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Wnt/b-catenin signalling is central to development and its
regulation is essential in preventing cancer. Using phos-
phorylation of Dishevelled as readout of pathway activation, we
identified Drosophila Wnk kinase as a new regulator of canonical
Wnt/b-catenin signalling. WNK kinases are known for regulating
ion co-transporters associated with hypertension disorders. We
demonstrate that wnk loss-of-function phenotypes resemble
canonical Wnt pathway mutants, while Wnk overexpression
causes gain-of-function canonical Wnt-signalling phenotypes.
Importantly, knockdown of human WNK1 and WNK2 also
results in decreased Wnt signalling in mammalian cell culture,
suggesting that Wnk kinases have a conserved function in
ensuring peak levels of canonical Wnt signalling.
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INTRODUCTION
Wnt/Wingless (Wg) growth factors signal through either canonical
Wnt (Wg)-Frizzled (Fz)/b-catenin [1,2] or noncanonical Wnt
pathways (that is, Wnt/Fz-planar cell polarity (PCP)), regulating
polarization of cells in the plane of the epithelium [3]. These
pathways are highly conserved and diverge downstream of the
cytoplasmic component Dishevelled (Dsh in Drosophila, Dvl1-3
in mammals). In many tissues, both pathways act in the same cells
and tight regulation of Wnt/Fz-Dsh signalling is essential.

Canonical Wnt/b-catenin signalling controls the specification of
the dorsal–ventral (D–V) vertebrate axis, cell proliferation and
maintenance of stem cells. In addition, aberrant canonical Wnt
signalling causes cancer (reviewed in Clevers and Nusse[1]).
In Drosophila, canonical Wnt signalling is required for embryonic
segmentation, eye specification and formation and patterning of
legs and wings [2].

Two Wnt co-receptors are Frizzled (Fz or Fzd) family members
and the low-density lipoprotein transmembrane receptor-related
protein 5 and 6 (LRP5/6; Arrow in Drosophila) [1]. The
cytoplasmic adaptor protein Dsh/Dvl together with members of
the degradation complex (Axin, the tumour suppressor protein
APC and GSK3b), and casein kinase 1 (CK1) family members are
essential for regulation of the cytoplasmic levels of b-catenin
(Armadillo/Arm in Drosophila) [1,2]. Wnt binding to Fz and LRP5/
6 induces the formation of a multiprotein complex (signalosome),
ultimately stabilizing b-catenin allowing it to enter the nucleus to
co-activate transcription with the transcription factor TCF/LEF
(T-cell factor/lymphoid enhancer factor) [1].

In Drosophila, similar to wg mutants, maternal-zygotic
dsh mutants show segmentation defects and hypomorphic dsh
mutations lead to defects in wing specification [4]. On signalling
activation, Dsh becomes highly phosphorylated [5], although the
functional significance of Dsh phosphorylation has remained
unclear [6–8]. In mammalian and Drosophila cell culture, and in
Drosophila in vivo, Dsh hyperphosphorylation correlates with
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Wnt pathway activation [9–11]. Using a Dsh gel-shift-based
screen, we identified Drosophila Wnk (with no lysine (K) kinase;
CG7177), characterized by an atypical placement of a catalytic
lysine in the kinase domain, as a new and unexpected modulator
of canonical Wnt signalling. We show that wnk loss-of-function
(LOF) shows specific canonical Wnt/b-catenin phenotypes in
the Drosophila wing. In addition, loss of wnk suppresses
overactivation of Wnt signalling induced by overexpression of
dFz2 or Dsh. Our data indicate that the activity of WNK is
required for peak levels of Wnt/b-catenin signalling, as its loss
reduces the expression of Senseless, a direct transcriptional Wnt
target. Importantly, regulation of Wnt signalling by Wnk is
conserved in mammals and probably acts through the
intermediate kinases OSR1/SPAK (Fray in Drosophila) [12].

RESULTS
Wnk affects Dishevelled phosphorylation
As in mammalian cells, activation of Wnt signalling correlates
with Dsh phosphorylation in Drosophila in vivo and in cell
culture [5,9,13]. Drosophila Fz and dFz2 induce a dose-
dependent mobility shift of Dsh on western blots [8,13],
allowing to systematically assess direct or indirect effects of
knockdown of each kinase on Dsh phosphorylation and thus to
identify new Wnt signalling regulators (Fig 1A–D; Dsh phosphor-
ylation was quantified and compared with control dsRNAs by
calculating the ratio of shifted (phosphorylated) to total Dsh
protein bands; see Methods). Our screen identified several CK
family members, known to reduce Dsh phosphorylation in cell
culture (Fig 1C,D) [5,13]. We also found that knockdown of
Wnk kinase (CG7177) led to a significant decrease in Dsh
phosphorylation compared with controls when induced by Fz or
dFz2 (lowest panels in Fig 1A,B, quantified in C,D).

Wnk modifies canonical Wnt/b-catenin phenotypes
In contrast to flies with one wnk gene, mammalian genomes
encode four Wnks (WNK1–4; supplementary Fig S1 online)
that regulate sodium/chloride co-transporters of the SLC12
family (N(K)CC) and potassium/chloride co-transporters in the
kidney [12,14]. Drosophila wnk is required for neural
development and regulates Arrowhead transcription [15,16], but
has not been linked to Wnt signalling.

Overexpression of Dsh in the eye using a sevenless enhancer
(sev-Dsh) leads to canonical Wg GOF phenotypes characterized
by loss of photoreceptors (Fig 2A,B, quantified in Fig 2K;
22.7±3.5%). Overexpression of Dsh also causes PCP defects,
including misoriented and symmetric ommatidia (66.4±11.3% of
ommatidia with a full photoreceptor complement; Fig 2B,K),
reflecting its function in PCP signalling. wnk knockdown by RNAi
(under sev-GAL4 control) concomitant with Dsh overexpression
resulted in a specific suppression of the sev-Dsh Wg/b-catenin
phenotype (Fig 2C, quantified in 2K). A similar suppression was
seen using a deficiency Df(3L)ED4978 encompassing wnk
(Fig 2K). Loss of Wnk activity did not consistently suppress
PCP-specific sev-Dsh GOF phenotypes.

In the wing, overexpression of dFz2 driven by decapentaplegic
(dpp)-GAL4 along antero-posterior (A-P) compartment boundary
leads to overactivation of Wg signalling inducing ectopic margin
bristles (Fig 2F,G). wnk-IR106928 suppressed the dpp4dFz2
ectopic margin bristle effect (Fig 2H, quantified in 2L). Such

wings also showed a loss of margin (Fig 2H and below). engrailed
(en)-GAL44dFz2 is lethal at 25 1C. Strikingly, en4dFz2 lethality
is suppressed by concomitant knockdown with wnk-IR106928 and
wings of surviving animals showed partial loss of the wing margin
and lacked margin bristles (supplementary Fig S2A online).
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Fig 1 | wnk regulates Wnt signalling in S2 cells. Compared with Lasp

control dsRNA (Ctrl), Fz (A) and dFz2 (B) induced Dsh phosphorylation

(purple arrows indicate phosphorylated Dsh) in S2 cells (top panel) is

specifically reduced by dsRNA-mediated knockdown of wnk (lower

panels). Fz, but not dFz2-induced Dsh phosphorylation is reduced by

knockdown of Fz (middle panels), showing specificity of the assay. (C,D)

Quantification of the relative Dsh gel-shifts (phosphorylated Dsh to total

Dsh; n¼ 3; error bars are s.d.; T-test; **Po0.01). CKIIa and CKIa-like

(CG12147) and MKK4 serve as positive and negative controls,

respectively. (E) Wnk kinase assays. Indicated proteins were used as

substrates for constitutively active (S: S434E) and catalytically inactive

(D: D420A) N-terminal Wnk fragments. WnkS434E autophosphorylates,

but WnkD420A does not, showing that it is catalytically inactive, as is

FrayD185A. Top panel shows autoradiograph of the Coomassie-stained gel

below. Asterisk indicates contaminating kinase activity present in some

of the Gst protein purifications.
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Our data thus indicate that Wnk acts positively in the regulation of
canonical Wnt signalling.

Loss of Wnk causes canonical Wg-signalling phenotypes
Wg signalling specifies the wing primordium and mediates growth
and patterning from the D–V compartment boundary [2] with
peak levels required to activate senseless (Sens) to specify wing
margin bristles [17]. RNAi-mediated knockdown of wnk using
en-Gal4 (en4wnk-IR106928) caused wing notches and loss of
margin bristles (Fig 3B,E; a non-overlapping wnk dsRNA hairpin
(supplementary Fig S1B online) driven by scalloped-Gal4 caused
similar phenotypes; supplementary Fig S2C online). In addition,
en4wnk-IR106928 resulted in reduction of the posterior compart-
ment size with high penetrance (Fig 3B), an effect that was more
pronounced when wnk-IR106928 was expressed throughout the
whole wing blade using nubbin-GAL4 (Fig 3C). Size reduction
was not due to apoptosis, as we did not detect an increase in
Caspase-3 activation when Wnk function was compromised, nor
to altered proliferation as assessed by anti-phospho-histone 3
staining (supplementary Fig S3 online) or to a reduction of dpp
signalling (supplementary Fig S4G online). Size reduction is
possibly a function of Wnk that is independent of Wnt signalling,
as it is not dosage sensitive for Wnt pathway components,
such as arr, arm, legless, axin, sgg (GSK3b) or pangolin (TCF;
not shown).

Consistent with the RNAi data, homozygous mutant clones
of wnkex22 and wnkMB06499 resulted in loss of wing margin and
missing margin bristles (Fig 3F,G). Removing wnk function in the
eye using ey-FLP led to a prominent, cell autonomous small
rhabdomere phenotype (supplementary Fig S2D,F online), and
occasional photoreceptor loss. Of note, no typical PCP pheno-
types were detected in wings or eyes (Fig 3, supplementary
Fig S2D–F). Also, both wnk alleles dominantly suppressed the
sev-Dsh-induced photoreceptor loss phenotype, but not the PCP
defects (Fig 2D,E, quantified in 2K).

In contrast to loss of wnk, co-expression of Wnk with
dpp4dFz2 led to an increase in ectopic margin bristles compared
with dFz2 alone (Fig 2I, quantified in 2L). Taken together with the
LOF data, we conclude that Wnk regulates Wg signalling and is
sufficient to further stimulate activated Wg signalling.

Wnk regulates peak canonical signalling in the wing
Notch signalling activates wg expression at the wing margin [2]. We
did not detect an effect on a Notch reporter in wing discs
(supplementary Fig S4B online) nor was Wg expression changed
by RNAi-mediated knockdown of wnk or in homozygous mutant
clones (Fig 3H–K), excluding an indirect effect on Wg signalling
through Notch. In en4wnk-IR106928 wing discs, expression of the
high threshold, direct Wg-target Sens was reduced or lost in the
posterior compartment (Fig 3I). Similarly, Sens expression was
frequently lost cell autonomously in wnkex22 and wnkMB06499 clones
(Fig 3K). Neither wnk LOF background affected the low threshold
target Dll (supplementary Fig S4C,D online and not shown).

Overexpression of dFz2 increases canonical Wg signalling and
results in trapping of Wg on the surface of the dFz2-overexpressing
cells [18]. Accordingly, dpp4dFz2 causes accumulation of Wg
near the D–V border and causes expansion and increase of Sens
expression (Fig 3M) concomitant with ectopic margin bristles in
adult wings (Fig 2G). When dFz2 was overexpressed and Wnk

was simultaneously knocked down by RNAi, we still observed
accumulation of Wg, as in dFz2 overexpression alone (Fig 3N’),
but Sens was dramatically reduced (Fig 3N’’).

We generated wnk LOF MARCM clones in which GSK3b was
knocked down using RNAi or that express stable b-catenin/
Armadillo (ArmS10), both causing constitutive activation of
the pathway at the level of or downstream of the destruction
complex [2]. Removing Wnk activity using either wnkex22 or
wnkMB06499 alleles did not affect these ectopic signalling/
overactivation phenotypes, that is, overgrowth of tissue in the
clones (compare supplementary Fig S4E,F online for GSK3b
knock-down-induced overgrowth).

Our data thus indicate that Wnk is required for peak levels of
canonical Wg signalling downstream of Wg, but upstream
of the degradation complex.

A possible mechanism of Wnk regulation of Wnt signalling
We tested the ability of a catalytically active fragment of Wnk
(S434E; the kinase-dead isoform of Wnk, D420A, served as a
control) to phosphorylate Wnt pathway components in vitro.
Constitutively, active Wnk was able to phosphorylate itself
(Fig 1E) [19], but neither Dsh fragments nor the C-termini of
the Wnt (co)-receptors Fz, dFz2 or Arr were phosphorylated by
GST-Wnk-NT in vitro (Fig 1E). Recently, the prorenin receptor
PRR/ATP6AP2, a component of the vacuolar Hþ ATPase was
shown to be required for Wnt signalling [20]. Although,
Arabidopis thaliana WNK8 phosphorylates the C-subunit of the
vacuolar Hþ ATPase subunit (Vha44) [21], Wnk was not able to
phosphorylate the Drosophila homologue of Vha44 (Fig 1E).

In mammals, Wnks phosphorylate SPAK and OSR1 (STE20/
SPS1-related proline–alanine-rich kinase and oxidative
stress-responsive protein type 1) kinases during ion channel
regulation [12,22]. Constitutively active, but not kinase dead,
Wnk was able to phosphorylate catalytically inactive Fray kinase,
the Drosophila homologue of OSR1/SPAK (FrayD185A; Fig 1E;
catalytically inactive Fray was used as substrate, as OSR/SPAK
kinases are able to autophosphorylate). While we did not find an
effect of fray knockdown in Dsh gel-shift assays in S2 cells or on
the ectopic margin bristle phenotype induced by dpp4dFz2
(Fig 2M), knockdown of fray by en4frayIR106919 led to a reduction
of Sens expression in wing discs and to wing margin
defects (Figs 2J, 3L), suggesting that Wnk might act through its
downstream kinase target Fray [16].

Human WNK1/2 modulate canonical Wnt signalling
On the basis of the Drosophila data, we hypothesized that
Wnk function in Wnt/b-catenin signalling might be conserved
in mammals. Indeed, siRNA-mediated knockdown of WNK1
and WNK2, the WNKs expressed in HEK293T cells, significantly
reduced the expression of the Wnt-signalling reporter (Fig 4A;
see supplementary Fig S5A online for knockdown efficiencies of
siRNAs). Consistently, knockdown of WNK1 and WNK2 through
shRNAs also reduced the amount of stabilized, uncomplexed
b-catenin pulled down from lysates of HEK293T cells (Fig 4B;
note that these shRNAs also reduce Wnt reporter activity,
supplementary Fig S5D online). Knockdown of WNK1 and
WNK2 had no effect on cell viability, nor, consistent with
in vivo Drosophila data, did it affect Notch signalling
(supplementary Fig S5B,C online).
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Transfection of WNK2 in 293T cells stimulated Wnt3a
activation of TOPFlash in a dose and kinase activity-dependent
manner (Fig 4C), and potentiation of Wnt signalling by WNK2
overexpression resulted in an increase of free cytoplasmic
b-catenin (Fig 4D). As for Sens expression in wings, WNKs
probably act through the downstream kinases OSR1/SPAK, as their
knockdown also reduced Wnt reporter activity in HEK293T cells
(Fig 4E). In conclusion, in Drosophila and in human cells, Wnk
kinases act upstream of b-catenin, are required for peak
Wnt signalling levels and, when overexpressed, can potentiate
canonical Wnt signalling in a manner that involves their
downstream kinases OSR1/SPAK/Fray.

DISCUSSION
Wnk kinases are known to control ion homoeostasis in the distal
nephron of the kidney and in the brain by regulating the activity
of Na/K/Cl co-transporters, and misregulation of WNK1/4

causes Gordon syndrome characterized by hyperkalemia and
hypertension [12,14]. Here, we show that Wnks have a new,
unexpected and conserved role in the regulation of Wnt signalling
in vivo in flies and in human cell culture.

Consistent with a reduction of Dsh phosphorylation levels,
Wnk in Drosophila S2 cells (M. Boutros, unpublished observation)
and human WNK2/4 kinases in A375 melanoma cells [23],
respectively, were also identified as candidate-positive regulators
of Wnt/b-catenin signalling. In contrast, WNK1 in A375 cells [23]
and Wnk in Drosophila Clone-8 cells had antagonistic
effects [23,24]. Although Wnk might have cell-type-dependent
functions that lead to different effects on Wnt signalling,
our functional in vivo analyses and genetic interactions between
wnk and dfz2 and dsh indicate that Wnk acts positively in Wg
signalling in vivo. Also, the direct Wg-target Sens at the D/V boundary
requires a high concentration of Wg signalling [25], and loss of wnk
causes autonomous loss of Sens expression. We detect no effect of
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Fig 4 | Human WNK1 and WNK2 modulate canonical Wnt/b-catenin signalling. (A) Reporter assays show that knockdown of WNK1 or WNK2 siRNAs

leads to a significant reduction of the Wnt3a-induced reporter activity in HEK293T cells (nX3 in all cases; error bars are s.d.; T-test; Po0.001).

siRNA against b-catenin was used as control. (B) Uncomplexed b-catenin from HEK293T cells transduced with indicated shRNAs and treated with
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loss of wnk on Dll expression, a target that requires lower levels of
Wnt activity [26], consistent with a lack of an absolute requirement
for Wnk in Wnt signalling. Indeed, knockdown of WNK1/2 reduces
the activity of transcriptional Wnt reporters in HEK293T cells and
WNK2 kinase activity is required for its stimulatory effect.

Most Wnk kinase studies have focused on their role in the
regulation of ion homoeostasis in the kidney and little is known
about the function(s) of Wnks in development. WNK1 knockout
mice die by E12 with cardiac and angiogenesis defects [27].
Nevertheless, there is emerging evidence that WNKs might
have essential roles in other signalling pathways. For example,
WNK1/4 can phosphorylate Smads and affect BMP signalling
in culture [28].

Both genetic in vivo data and b-catenin stability assays in
human cell culture argue that Wnk kinases act upstream of
b-catenin stabilization, but downstream of ligands in Wnt
signalling. Nevertheless, Wnk fails to directly phosphorylate the
intracellular parts of the Fz and Lrp5/6-Arr co-receptors as well as
Dsh itself. While Wnks are able to directly phosphorylate and
have effects on subcellular localization and transport of the
NKCC and KCC co-transporters (reviewed in [12,14]), their
regulatory effects on ion uptake are mediated through activation/
phosphorylation of the OSR1 and SPAK kinases [22]. Consistently,
Wnk also phosphorylates Fray, the Drosophila SPAK/OSR1
homologue, in vitro (Fig 1E) [16], and knockdown of fray in
Drosophila in vivo and OSR1 and SPAK in human cell culture
reduces canonical Wnt signalling, suggesting Fray/OSR1/SPAK
might mediate the Wnk effect on Wnt signalling that is conserved
between flies and humans.

METHODS
Detailed methods can be found in the supplementary
information online.
Dsh phosphorylation band-shift assay. Dsh band-shift assays
were done as described [13] and signals of fluorescent
secondary antibodies were quantified on a Li-Cor Odyssey.
Phosphorylated Dsh (that is, shifted Dsh) was quantified as a
percentage of total Dsh.
Wnt reporter gene and soluble b-catenin assays. Wnt reporter
assay was performed in 384-well assay plates (Greigner Bio). 4000
HEK293T cells were reverse transfected with indicated
siRNAs using RNAiMax transfection reagent (Invitrogen) at a
final concentration of 12.5 nM. After 24 h of incubation, cells were
further transfected with the following plasmids using Trans-IT
transfection reagent (Mirus): 5 ng of b-catenin/TCF-LEF-responsive
Firefly luciferase (FL) reporter along with 40 ng of constitutively
active b-actin promoter-driven Renilla luciferase (RL) for normal-
ization. To activate the pathway, WNT3a-conditioned medium
was added 24 h after plasmid transfection. After a total of 72 h of
incubation, FL and RL activities were measured in a luminometer
(Mithras LB940), and FL/RL ratio was calculated for each well.
All sample ratios were normalized to control siRNA-transfected
cells, and relative fold values were calculated. The TCF/LEF
luciferase assay was performed by co-transfection of the Super8-
XTOPFlash reporter and the pBind vector (Promega), which
contains the Renilla luciferase gene driven by the SV40
early enhancer/promoter, together with the indicated plasmids.
Two days after transfection, cells were treated overnight with
control or Wnt3a CM and luciferase activity was measured

using the Dual-Luciferase Reporter Assay System (Promega).
293T cells were infected with shCtrl, shWnk1 or shWnk2
lentiviruses. Uncomplexed b-catenin was measured as previously
described [29]. Target sequences for Wnk siRNAs and shRNAs
can be found on supplementary Table S1 online.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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