 64-6198 small molecule ↓ ↑ Alcohol intake Preclinic 70, 82

Ro 64-6570 small molecule Not tested Preclinic 71

W212393 small molecule Not tested Preclinic 72

GRT6005 small molecule Not tested Clinic NCT01725087

SCH 655842 small molecule Not tested Preclinic 74

SCH 221510 small molecule Not tested Preclinic 75

UFP-112 peptidic ↓ Alcohol intake Preclinic 70

UFP-102 peptidic ↓ Alcohol intake Preclinic 70

OS-462 peptidic ↓ Alcohol intake Preclinic 70

Buprenorphine * small molecule ↓ Alcohol intake Clinic 46

SCH 486757 small molecule Not tested Clinic 73

NCT00230230

Antagonist

UFP-101 peptidic — Alcohol intake Preclinic 46

J113397 small molecule Not tested Preclinic 76

NiK-21273 small molecule Not tested Preclinic 77

Compound 24 small molecule Not tested Preclinic 78

SB-612111 small molecule Not tested Preclinic 79

Nphe peptidic — Alcohol intake Preclinic 80

GF-4 peptidic Not tested Preclinic 81

*
Buprenorphine-induced alcohol drinking reduction is mediated by NOP.
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Table 2

Compounds targeting the NPS system, relative developmental stage and effects on addiction.

Agonist Chemical entity Effects on drug taking and relapse Dev. Phase Ref.

NPS peptidic — Alcohol intake Preclinic 61

↑ Alcohol cue-induce reinstatement 83

↑Cocaine cue-induce reinstatement 63

Antagonist

SHA68 small molecule — Cocaine self-administration Preclinic 58

↓ Cocaine cue-induced reinstatement

[tBu-D-Gly5]NPS peptidic Not tested Preclinic 66

[D-Cys(tBu)5]NPS peptidic ↓ Cocaine cue-induced reinstatement Preclinic 60

[D-Val5]NPS peptidic Not tested Preclinic 66

PI1 small molecule Not tested Preclinic 67

QA1 small molecule — Cocaine self-administration Preclinic 60

↓ Cocaine cue-induced reinstatement

ML 154 small molecule Not tested Preclinic 68

RT-118 small molecule ↓ Cocaine self-administration and relapse Preclinic 69
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