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Abstract
This review article provides an overview of recent studies of nicotine dependence and withdrawal
that used genetically engineered mice. Major progress has been made in recent years with mutant
mice that include knockout and gain-of-function of specific neuronal nicotinic acetylcholine
receptor (nAChR) subunit genes. Nicotine exerts its actions by binding to these neuronal nAChRs,
which consist of five subunits. The different nAChR subunits that combine to compose a receptor
determine the distinct pharmacological and kinetic properties of the specific nAChR. Recent
findings in genetically engineered mice have indicated that while α4- and β2-containing nAChRs
are involved in the acquisition and initial stages of nicotine dependence, α7 homomeric nAChRs
appear to be involved in the later stages of nicotine dependence. In the medial habenula, α5-, α3-
and β4-containing nAChRs were shown to be crucially important in the regulation of the aversive
aspects of nicotine. Studies of the involvement of α6 nAChR subunits in nicotine dependence
have only recently emerged. The use of genetically engineered mice continues to vastly improve
our understanding of the neurobiology nicotine dependence and withdrawal.

Nicotinic acetylcholine receptor subunits and aspects of nicotine
dependence

Nicotine binds to nicotinic acetylcholine receptors (nAChRs), which are pentameric
structures that consist of a combinatorial assembly of five subunits. Neuronal nAChRs can
either be heteromeric, consisting of a combination of α (α2-α6) and β subunits (β2-β4), or
homomeric, consisting of only α subunits (α7-α10) [1]. The combination of nAChR
subunits determines the distinct pharmacological and kinetic properties of specific nAChR
subtypes [1]. To date, few pharmacological ligands have been identified that selectively
target specific combinatorial assemblies of nAChR structures. Therefore, knockout and
knock-in mice have been critical in the study of the roles of specific nAChR subunits in in
vivo function. nAChRs are widely distributed throughout the central nervous system at
presynaptic, postsynaptic, axonal, and somatodendritic locations. The activation of
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presynaptically located excitatory nAChRs results in the release of a wide range of
neurotransmitters that critically modulate the function of several brain circuits and
neurotransmitter systems, including dopamine, glutamate, γ-aminobutyric acid (GABA),
acetylcholine, serotonin, and norepinephrine (for review, see [2]). Mice with null mutations
of the α3, α4, α5, α6, α7, β2, β3, and β4 nAChR subunits have been created. This article
reviews and summarizes the major discoveries concerning nicotine reinforcement and
withdrawal made during recent years using genetically engineered mice.

Measures of the reinforcing effects of nicotine include nicotine self-administration and
nicotine-induced conditioned place preference (CPP). The self-administration procedure is
an operant paradigm in which a mouse is trained to self-administer nicotine, often either
intravenously (e.g., [3]) or into a specific brain area that supports nicotine self-
administration, such as the ventral tegmental area (VTA) (e.g., [4]). Conditioned place
preference measures the reinforcing value of nicotine by pairing one environment with the
contingent administration of nicotine and another environment with the administration of
vehicle. When the mouse is allowed to freely explore both compartments in a drug-free
state, it spends more time in the environment previously paired with nicotine if nicotine was
previously rewarding to the mouse [5].

Although the reinforcing effects of drugs of abuse are considered important for the initiation
and maintenance of drug dependence, drug dependence is characterized by the emergence of
withdrawal symptoms once drug administration ceases [6]. Thus, in the study of the role of
nAChR subunits in nicotine dependence, determining how nicotine withdrawal may be
altered in mutant mice that lack specific nAChR subtypes is important. Signs of nicotine
withdrawal in mice include “anhedonia,” somatic signs, conditioned place aversion (CPA),
contextual fear conditioning, and hyperalgesia. Anhedonia, one of the affective signs of
nicotine withdrawal, can be measured in mice using the intracranial self-stimulation (ICSS)
procedure, in which anhedonia is reflected by elevations in brain reward thresholds [7].
Somatic signs of withdrawal include forelimb tremor, body or head shakes, scratching, and
grooming (e.g., [8]). CPA is similar to the CPP procedure and involves pairing an
environment with either nicotine withdrawal or vehicle withdrawal (e.g., [9]). The
contextual fear conditioning procedure can be used to detect learning deficits that typically
occur during nicotine withdrawal (e.g., [10]), whereas hyperalgesia reflects the pain
associated with nicotine withdrawal (e.g., [11]).

Role of α4 and β2 nAChR subunits in nicotine dependence
α4β2-containing nAChRs have long been of interest in the study of nicotine dependence
because these are among the most widely distributed nAChRs in the central nervous system,
with high affinity for nicotine. One of the first gene-targeting studies of nicotine dependence
reported that β2 knockout mice did not acquire intravenous nicotine self-administration
behavior [12]. Later studies supported these results, suggesting the involvement of the β2
subunit in the reinforcing effects of nicotine by demonstrating that the β2 subunit is essential
for the development of nicotine-induced CPP [13]. Additionally, self-administration of
nicotine directly into the VTA did not occur in β2 knockout mice, whereas nicotine self-
administration behavior was reinstated after lentiviral re-expression of the β2 nAChR
subunit in this brain area [14]. Importantly, while the study by Maskos and colleagues
provided important information about the role of β2 nAChR subunits in the VTA, humans
are exposed to systemic nicotine rather than solely in the VTA. The above findings were
therefore recently complimented by a study demonstrating recovery of intravenous self-
administration of nicotine after lentiviral re-expression of the β2 subunit in the VTA of β2
knockout mice [3].
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During withdrawal from chronic nicotine administration, β2 knockout mice, unlike wildtype
mice, did not show withdrawal-induced CPA or anxiety-like behavior in the elevated plus
maze [15]. Additionally, β2 knockout mice that were chronically treated with nicotine did
not exhibit learning deficits in the contextual fear conditioning procedure when the nAChR
antagonist dihydro-β-erythroidine was administered systemically or directly into the
hippocampus [10,16]. These findings indicate that nAChRs that contain the β2 subunit are
critical for the development of nicotine dependence that is expressed as withdrawal signs
upon cessation of nicotine administration.

α4 knockout mice did not acquire intravenous nicotine self-administration ([17], but see
[18]) or intra-VTA nicotine self-administration [19]. Interestingly, mice with a single point
mutation in the α4 gene (α4-248F) administered nicotine at lower doses than their wildtype
counterparts. These latter findings are consistent with results generated using a gain-of-
function mouse that had hypersensitive α4 subunits. These mice exhibited CPP at very low
nicotine doses [20]. Furthermore, deletion of the α4 subunit on dopaminergic neurons
resulted in a loss of nicotine-induced CPP [21]. Altogether, these findings suggest a
bidirectional modulatory role for the α4 subunit in nicotine reinforcement.

The data generated from α4 and β2 knockout mice, mice with a mutation in the α4 gene,
and mice with α4 subunit hypersensitivity strongly suggest the crucial involvement of
α4β2-containing nAChRs in the reinforcing effects of nicotine. The aversive aspects of
nicotine withdrawal remain to be studied in α4 knockout mice, but an important role for the
β2 subunit was shown in the mediation of the aversive effects of nicotine withdrawal using
β2 knockout mice.

Role of α7 homomeric nAChRs in nicotine dependence
Homomeric α7 nAChRs are widely distributed throughout the brain, similar to α4β2
nAChRs. With a significantly lower affinity for nicotine, however, the effects of α7
nAChRs on nicotine reinforcement appear to be more subtle than those of α4β2 nAChRs.
Importantly, α7 nAChRs rapidly recover from nicotine-induced desensitization [22]. This
rapid recovery from desensitization suggests that α7 nAChRs, unlike α4β2 nAChRs, may
remain sensitive to fluctuations in nicotine levels during continuous nicotine exposure and
that these nAChRs may consequently be important in the maintenance of nicotine
dependence. Nevertheless, nicotine-induced CPP [13] and the acquisition of nicotine self-
administration in a single self-administration session [17] were unaffected in α7 knockout
mice. Intra-VTA administration of nicotine over seven self-administration sessions,
however, decreased in α7 knockout mice compared with wildtype mice [4], suggesting that
α7 nAChRs in the VTA may be critical for the reinforcing effects of nicotine. Furthermore,
a recent study found that α7 knockout mice initially consumed similar amounts of an oral
nicotine solution as wildtype mice in a two-bottle choice procedure, but nicotine
consumption slowly decreased after the initial three weeks in these knockout mice.
Incontrast, β2 knockout mice initially consumed less nicotine and gradually increased their
nicotine consumption over the course of two months of access to nicotine [23]. The
involvement of the α7 subunit in the reinforcing effects of nicotine was supported by studies
that showed that nicotine self-administration in rats was significantly reduced by the
relatively selective α7 receptor antagonist methyllycaconitine (MLA) [24].

Studies from our laboratory suggested a role for the α7 receptor in nicotine withdrawal by
showing that “anhedonia” expressed at the onset of spontaneous nicotine withdrawal in
wildtype mice was absent in α7 knockout mice, whereas both α7 knockout and wildtype
mice showed similar levels of “anhedonia” during the later stages of nicotine withdrawal
[25]. A delay in the onset of withdrawal signs in α7 knockout mice was also shown when
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the somatic signs associated with nicotine withdrawal were assessed. Somatic signs were
decreased in α7 knockout mice at the onset of nicotine withdrawal [26] and similar in both
α7 knockout and wildtype mice at 24 h [25] and 48 h of withdrawal [27]. Hyperalgesia
induced by nicotine withdrawal was diminished in α7 knockout compared with wildtype
mice [15,27], whereas contextual fear conditioning was unaffected in α7 knockout
compared with wildtype mice during nicotine withdrawal [10]. In humans, aversive
experiences during the early stages of tobacco withdrawal are an important contributor to the
re-initiation of tobacco smoking after a period of abstinence. The attenuation of
“anhedonia,” somatic signs, and hyperalgesia during the early stages of nicotine withdrawal
in α7 knockout mice, therefore, may decrease the re-initiation of nicotine seeking [28,29].
However, the α7 receptor antagonist MLA did not induce CPA to nicotine [15] and did not
precipitate “anhedonia” or somatic signs of nicotine withdrawal in nicotine-dependent rats
[24]. Altogether, these studies suggest the potential involvement of α7 nAChRs in the later
stages of nicotine dependence, rather than the acquisition of nicotine-seeking behavior.
Additionally, the involvement of α7 nAChRs was suggested in the very initial, rather than
later, stages of several aspects of nicotine withdrawal. Although mice with a gain-of-
function of α7 nAChRs have been created, these mice died within one day after birth [30].

Role of α5α3β4 nAChRs in nicotine dependence
Associations have been found between the CHRNA5-CHRNA3-CHRNB4 nicotinic receptor
subunit gene cluster [31,32] and D398N α5 variant [33–35] and nicotine dependence and
lung cancer in humans. Several studies of α3, α5, and β4 knockout mice have reported
altered behavioral responses to the aversive effects of nicotine and nicotine withdrawal.
These studies emphasized the importance of the α3, α5, and β4 nAChR subunits in nicotine
dependence and redirected the focus of nicotine withdrawal studies to the habenula-
interpeduncular pathway where these nAChR subunits are highly expressed. The α3 and β4
subunits are often co-expressed, while the α5 subunit has been found to assemble into both
α3β4- and α4β2-containing nAChR assemblies. The affinity for nicotine is significantly
lower at α3β4-containing nAChRs than at α4β2-containing nAChRs, and α3β4-containing
nAChRs recover more rapidly from nicotine-induced desensitization than α4β2 [22],
suggesting that these receptors may remain sensitive to fluctuations in nicotine levels.
Interestingly, the inclusion of the α5 subunit into α4β2-containing nAChRs decreased the
duration of desensitization for these receptors [36].

α5 nAChR subunits were shown to mediate the aversive effects of nicotine. Specifically, α5
knockout mice vigorously self-administered high doses of nicotine at very high rates,
whereas wildtype mice adjusted their self-administration rates when given access to high
nicotine concentrations. Re-expression of α5 nAChR subunits in the medial habenula in
knockout mice restored nicotine intake levels to those in wildtype mice [37]. Lower doses of
nicotine induced similar CPP in α5 knockout and wildtype mice, but knockout mice
continued to exhibit CPP at higher doses of nicotine for which wildtype mice did not show
CPP [38]. The studies of α5 knockout mice indicate that deletion of the α5 subunit increases
the reinforcing effects of high doses of nicotine, perhaps by attenuating the adverse effects
associated with high nicotine concentrations in healthy subjects. During mecamylamine-
precipitated nicotine withdrawal, somatic signs were decreased in α5 knockout compared
with wildtype mice [15], further suggesting the involvement of the α5 subunit in nicotine
dependence. Overall, these studies suggest the involvement of the α5 nAChR subunit in the
mediation of the aversive effects of nicotine.

Transgenic Tabac reporter mice, which were created using a bacterial artificial chromosome
to co-express the CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster,
exhibited increased activity of β4 subunits [39]. These Tabac transporter mice consumed
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less nicotine than their wildtype littermates in a no-choice bottle procedure [39].
Additionally, these mice showed a strong aversion to nicotine in the CPA procedure, an
effect that was reversed by lentiviral expression of the D398N α5 variant in the medial
habenula [39]. Importantly, however, co-assembly of the α5 subunit with α3 and β4
subunits occurred only in a small percentage( approximately 15%)of α3β4-containing
receptors in the medial habenula [40], suggesting that β4 subunit function does not solely
depend on the α5 subunit.

In β4 knockout mice, mecamylamine-precipitated and spontaneous nicotine withdrawal was
associated with decreased somatic signs compared with wildtype mice [25,41]. The onset of
the anhedonic signs of nicotine withdrawal were also delayed in β4 knockout mice [25], and
hyperalgesia was decreased during nicotine withdrawal [41]. These studies suggest the
strong involvement of the β4 subunit in nicotine dependence and importance of the balance
between α5 and β4 subunit activity in the regulation of nicotine dependence by β4 subunits.

Mice that lacked the α3 nAChR subunit died within weeks after birth, likely because of
bladder dysfunction and growth impairments [42]. Such postnatal mortality has prevented
the study of the role of the α3 subunit in nicotine dependence using knockout mice.

Role of α6 nAChRs in nicotine dependence
A possible role for the α6 subunit in nicotine dependence was suggested a decade ago [43],
but the necessity of α6-containing receptors in nicotine self-administration behavior was
only demonstrated recently. Interestingly, α6 knockout mice do not self-administer nicotine
intravenously [17], and these mice readily self-administer high but not low doses of nicotine
into the VTA to a similar extent as wildtype mice [19], suggesting a modulatory role for the
α6 subunit in the VTA in nicotine reinforcement. Pharmacological blockade of the α6
subunit using the antagonist α-conotoxin H9A;L15A attenuated nicotine-induced CPP [9],
further supporting a possible role for the α6 subunit in nicotine dependence.

Involvement of non-nicotinic receptors in nicotine dependence
In addition to nAChRs, an extensive body of literature has described the involvement of
non-nicotinic neuronal receptors in nicotine dependence. Pharmacological ligands may be
more readily available for some of these receptors, but genetically engineered mice provide
insights into genetic variations that result in differential sensitivity to nicotine dependence.
For example, mice null for metabotropic glutamate receptor 5 (mGlu5 receptor) differed
from their wildtype counterparts during nicotine withdrawal, displaying an attenuation of
withdrawal-induced “anhedonia” and somatic signs of withdrawal [44]. These findings are
interesting when considering that the chromosomal region where the gene for mGlu5
receptor is located was linked to habitual smoking behavior in humans [45]. Importantly,
pharmacological blockade of mGlu5 receptor attenuated nicotine self-administration in rats
[46–48], indicating that pharmacological blockade of these receptors may have therapeutic
potential for assisting people with quitting tobacco smoking.

Additional mice with null mutations of other central nervous system receptors have also
been studied. The somatic signs of mecamylamine-precipitated nicotine withdrawal were
attenuated in γ-aminobutyric acid-B1 receptor knockout mice [49]. Nicotine-induced CPP
was attenuated in δ opioid receptor knockout mice [50] and Ca2+/calmodulin-dependent
kinase IV knockout mice [11]. Thus, additional central nervous system receptors and
neurotransmitter systems, in addition to nAChRs and acetylcholine, may be involved in
various aspects of nicotine dependence and potentially interact with acetylcholine
neurotransmitter function.
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Conclusion
Genetically modified mice have greatly impacted our knowledge of nicotine dependence.
Table 1 provides a summary of the data summarized in the present article. The use of these
mutant mice has provided significant insights into how genetic variations in humans may
underlie individual differences in the acute effects of nicotine, the severity of withdrawal
upon smoking cessation, and potentially responses to smoking cessation medications.
Additionally, these mouse lines have provided valuable knowledge about the in vivo
involvement of nicotinic and non-nicotinic receptors in nicotine reinforcement, dependence,
and withdrawal.
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Highlights

• α4 and β2 nAChR subunits are crucially involved in nicotine reinforcement.

• The involvement of α7 subunits emerges in the later stages of nicotine
dependence.

• α5, α3, and β4 subunits mediate the aversive effects of nicotine.

• A modulatory role for α6 subunits has been suggested in nicotine dependence.
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