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Abstract
Background—Studies of mechanisms mediating resistance to chemotherapy led to the discovery
of the multidrug transporter ABCB1, often expressed in leukemic cells of patients with acute
myeloid leukemia (AML). Most clinical trials evaluating the strategy of inhibiting efflux-mediated
chemotherapeutic resistance have been unsuccessful, clearly indicating the need for a better
approach.

Methods—Here, we investigated the clinical relevance of 380 genes whose expression has been
shown to affect the response to chemotherapy, mostly through in vitro studies, in 11 paired
samples obtained at AML diagnosis and at relapse. The expression profiling of these 380 genes
was performed using TaqMan-based qRT-PCR. Patients had a median age of 58 years at
diagnosis, a median duration of complete remission (CR) of 284.5 days, and a median overall
survival (OS) of 563 days. Cytogenetic abnormalities were detected at diagnosis in four patients,
while five displayed a normal karyotype and two were not investigated.

Results—Hierarchical clustering shows that samples taken at diagnosis and relapse clustered in
pairs for six patients out of the eleven studied, suggesting recurrence of the same leukemic blast,
while for the other five patients, the data indicate their relapse blasts arose from different origins.
A patient-by-patient analysis of the paired samples led to the striking observation that each had a
unique gene signature representing different mechanisms of resistance.
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Conclusions—The data underline the need for personalized molecular analysis to tailor
treatment for patients with AML.
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INTRODUCTION
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by clonal
proliferation of malignant precursors of a myeloid lineage with impaired differentiation of
normal hematopoietic progenitors1. While the majority of AML patients achieve remission,
most eventually relapse, ultimately succumbing to the disease. Recent studies revealed the
clonal architecture of secondary AML, which is a dynamic process shaped by multiple
cycles of mutation acquisition and clonal selection2. However, the underlying alterations in
gene transcription that allow relapse, after chemotherapy remain poorly understood.

ABCB1 (MDR1/P-gp) exports a wide variety of drugs that are mechanistically and
structurally unrelated,3 and is often found to be highly expressed in leukemic blasts 4–6.
Although inhibition of ABCB1 to increase chemosensitivity has been successful in vitro,
translating this strategy to clinical settings has failed7, 8. Indeed, trials evaluating ABCB1
inhibitors in over 2,000 patients with AML have failed to yield positive results9. Since the
discovery of ABCB1 and the emergence of the genomic era, numerous genes have been
revealed to mediate drug resistance10. Yet the benefits of this research for patients who
develop resistance to chemotherapy are minimal.

The current analytical methods for high-throughput gene expression profiling are based
upon mean values to find differentially expressed genes, with the goal of identifying a
common gene signature that defines a trend among patients. However, such a strategy is
clearly insufficient, as the variability among patients is totally ignored. For such an analysis
to identify rare signatures in individuals that are associated with drug resistance in which the
prediction is based on a Boolean rule, the analysis of several hundred samples would be
needed to avoid overfitting problems. Nevertheless, in a heterogeneous disease such as
AML, one effective way to identify rare resistance mechanisms is to do a patient-by-patient
analysis of paired samples taken at diagnosis and after relapse, thereby, minimizing false
hits due to interpersonal variability11.

We have conducted a unique study using paired samples to discern the mechanisms involved
in the acquisition of MDR in patients with AML, using highly sensitive and specific
TaqMan-based qRT-PCR12. The 380 genes involved in phase I and II metabolism, signal
transduction, DNA repair, stress response, tumor suppressor activity, oncogenic
transformation, apoptosis, and drug uptake or efflux were chosen based on their potential
role in MDR, as indicated by reports published over the past three decades13. Here, we
extend to the transcriptional level the recent genetic discoveries in AML showing great
heterogeneity of the tumor2, as the data demonstrate that the mechanisms of resistance are
highly heterogeneous.

MATERIALS AND METHODS
Patient Samples

The collection of tumors for research and specifically molecular analysis was first approved
by the ethical review board of the Karolinska Institutet, Stockholm, Sweden (ethical permit
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number: KI Dnr 03-600) and written informed consent was obtained from the patients.
Peripheral blood was then collected from eleven patients with AML at diagnosis and at
relapse after treatment, and separated with Ficoll-Paque (GE Healthcare, Piscataway, NJ,
USA) according to the manufacturer’s instructions. Blasts were cryopreserved at the
biobank at the Department of Hematology, Karolinska University Hospital. Pathological
analysis at the Karolinska Institutet confirmed that each sample contained at least 80%
leukemic blasts. Patients had undergone treatment with cytarabine combined with
daunorubicin, idarubicin, etoposide, mitoxantrone, and/or thioguanine. Data on clinical
outcomes were obtained from patient records. Duration of complete remission was the
number of days between CR (bone marrow aspirates that showed less than 5% blasts) and
first documented relapse in blood or bone marrow. Patients had a median age of 58 years at
diagnosis, ranging from age 28 to 72. The median duration of complete remission (CR) was
284.5 days, with a range of 48 to 1166 days and the median overall survival (OS) was 563
days, ranging from a low of 193 to a high of 1664 days (Table 1)14. Cytogenetic aberrations
were found in four patients at the time of diagnosis, five displayed a normal karyotype while
two were not investigated. Regarding mutations of individual genes, e.g. FLT3 or NPM1, no
such assessments were made at diagnosis, since the collection of samples took place during
the time period 1987–2001.

Preparation of Total RNA
Total RNA was prepared using the Trizol method (Invitrogen, Carlsbad, CA, USA). RNA
was quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies
Inc., Wilmington, DE, USA). The integrity of the RNA samples was assessed using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Foster City, CA, USA) and then stored at
−80°C. RIN > 7 for each RNA sample analyzed.

Reverse Transcription
Synthesis of cDNA from 1 μg total RNA in a 20 μl reaction volume was carried out using
the High Capacity cDNA kit with RNAse inhibitor (Applied Biosystems, Foster City, CA,
USA) as per the manufacturer’s instructions. The reverse transcription conditions were as
follows: 10 minutes at 25°C, 120 minutes at 37°C, 5 minutes at 85°C. Following reverse
transcription, cDNA was stored at 4°C.

TaqMan Low Density Arrays (TLDAs)
Expression levels of 380 MDR-associated genes were measured using custom-made
TaqMan Low Density Arrays in addition to the ribosomal RNA 18s being arrayed in four
replicates (Applied Biosystems, Foster City, CA, USA)13, 15. cDNA was mixed with 2X
Taqman Universal PCR Master Mix (Applied Biosystems, Foster City, CA, USA), loaded
on a TLDA card, and run on an ABI Prism 7900 HT Sequence Detection System (Applied
Biosystems, Foster City, CA, USA) as per the manufacturer’s instructions.

Data Analysis
Data from the TLDAs was collected for each of the eleven paired AML samples (available
from the GEO Database, accession number: GSE33787). The normalization of the data was
performed in subtracting the median expression of each sample from all gene expression
data for that sample. The expressions from replicate probes were averaged together. This
analysis was carried out using BRB ArrayTools, a microarray-data statistical analysis tool
(http://linus.nci.nih.gov/BRB-ArrayTools.html)16. In order to remove genes that are not
likely to be informative, those expressed by fewer than 50% of the samples were filtered out,
resulting in analysis of 331 genes. Hierarchical clustering was done on the normalized,
filtered data, using an average linkage algorithm with 1-Pearson correlation as the distance.
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A Spearman rank test was used to assess the correlation between FAB and the expression of
each gene (threshold: Spearman Rank p-value <0.05). The Cox proportional Hazards test
was used to study the correlation of gene expression with the duration of complete response.
The False Discovery Rate (FDR) for each gene was calculated using the Benjamini-
Hochberg method for both methods. Pairwise comparisons were manually performed using
the delta delta Ct method 17.

RESULTS
Comparison of MDR-linked Gene Expression Profiles of Paired AML Samples Taken at
Diagnosis and After Relapse

Unsupervised hierarchical clustering was performed on all paired samples (Fig. 1). For six
out of eleven patients, the pair of samples (at diagnosis and after relapse) clustered together,
indicating that the development of resistance did not involve a major change in pattern of
gene expression. This also supports that at least for this set of patients, diagnosis and relapse
leukemias had similar origins. For the other five pairs of samples that clustered apart, for
which large changes in the gene expression profile were observed between the paired
samples, no distinguishing trend could be found for age, the subtype (based on the cell type
from which the leukemia developed and its degree of maturation-i.e. French-American-
British (FAB) classification18, the CR duration, the treatment, or the overall survival time
Table 1.

Genes that significantly differ in expression between diagnosis and relapse blast samples
from the same patient may give insight into what contributes to relapse and why relapsed
AML may be more resistant to treatment. Supervised comparison of samples taken at
diagnosis and after relapse, paired according to the patient, revealed 27 genes that are
differentially expressed, in most cases only to a small extent, between these two groups
(p<0.05; Table 2). None of these genes fulfilled the stringent criteria of false discovery rate
(FDR) <0.05, but this may be due to the low number of samples analyzed.

Gene Correlation with French-American-British (FAB) Classification Reveals That the
Expression Level of BCL2A1 And GSR Increases Along with FAB Subtypes

We expected that some of the MDR genes measured in this study would reflect the state of
differentiation of AML cells and would therefore correlate with FAB classification. In fact,
52 genes out of the 331 genes that passed the filtering criteria (see data analysis section in
Experimental Procedures) were found to correlate with FAB classification for samples taken
at diagnosis (p<0.05). Among these genes, two, encoding the anti-apoptotic bcl2-related
protein a1 (BCL2A1) and glutathione reductase (GSR), fulfilled a false discovery rate
(FDR) lower than 15% and were found to be positively correlated, implying that the
expression level of these genes increases along with FAB (from 0 to 5) (Fig. 2, Table 3).
More precisely, the probability of finding these genes by chance at p<0.05 is 7.1 and 14.3%,
respectively. Four additional genes fulfilled a FDR<15% and were negatively correlated
with FAB classes, and were therefore up-regulated in immature cells compared with
differentiated cells. These genes were POLH, NOLA2, ABCD4, and MNAT1 (Table 3).
Fifteen genes were found to be correlated with FAB at p<0.05 for samples taken at relapse.
However, none of these genes fulfilled a FDR<15% (data not shown).

Gene Correlation with Duration of Complete Response Does Not Highlight Any Trend
Among Patients

Genes that correlate with the duration of the first and second complete remissions (CRs)
may be important predictors of relapse. This would hold true unless a small population of
cells present at diagnosis is responsible for relapse or there is a fundamental change in the
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biology of AML between diagnosis and relapse19. We found 38 genes to be correlated with
CR in samples taken at diagnosis at p<0.05 (data not shown). None fulfilled a FDR<15%.
Seven were found in recurrent samples but none were statistically significant (data not
shown).

Patient-By-Patient Analysis of Paired Diagnosis and Relapse Samples
Given that there were no striking correlations between expression of specific genes and
overall resistance to chemotherapy, we hypothesized that each patient may have a unique set
of genes within his/her AML blasts that contribute to the observed drug resistance, which
would have been missed by statistical analysis highlighting trends of gene patterns observed
“on average” across samples20. This issue was addressed by performing a patient-by-patient
analysis of paired diagnosis and relapse samples (Table 4), which led to the striking
observation that when each of these patients relapsed their AML cells expressed genes
representing different potential mechanisms of resistance. Table 5 shows the expression
profile of nine ABC transporters that have been shown to mediate multidrug resistance
(MDR) (data extracted from Table 4). Although no trend was revealed based upon FAB
classification, as mentioned above, it is observed that the leukemic cells of all patients
except patient 1 (FAB: M4) showed increase at relapse of at least one ABC transporter
capable of transporting either anthracyclines, vinca-alkaloids, or both. The analysis of
samples taken from patient 9 (FAB: M5b) reveals that four ABC transporters, ABCB1
(MDR1/P-gp), ABCC1 (MRP1), ABCC5 (MRP5) and ABCG2 (BCRP) are over-expressed
in leukemic cells. This indicates that conventional chemotherapy (anthracyclines/vinca-
alkaloids) isn’t likely to benefit this patient and will probably only have a negative effect by
causing deterioration of the patient’s condition through the side effects of these compounds.

ABCB1, which has been evaluated in patients with AML as a potential target for
pharmacologic down-regulation of efflux-mediated chemotherapy resistance, was found to
be over-expressed in the leukemic cells of five patients out of the eleven (Fig. 3). A similar
observation was made for ABCG2, although that transporter may actually be associated with
the intrinsic biology of the leukemia rather than with drug efflux mediating resistance per se
(Fig. 3).

DISCUSSION
Genome-wide analyses have revealed the molecular genetic heterogeneity of AML21–23. A
number of reports have established that AML cases can be classified into various groups
based on their chromosomal abnormalities, somatic acquired mutations, gene and
microRNA expression profiles and methylation status24. However, our understanding of the
mechanisms causing the relapse of patients is limited. Although most patients with AML
achieve CR, a large fraction of them will relapse and have a dismal prognosis,
demonstrating the dire need to specifically address the reason for relapse. Pairs of samples
taken at diagnosis and after relapse, combined with a reliable gene expression profiling
assay, are prerequisites to understanding mechanisms mediating MDR.

In this study based on paired samples obtained at AML diagnosis and at relapse, for the first
time, we assessed 380 MDR-related genes using TaqMan-based qRT-PCR, a state-of-the-art
gene expression profiling assay. An unsupervised hierarchical clustering revealed that
samples taken at diagnosis and relapse clustered in pairs for six patients out of the eleven
studied, indicating return of the same leukemic blast, while the other five relapses had
different transcription patterns and may have originated from different blasts. None of the
gene signatures found to be correlated with either relapse or duration of remission were
statistically significant. The observed enormous heterogeneity in gene expression across
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study patients remained true when we examined AML by subtype (M1, M4 and M5
subtypes are represented by three samples each) (Table 4).

The present investigation extends to the transcriptional level the recent findings highlighting
the dynamic clonal evolution during AML relapse2. Importantly, these data also demonstrate
that systemic chemotherapy has a substantial effect on the increased number of new
mutations. Identifying new targets whose expression is altered after chemotherapy is critical
to limit the occurrence of relapse. However, a personalized approach presents multiple
challenges, such as pinpointing the clinically relevant targets from among numerous
candidates in each individual gene signature, and eventually designing multiply-targeted
treatment regimens to limit the survival of tumor cells through alternative drug resistance
pathways. Although by definition the individual changes we see in this study are not
“statistically significant”, each patient acts as his/her own control. By evaluating only genes
known to be capable of conferring resistance to drugs such as those used to treat AML, we
can generate specific hypothesis for each patient about how best to treat their relapsed AML.
These hypotheses could be tested in short term ex vivo cultures of their cells using drugs
known not to be subject to resistance mechanisms expressed in their AML cells, or by using
inhibitors of demonstrated resistance mechanisms.
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Figure 1.
Unsupervised hierarchical clustering on 11 paired samples. The X-axis shows clusters of
samples, while the Y-axis shows the expression levels according to the filtering criteria (red
and green represent up- and down-regulation, respectively. The data suggest the role of
differentiation in contributing to relapse, as three specimens of M5a and b subtypes had
diagnosis and relapse samples that clustered apart, while all three patients with acute
myeloblastic leukemia with minimal maturation (M1 subtype) had diagnosis and relapse
samples that clustered together.
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Figure 2.
Transcript level of the anti-apoptotic BCL2-related protein A1 (BCL2A1) and glutathione
reductase (GSR) correlated with FAB classification in samples taken at diagnosis. The
transcript level values are presented as -ΔCT. (A) BCL2A1 and (B) GSR were found to
correlate with FAB classification for samples taken at diagnosis (p<0.05). These genes
fulfilled a false discovery rate (FDR) lower than 15% and were found to be positively
correlated, implying that the expression level of these genes increases along with FAB (from
0 to 5) (See Table S3). More precisely, the probability of finding these genes by chance at
p<0.05 is 7.1 and 14.3%, respectively.
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Figure 3.
ABC transporter-mediated multidrug resistance. Histogram presenting the expression levels
of ABCB1 and ABCG2, two ABC transporters intensively studied in patients with AML, in
relapse samples compared with their paired samples taken at diagnosis. No bar appears
when the measured gene is not expressed.
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Table 2

Differentially expressed genes in samples taken at diagnosis compared with samples taken at relapse

Genes Parametric p-value FDRa Geometric meanb (Level of expression at diagnosis/level of expression at relapse)

MSH3 0.002 0.508 0.81

GSS 0.007 0.508 0.82

ERCC5 0.010 0.508 0.82

RAD50 0.010 0.508 0.71

MLH1 0.013 0.508 0.88

EHBP1 0.014 0.508 0.65

ERCC4 0.014 0.508 0.82

BIRC6 0.016 0.508 0.8

SLC19A2 0.016 0.508 0.73

ERCC8 0.018 0.508 0.7

RAD1 0.020 0.508 0.79

RAF1 0.021 0.508 1.27

GSTM5 0.021 0.508 0.13

ERBB2 0.022 0.508 0.66

MLH3 0.023 0.508 0.72

BID 0.026 0.536 1.44

RAD17 0.028 0.556 0.75

MNAT1 0.031 0.556 0.78

POLI 0.033 0.556 0.66

GSTZ1 0.035 0.556 0.73

SP1 0.039 0.556 1.13

TNF 0.041 0.556 2.81

ABCF1 0.042 0.556 1.19

DOT1L 0.043 0.556 1.29

MAPK8 0.046 0.556 0.82

GSTM3 0.046 0.556 0.54

POLH 0.046 0.556 0.79

a
False discovery rate (FDR) is measured using the Benjamini-Hochberg method and is an estimate of the proportion of the genes with a p-value <

0.05 that represent false positives. For example, there is 50.8% of chance that MSH3 is a false positive. One can consider that genes with a FDR >
15% are not statistically significant.

b
The geometric mean denotes the average of the logarithmic values (base 2), converted back to linear values.
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Table 3

Genes correlated with FAB for samples taken at diagnosis

Gene symbol Correlation coefficient FDR Parametric p-value

BCL2A1 0.886 0.0715 0.0004

GSR 0.834 0.143 0.0026

KLF1 0.794 0.255 0.0156

TP73 0.784 0.237 0.0070

ABCC3 0.774 0.255 0.0137

VEGFA 0.763 0.237 0.0092

TIMP1 0.739 0.255 0.0134

SLC28A3 0.727 0.271 0.0324

AQP9 0.724 0.258 0.0242

ATP6V0C 0.699 0.257 0.0208

FKBP1A 0.695 0.257 0.0231

TP53BP2 0.694 0.257 0.0231

MVP 0.693 0.257 0.0231

GSTK1 0.685 0.258 0.0255

SLC29A1 0.674 0.26 0.0281

ASAH1 0.67 0.26 0.0281

TNFSF10 0.645 0.281 0.0370

MAP2K1 0.645 0.281 0.0370

XRCC4 0.624 0.3 0.0440

ACTB 0.622 0.307 0.0478

PARP2 −0.622 0.307 0.0478

SIRT5 −0.622 0.307 0.0478

C8orf33 −0.627 0.3 0.0440

MSH2 −0.633 0.287 0.0404

ERCC5 −0.635 0.287 0.0404

XRCC5 −0.638 0.287 0.0404

MSH6 −0.645 0.281 0.0370

RAD17 −0.648 0.281 0.0370

PARP1 −0.66 0.271 0.0309

ABCE1 −0.666 0.271 0.0309

ERCC8 −0.669 0.26 0.0281

HSPB1 −0.682 0.258 0.0255

PIK3CA −0.688 0.257 0.0231

SLC5A6 −0.69 0.257 0.0231

TOP2B −0.696 0.257 0.0208

RAD1 −0.703 0.257 0.0208

HSF1 −0.718 0.255 0.0168
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Gene symbol Correlation coefficient FDR Parametric p-value

BCL2 −0.719 0.255 0.0168

APEX1 −0.721 0.255 0.0168

ABCA2 −0.723 0.255 0.0168

SIRT4 −0.727 0.271 0.0324

SLC7A1 −0.736 0.255 0.0134

ABCF3 −0.749 0.255 0.0119

ABL1 −0.761 0.237 0.0092

SLC25A30 −0.762 0.237 0.0092

ERCC3 −0.766 0.237 0.0092

GLO1 −0.79 0.237 0.0061

CDK2 −0.807 0.211 0.0044

POLH −0.832 0.143 0.0026

NOLA2 −0.833 0.143 0.0026

ABCD4 −0.861 0.142 0.0013

MNAT1 −0.928 < 1e-07 < 1e-07
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Table 4a

Patient-by-patient analysis showing genes with greater than 4-fold up- or down-regulation

Patient 1 (M4)

Gene Change

MMP9 6.5

CLDN5 6.2

TGFA −5.1

SLC7A11 −5.6

PDGFRB −6.8

CLDN4 −7.4

CDH1 −10.0

ABCB4 −10.7

AQP9 −16.5

CCL2 −19.2

ABCD2 −21.2

SLC7A9 −28.7

Patient 2 (M1)

Gene Change

F3 −5.0

SLC29A2 −5.3

BIRC5 −5.3

ATP7B −5.9

AQP9 −6.2

MT2A −7.0

PTEN −7.0

CYP2D6 −7.1

ABCA6 −7.1

NR1I2 −7.6

SGPP1 −7.6

APOE −7.6

STARD4 −8.1

ABCB1 −9.4

CCNE1 −10.3

ATP8B1 −10.9

MT1F −11.1

MMP2 −13.4

SLCO4A1 −13.5

TNF −13.6

IGF1R −14.7

ABCB4 −14.9
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MYC −17.1

SLC2A5 −33.4

GJA1 −90.0

CLU −127.3

Patient 3 (M1)

Gene Change

IL6 19.7

FN1 14.0

ABCC3 13.3

CLDN7 10.8

GPR177 9.6

SLC7A8 7.7

CLDN2 7.6

FOS 6.8

SLC28A3 6.5

SLC22A1 6.3

CYP2D6 5.3

GSTA4 5.3

BCL2A1 5.0

SGPP1 5.0

SFN −5.9

ABCG2 −7.4

CDKN2A −8.4

CLDN5 −9.5

TP73 −15.3

Patient 4 (M5b)

Gene Change

MMP2 122.9

KIT 74.1

SLCO4A1 69.0

ATP1B1 27.0

NR1I2 21.5

SLC7A8 16.9

GSTM5 11.1

APOE 10.6

ITGAE 10.5

TCEAL4 9.3

ABCB6 6.9

MYC 6.4

XRCC2 5.9
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NR1H3 5.8

ATP7B 5.3

ABCC3 −5.1

TP73 −5.2

ATP6V0C −5.7

BIRC3 −5.8

GSTT2 −9.8

SLC28A3 −10.0

TGFA −10.5

HIF1A −11.6

NFKBIA −11.6

MMP9 −14.6

CLDN7 −17.6

SLC22A1 −18.0

CDKN1A −20.3

TNF −21.6

BCL2A1 −26.0

FN1 −27.1

VEGFA −32.7

AQP9 −71.4

CCL2 −119.4

IL6 −235.8

Patient 5 (M4)

Gene Change

CYP2D6 15099.5

FASLG 34.6

MMP2 12.8

KIT 12.4

PDGFRB 11.4

OCLN 10.2

ATP1B1 7.9

SLC16A2 7.4

GSTM5 6.7

ABCB1 5.7

APOE 5.5

F3 5.4

NR1I2 5.1

AKR1C1* 4.2

PTEN −4.0

TNF −4.9
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ABCC3 −6.4

KCNMA1 −6.5

SFN −6.8

MMP9 −9.8

CCL2 −46.4

CYP2E1 −145.8

Patient 6 (M5a)

Gene Change

SIRT4 1246.9

CASP3 68.2

GPX3 37.5

GSTM5 36.6

ASAH3 23.5

MMP9 12.1

HSPB1 12.0

CYP2C9 10.7

CLDN4 9.0

SFN 6.0

GBP1 −5.1

KLF1 −8.1

GSTA4 −12.1

FN1 −12.2

SLC28A3 −26.4

AQP9 −136.9

*
AKR1C1 assay also detects AKR1C2; CYP2C8 assay also detects CYP2C19; CYP2A6 also detects CYP2A7 and CYP2A13

Cancer. Author manuscript; available in PMC 2014 August 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Patel et al. Page 19

Table 4b

Patient-by-patient analysis showing genes with greater than 4-fold up- or down-regulation

Patient 7 (M1)

Gene Change

TP73 82.1

CDKN2A 52.5

SGPP1 43.0

SLCO1B3 26.5

CCL2 23.1

MKI67 17.1

CDKN1A 14.0

TOP2A 13.1

BIRC5 9.4

SLC9A3R2 9.0

GPX3 6.7

HSPB1 6.0

ABCB5 −5.3

GBP1 −6.0

ABCB1 −6.0

SFN −6.5

CLDN3 −6.8

ATP1B1 −7.3

CLDN5 −7.7

KLF1 −11.2

CYP2A6* −11.7

IGF1R −28.1

CLDN4 −43.1

GJA1 −176.7

Patient 8 (M4)

Gene Change

FASLG 24.4

GBP1 17.7

KCNMA1 14.5

GPR177 10.3

PDGFRB 9.6

NTRK2 7.2

MT1H 6.3

CLDN7 5.8

STAT1 5.6

TAP1 5.6
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ABCD2 5.1

IGF1R −5.9

F3 −6.2

ITGAE −6.5

ABCB6 −6.5

TCEAL4 −6.7

TP73 −6.7

SLC7A8 −7.5

CLU −8.8

ABCC4 −10.0

SLC2A5 −11.9

CLDN3 −14.2

CCND1 −24.6

SLC7A11 −27.6

KIT −34.8

MMP2 −37.0

Patient 9 (M5b)

Gene Change

GSTM5 135.4

GPX3 91.3

ABCB1 24.6

ITGAE 21.1

SLC9A3R2 20.9

ATP7B 14.3

MMP2 14.2

ATP1B1 13.0

ABCG2 8.3

CASP3 7.7

SIRT4 7.7

GSTM3 6.7

CLDN4 6.6

KIT 6.4

SLC7A11 6.2

APEX1 5.7

MGMT 5.7

ABCC1 5.4

CHEK1 5.0

IGF1R −5.3

MT1X −5.3

ABCA6 −5.7

Cancer. Author manuscript; available in PMC 2014 August 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Patel et al. Page 21

GJA1 −5.8

ABCA9 −5.8

ASAH2 −6.3

CDKN1A −7.0

TNF −7.5

GSTT1 −8.3

BIRC3 −8.6

SLC22A4 −9.8

ABCD2 −12.2

TNFSF10 −13.1

ABCB4 −13.3

NFKBIA −13.7

TP73 −20.6

BCL2A1 −22.8

CLDN5 −24.1

SLC28A3 −28.8

MT2A −37.3

ABCC3 −43.5

BAG3 −55.6

S100A10 −80.4

SLC25A5 −132.9

GBP1 −148.4

MT1H −209.5

SLC22A1 −227.5

IL6 −1115.3

AQP9 −1642.9

Patient 10 (M2)

Gene Change

FASLG 41.7

ATP8B1 10.2

CLDN4 7.2

MT1A 6.1

AURKA −11.1

TNF −13.3

IL6 −14.9

Patient 11 (M0)

Gene Change

ATP7B 148.1

TP73 90.5

VEGFA 44.9
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AQP9 35.8

ABCC3 25.9

BCL2A1 19.9

GPR177 16.3

CDKN1B 12.7

LIG4 11.5

ABCC6 11.4

S100A10 11.0

CIAPIN1 10.5

TGFA 9.4

MMP9 9.1

ABCA9 8.2

FZD1 7.5

JUN 7.2

ABCA6 6.0

CLDN7 5.6

ETS1 5.5

TNFSF10 5.1

AKR1C1* −5.1

KCNMA1 −5.4

PDK1 −5.7

NR1I2 −6.4

BRCA2 −6.8

ABCB9 −7.0

MMP2 −7.4

ITGAE −7.8

CLDN4 −7.9

XRCC2 −8.0

KIT −37.2

*
AKR1C1 assay also detects AKR1C2; CYP2C8 assay also detects CYP2C19; CYP2A6 also detects CYP2A7 and CYP2A13
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