Hindawi Publishing Corporation
BioMed Research International

Volume 2013, Article ID 916530, 12 pages
http://dx.doi.org/10.1155/2013/916530

Review Article

The Age-Related Changes in Cartilage and Osteoarthritis

YongPing Li,' XiaoChun Wei,' JingMing Zhou,” and Lei Wei'”?

! Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
% Department of Orthopaedics, The Warren Alpert Medical School of Brown University/Rhode Island Hospital,

1 Hoppin Street, Providence, RI 02903, USA

Correspondence should be addressed to XiaoChun Wei; weixc666@163.com

Received 3 April 2013; Revised 7 June 2013; Accepted 9 June 2013

Academic Editor: Vijay K. Goel

Copyright © 2013 YongPing Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Osteoarthritis (OA) is closely associated with aging, but its underlying mechanism is unclear. Recent publications were reviewed
to elucidate the connection between aging and OA. With increasing OA incidence, more senior people are facing heavy financial
and social burdens. Age-related OA pathogenesis is not well understood. Recently, it has been realized that age-related changes
in other tissues besides articular cartilage may also contribute to OA development. Many factors including senescence-related
secretory phenotypes, chondrocytes’ low reactivity to growth factors, mitochondrial dysfunction and oxidative stress, and abnormal
accumulation of advanced glycation end products (AGEs) may all play key roles in the pathogenesis of age-related OA. Lately,
epigenetic regulation of gene expression was recognized for its impact on age-related OA pathogenesis. Up to now, few studies
have been reported about the role of miRNA and long-noncoding RNA (IncRNA) in age-related OA. Research focusing on this
area may provide valuable insights into OA pathogenesis. OA-induced financial and social burdens have become an increasingly
severe threat to older population. Age-related changes in noncartilage tissue should be incorporated in the understanding of OA
development. Growing attention on oxidative stress and epigenetics will provide more important clues for the better understanding

of the age-related OA.

1. Introduction

Half of the world’s population, aged 65 and older, suffers from
OA [1]. Many studies showed that increased age is the most
prominent risk factor for the initiation and progression of
primary OA in typically affected joints including interpha-
langeal, hips, knees, and intervertebral. The rare cases of OA
diagnosed in young individuals, under the age of 25-30 years
old, are mostly due to mutations in matrix genes that cause
significant structural abnormalities and/or joint deformities
[2-4].

To this day, the mechanism of OA has not been fully
clarified. Current hypotheses include the classic “wear and
tear” theory [2, 4], senescence-related secretory phenotype
[5], chondrocytes’ low reactivity to growth factors [6], mito-
chondrial dysfunction and oxidative stress [7], and abnormal
accumulation of advanced glycation end products (AGEs)
[8]. The cumulative effect of mechanical load over the years
may cause “wear and tear” clinically and cartilage breakdown
pathologically [2]. Hence, OA is regarded as a naturally

occurring irreversible phenomenon, rather than a specific,
potentially treatable disease. However, OA is not inevitable
for all senior adults (age 60+). It has become increasingly clear
that OA is not a purely mechanical problem [9]. Age-related
changes in cartilage extracellular matrix proteins such as
collagen or proteoglycans can induce nonenzymatic collagen
cross-linking and shorten aggrecan molecules [9]. Excessive
collagen cross-linking affects the biomechanical properties of
cartilage, causes increased stiffness, and makes cartilage more
brittle [10] and susceptible to fatigue failure [11]. Shortening
and degradation of aggrecan leads to significant loss of
sugar side chains and water-binding ability [12]. In addition,
increased levels of AGEs are associated with a decline in
anabolic activity [13]. These findings suggest that age-related
changes in matrix may play a role in the development of OA.

Lately, it has been gradually realized that age-related
changes occurring in tissues besides articular cartilage may
contribute to the development of OA [9]. Because articular
cartilage lacks nerve supply, knee pain could be attributed to
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OA-related changes of the joint tissues, such as the synovium,
bone (including osteophytes), joint capsule, ligaments, and
menisci [14]. These tissues could play important roles in the
early stages of OA [14]. Thus, OA is considered a “whole joint
disease” [9]. Although it raises the complexity of OA, this
concept improved our understanding of the disease as well as
indicated potential new treatment strategies [9].

This review focuses on recent studies that shed light on
the connection between aging changes in cells and tissues and
the propensity for OA occurrence in older adults.

2. Epidemiology

OA is the most common joint disorder in the world and one
of the most common sources of pain and disability in the
elderly [15, 16]. The incidence of OA is predicted to increase
as the senior population grows, placing a significant financial
burden on healthcare providers and governments [17]. OA
affects at least 27 million Americans and is the leading cause
of disability in the United States [17]. Compared to only 7.6%
of those 18-44 years of age and 29.8% of those 45-64 years of
age, 50% of individuals older than 65 years are diagnosed with
this disease [17]. OA affects one in six adults, and by 2030 it is
estimated that 20% of people in Europe and the United States
will suffer from OA [18]. The senior population is growing
rapidly in many Asian countries [19]. It is estimated that the
65+ population in Asia will more than double in the next two
decades, increasing from 6.8% in 2008 to 16.2% in 2040. In
most of the developed world demographic change is a gradual
progress following the steady socioeconomic growth over
several decades. In contrast, this change is compressed into
2-3 decades in many Asian countries. For example, during
the period between 2008 and 2040, it is estimated that the 65+
population will increase by 316% in Singapore, 274% in India,
269% in Malaysia, 261% in Bangladesh, and 256% in the
Philippines. In 2008, Japan had the world’s oldest population
(people 65+ represented 21.6% of whole population), and
both China and India were ranked top two for the size of 65+
population (106 and 60 million, resp.) [16]. The high preva-
lence and heavy impact on working capacity make OA a
major social issue [20]. Therefore, healthcare and socioeco-
nomics need to put a high priority to the prevention and
treatment of OA [18].

OA in humans usually becomes symptomatic after age 50,
which is also when the radiographic changes of OA become
more common [4]. Although radiographic signs of OA such
as osteophytes and joint space narrowing do not always
correlate well with symptoms, epidemiologic studies of large
cohorts commonly depend on radiographs to define OA [4].
Goekoop et al. examined a cohort of 90-year olds living in
the city of Leiden in Netherlands and found that only 16% of
people in that age were free of radiographic OA [21].

In the Johnson Country OA cohort [22], the prevalence
of radiographic knee OA rose from 26.2% in the 55-64 age
group to nearly 50% in the 75+ age group, and the prevalence
of symptomatic knee OA likewise increased from 16.3% to
32.8% between these age groups. Symptomatic hip OA in this
cohort was reported as 5.9% in the 45-54 age group compared
with 17% in the 75+ age group. In the Johnston County
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OA Project, African American men had a higher prevalence
of radiographic hip OA than Caucasian men (32.2% versus
23.8%), whereas no difference was found between African
American and Caucasian women (40.3% versus 39.4%) [23].
Individual radiographic features in hip and knee were also
noted to differ between two ethnic groups [24, 25]. In the
Beijing OA Study, hand and hip OA were less prevalent
among Chinese than Caucasians (age-standardized preva-
lence 44.5%-47% versus 75.2%-85% and 0.8% versus 3.8-
4.5%, resp.), but knee OA was more prevalent among Chinese
women than Caucasian women (46.6% versus 34.8%) [16, 18,
26].

The heritability of OA is estimated to be 40% to 65% and is
higher for hand and hip OA than for knee OA [27-29]. So far,
3 loci have been associated to OA at genome-wide significant
levels [30-32], that is, GDF5, which encodes the growth
differentiation factor 5 (a bone morphogenetic protein ex-
pressed in skeletal and articular structures), chromosome
7q22, and MCF2L (MCE2 cell line derived transforming
sequence-like). Pain severity in OA may also have genetic
contributions. A functional polymorphism (Vall58Met) in
the COMT gene, which was previously correlated with pain
sensitivity in other clinical conditions, was associated with
hip OA-related pain in a cohort study [33]. TRPV1 and the
PACE4 gene Pcsk6 were associated with pain in knee OA in
two separate meta-analyses [34, 35].

3. Chondrocyte Changes

The primary function of chondrocytes is to maintain cartilage
homeostasis, in part through the production of extracellular
matrix components. With age, chondrocytes exhibit features
similar to senescent phenotypes, including telomere short-
ening and increased senescence-associated f-galactosidase
activity [5, 36]. These age-related changes impair the ability
of chondrocytes to maintain the surrounding extracellular
matrix. Accordingly, in aged chondrocytes, synthetic activity
is decreased and proteoglycans are smaller and more irregular
(37, 38].

A reduction in the number of chondrocytes was observed
in normal articular cartilage during aging, comparing with a
greater loss of chondrocytes in OA cartilage, but the extent
of cell death is debatable [39-41]. A study showed 30% drop
in cell density in human hip joint cartilage between the ages
of 30 and 70 [42]. However, a study on human knees found
less than 5% cell loss during aging [43]. Loss of the chon-
drocytes can be attributed to increased chondrocyte death
and/or apoptosis. Although many studies reported apoptotic
chondrocytes in OA cartilage [41], few have examined apop-
tosis in cartilage with normal aging, except for one study
on rat cartilage [44]. There is evidence showing [45] that
HMGB?2, a high-mobility group box (HMGB) protein that
may be important for chondrocyte survival, regulates gene
transcription through chromatin organization. HMGB2 is
mainly expressed in chondrocytes in the superficial zone
of articular cartilage, and HMGB2 levels drop during aging
[45]. Moreover, the decline in HMGB?2 levels was associated
with increased chondrocyte death, and HMGB2-deleted mice
developed premature OA [45]. Levels of reactive oxygen
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species (ROS) are increased in cartilage during aging, and
chondrocytes from older adults are more susceptible to ROS-
mediated cell death [46].

The synthetic activity of chondrocytes is regulated by
anabolic growth factors [47]. During aging, chondrocytes
exhibit reduced responsiveness to growth factors, such as
insulin-like growth factor-1 (IGF-1) [6, 48, 49], osteogenic
protein-1 (OP-1) or bone morphogenic protein-7 [50], and
transforming growth factor- (TGF-p) [51, 52]. For example,
TGF-p stimulates proteoglycan synthesis in young animals,
but this ability is impaired in old mice [51, 53]. It is hypoth-
esized that age-related alterations in the TGF-f signaling
pathway trigger chondrocytes to leave their normally quies-
cent state into an autolytic phenotype, leading to degrada-
tion of cartilage extracellular matrix [54]. Reduced anabolic
response to IGF-I was also noted in chondrocytes isolated
from OA cartilage [48, 55]. These findings suggest that age-
related decline in anabolic activity could tip the balance
towards increased catabolism and play a key role in increasing
cartilage susceptibility to OA.

Age-related changes inside chondrocytes including cellu-
lar senescence and reduced responsiveness to growth factors
and extracellular factors affecting chondrocyte aging such as
AGE accumulation and oxidative stress may work together
to disrupt cartilage homeostasis. These changes will make the
cartilage matrix more vulnerable to damage and lead to the
onset of OA. The onset of OA is characterized by increased
cell proliferation, which leads to formation of chondrocyte
clusters and increased synthesis of irregular matrix compo-
nents such as collagens and proteoglycans [56-58]. With OA
progression, excessive catabolic activity causes imbalance of
cartilage homeostasis and cartilage matrix breakdown. These
catabolic events are largely mediated by proinflammatory
cytokines and mediators, for example, matrix metallopro-
teinases (MMPs), and a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS) [59]. Notably,
many characteristics of an aged chondrocyte parallel changes
observed in early OA, which might explain why age is highly
correlated to OA [60].

AGE:s are produced through a nonenzymatic reaction
between reducing sugars and free amino groups of proteins,
lipids, or nucleic acids [61]. Excessive levels of AGEs in the
body are pathogenic, resulting in elevated oxidative stress and
inflammation [62]. In chondrocytes, AGEs can increase the
production of inflammatory cytokine tumor necrosis factor-
a (TNF-«), inflammatory mediators prostaglandin E2, and
nitric oxide. It can also suppress the production of type II
collagen and stimulate the expression of degradative enzyme
MMPs and ADAMTS [8, 63, 64]. AGEs accumulation also
has adverse effects on the cartilage extracellular matrix.
AGE:s increase collagen cross-linking, which enhances tissue
stiffness, making cartilage more brittle and susceptible to
mechanical failure [10, 11, 65]. Although not reported in
chondrocytes, AGEs also induce ROS generation in murine
hepatic stellate cells and bone marrow mesenchymal stem
cells [66, 67].

ROS play important roles in many physiological processes
and can potentially cause oxidative damages to proteins,
lipids, and DNA [68]. Human articular chondrocytes actively

produce ROS, and increased levels of ROS were observed in
articular cartilage of old rats compared to young rats [69-72].
Furthermore, cartilage of old rats exhibited a significant drop
in antioxidant catalase activity [72]. This redox imbalance
may be caused by an age-related decline in the activity and
number of mitochondria, which play critical roles in protect-
ing cells from ROS damage [7]. The consequence of increased
oxidative stress is DNA damage and telomere shortening,
leading to reduced matrix production, chondrocyte senes-
cence, and apoptosis [73-75]. Increased ROS also upregulate
proinflammatory cytokines and MMPs, factors that mediate
cartilage degradation [76].

Mitochondria is a major source of ROS in the cell, and
mitochondrial dysfunction is thought to play a key role
in age-related diseases including OA. Evidence has been
shown that mitochondrial DNA damage in OA is promoted
by inflammatory cytokines such as IL-13 and TNF-« and
contributes to chondrocyte death [76]. Mechanical injury to
cartilage, such as articular cartilage crushing, shearing force
injury, would result in elevated ROS generation in mito-
chondria and promotes chondrocyte death [77]. Subchondral
bone softening, which occurs during age-related osteoporosis
[78], is predicted to alter the biomechanics of the tibiofemoral
joint by increasing the maximum tensile strains in cartilage
and the magnitudes of joint contact pressure [79]. In addition,
due to the aged less activity, the declined quadriceps strength
may be another factor responsible for altered joint loading
patterns as a consequence of joint laxity [80]. Nonphysio-
logical load or less mechanical load exerted on chondrocytes
would induce catabolic signaling and cartilage tissue break-
down [59].

ROS could play a key role in age-related chondrocyte
changes in several signaling pathways [81]. Excessive levels of
ROS were found to inhibit activation of the IRS-1-PI-3 kinase-
Akt signaling pathway, which normally promotes matrix
synthesis [81] (Figure 1). Meanwhile, ROS activates the ERK
MAP kinase which suppresses the expression of chondrocyte
aggrecan, type II collagen, and Sox-9 [77] (Figure 1). Sus-
tained activation of ERK can induce cell senescence. A study
[82] using rat chondrosarcoma cells demonstrated that sus-
tained ERK activation mediated by FGFR3 promoted the
expression of the senescent phenotype markers. Extracellular
ROS could also contribute to inhibition of the Akt pathway
through oxidized low-density lipoprotein (LDL). The binding
of oxidized LDL to cell surface receptor LOX-1 was found to
induce chondrocyte senescence, possibly by inhibiting Akt
phosphorylation upon IGF-1 stimulation [83] (Figurel).
Oxidative stress induced by oxidized LDL is also associated
to promotion of hypertrophic chondrocyte phenotype in OA
cartilage [84].

A study [85] on the expression of the superoxide dismu-
tase (SOD) family of antioxidants demonstrated decreased
expression of all three SOD isoforms (copper/zinc (Cu/Zn)-
SOD, manganese (Mn)-SOD, and extracellular (EC)-SOD),
at the transcriptional level. Decreased expression of mito-
chondrial SOD (SOD2) was associated with increased methy-
lation inSOD2 promoter region suggesting that epigenetic
regulation may be involved in inhibition of the expression of
this antioxidant gene [85]. A more recent study reported that
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FIGURE 1: Schematic diagram showing the key role of ROS in
age-related chondrocyte changes. Excessive levels of ROS inhibited
matrix synthesis (aggrecan, type II collagen) by suppressing the
IRS-1-PI-3 kinase-Akt signaling pathway or by activating the ERK
MAPK signaling pathway. Sustained activation of ERK can induce
cell senescence. In addition, extracellular ROS could also contribute
to the inhibition of the Akt pathway through oxidized low-density
lipoprotein (LDL). The binding of oxidized LDL to cell surface
receptor LOX-1 was found to induce chondrocyte senescence (blue
arrow).

people in Spain with mitochondrial DNA haplotype ], which
is associated with a lower risk of OA, have lower serum levels
of MMP-13 when compared to those with haplotype H, who
have higher serum levels of MMP-3 [86]. It is possible that the
different haplotypes are characterized by different ROS gen-
eration and perhaps different amount of mitochondrial DNA
damage, although this is not fully established. Interestingly,
a study examining a murine model of premature aging that
exhibits increased nuclear DNA damage due to deficiency of
a repair enzyme found a significant increase in age-related
bone loss but not in cartilage damage [87].

4. The Changes in Cartilage Matrix

Age-related changes not only occur in chondrocytes but also
in cartilage matrix, thereby contributing to OA development.
MRI studies showed that knee cartilage thins during aging,
particularly on the femoral side of the joint [88] and in
patellae [89], suggesting a gradual loss of cartilage matrix with
age. This could be due to loss of chondrocytes and reduced
growth factor activity, but also to something as simple as
reduced water content. Type II collagen, the most abundant
matrix protein in cartilage, has a half-life over 100 years
[90]. Excessive collagen cross-linking increases stiffness and
brittleness [10], thereby increasing susceptibility to fatigue
failure [11]. Increased levels of AGEs in cartilage are corre-
lated with declined anabolic activity [13]. Being the second
most abundant cartilage matrix protein, aggrecan is a large
“aggregating” proteoglycan consisting of a core protein and
numerous highly sulfated glycosaminoglycan chains that are
covalently attached [91]. Because of the hydrophilic nature of
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aggrecan’s negatively charged sulfates, articular cartilage has
about 70-80% water content and is very resilient. Age-related
changes in size, structure, and sulfation of aggrecan [12, 37, 91,
92] affect cartilage resiliency and hydration [93]. When aggre-
can is degraded, a fragment containing the binding region
for hyaluronic acid is left behind and appears to accumulate in
cartilage with age due to a low turnover rate with an estimated
aggrecan half-life of 25 years in cartilage [94].

The balance of anabolism to catabolism is regulated by
the fine-tuning of the specific genes in certain signaling path-
ways. Studies using transgenic and knockout mice continue
to provide information on specific genes that may play a role
in OA progress [95]. FGFR3 knockout mice [96] were found
to develop more severe OA with age than FGFRI knockout
mice [97]. Together, these results suggest an anabolic/joint
protective function of FRGFR3 and a catabolic/joint destruc-
tive function for FGFRI.

Transforming growth factor-f (TGF-p) is secreted in an
inactive form and requires activation before binding to its
receptor [98]. Activated TGF-f binds to the TGF-p type II
receptor and forms a complex that recruits the TGF-f3 type
I receptor, ALKS5. However, TGF-f is also able to signal via
the alternative TGF-f type I receptor ALK in chondrocytes
[99] (Figure 2). In endothelial cells as well as chondrocytes,
activation of ALKS is followed by Smad2 or Smad3 phospho-
rylation, while ALK1 activation results in phosphorylation of
Smadl, Smad5, or Smad8 [54, 99-101] (Figure 2). The acti-
vated Smads form a complex with the co-Smad Smad4 and
translocate to the nucleus to modify gene expression. Inter-
estingly, signaling via either ALKS5 or ALKI can turn the
response of cells to TGF- 3 stimulation in opposite directions
[54, 102] (Figure 2). For example, in endothelial cells ALK5
inhibits migration, whereas ALK1 stimulates migration and
proliferation [103]. The Smad pathway appears to be the most
important for TGF-f signaling but is not the only option.
Mitogen-activated protein kinase, Rho-like GTPase, and
phosphatidylinositol-3-kinase pathways are involved in TGF-
B signaling [104]. Activation of TGF-f activated kinase 1
(TAKI) happens independently of ALKS5 kinase activity and
induces P38 and JNK signaling [105]. Studies on activin
receptor-like kinases (ALKSs) activated by TGF- 8 showed that
ALKS5 activation is proanabolic, and ALKI activation is pro-
catabolic [106] (Figure 2). During aging and in OA, the ratio
of ALK1 to ALKS5 is increased to promote OA development,
and the ratio of FGFRI1 to FGFR3 may change in a similar way
[107].

In our previous study, we demonstrated the loss of TGF-
B type I receptor ALK5 and phosphorylation of Smad2/3 in
murine articular cartilage during aging [108], but the expres-
sion of total Smad2 was not altered by TGF-f. Moreover,
in two experimental models of OA—the DMM (meniscus
destabilization) model and the STR/ORT mice (spontaneous
OA model)—development of the disease was correlated with
decreased ALKS5 expression. Expression of the alternative
TGEF-f3 receptor ALK1 did not decrease to a similar extent
as ALK5 [109]. STR/ORT mice develop OA starting at the
medial tibia from an age of 2 to 3 months. The ALK1/ALK5
ratio was 5 on the medial tibia at the age of 3 months and was
18 in l-year-old animals. The lateral tibia showed increased
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FIGURE 2: Schematic diagram showing that cartilage matrix home-
ostasis is adjusted dynamically by TGF-f3 signaling pathway. Acti-
vated TGF-f3 binds to the TGF-f3 type I receptor ALKI, resulting
in phosphorylation of Smadl, Smad5, or Smad8, which form a
complex with the co-Smad Smad4 and translocate to the nucleus to
promote cartilage matrix anabolism by modifying gene expression.
Meanwhile, the activated TGF-f type II receptor ALK5 results in
phosphorylation of Smad2 or Smad3 which form a complex with the
co-Smad Smad4 and translocate to the nucleus to promote cartilage
matrix catabolism by modifying gene expression.

ratio from 1 to 5 over the same period of time. Clearly
increased ALK1/ALKS ratios in chondrocytes are associated
with aging and OA development [110].

5. Chondrocyte Senescence

Chondrocytes are very unique cells that easily develop into
age-related changes with aging. The chondrocytes present in
the articular cartilage of an 80-year old are likely to be the very
same cells as those present in a 25-year old. There is little to
no cell division or cell death in normal adult articular chon-
drocytes [43], and there seems to be no ready supply of pro-
genitor cells to replace dead chondrocytes if cell death does
occur. The articular chondrocytes which underwent more cell
divisions exhibit telomere shortening [111]. Aging itself is not
associated with chondrocyte proliferation, but rather with
loss of normal mitogenic response of isolated chondrocytes
to growth factor stimulation [112].

There are two types of senescence: intrinsic and extrinsic.
The classic replicative senescence or “intrinsic senescence”
is attributed to shortened telomeres accompanied by telom-
ere dysfunction [113]. Evidence of telomere shortening in
chondrocytes from older adults has been reported [114].
However, the senescence in articular cartilage seems more
relevant to the “extrinsic senescence” or stress-induced senes-
cence, which occurs in response to telomere-damaging stim-
uli, including oxidative damage, activated oncogenes, and
inflammation [113, 115] and is a much more likely mechanism
for senescence in cartilage [116].

Accumulation of cells exhibiting the senescent secretory
phenotype contributes to tissue aging [115, 117]. This pheno-
type is characterized by increased production of cytokines
including IL-6 and IL-1, matrix metalloproteinases, and
growth factors such as EGF with some features in common
with the OA chondrocyte phenotype. Studies have shown
increased expression of MMP-3 and MMP-13 in aged carti-
lage [118, 119] as well as age-related accumulation of collagen
neoepitopes representing denatured or cleaved collagen [120,
121]. It was shown that increased MMPs mediate cartilage
matrix damage during aging, and collagenases and cathepsin
K were also implicated in this process recently [122].

Other mediators of cellular senescence include TRF
(telomeric repeat binding factor), XRCC5 (X-ray repair com-
plementing defective repair in Chinese hamster cells 5), and
SIRT1 (sirtuin 1). TRF1 and TREF?2 are telomeric proteins that
function to form and maintain telomere structure [123, 124].
XRCCS5 is involved in repairing DNA double-strand breaks
[125]. SIRT11is a negative regulator of p53 and prevents growth
arrest, senescence, and apoptosis [126]. Oxidative stress in
human chondrocytes induces senescence and accelerates
telomere shortening [127]. After acute oxidative insult, TRF1,
TRF2, XRCC5, and SIRTI are upregulated in the early pas-
sages of human chondrocytes but induced to a less extent in
late passages of chondrocytes [127]. This finding suggests that
TREF proteins, XRCC5, and SIRT1 help young chondrocytes to
cope with oxidative stress by preventing DNA damage
accumulation and telomere shortening. Consistently, aged
chondrocytes with lower induction levels of these regulatory
proteins have a reduced tolerance to oxidative challenge,
and accumulation of DNA damage may trigger chondrocyte
senescence. Membrane protein caveolin-1 is also involved in
senescence. Expression of caveolin proteins is increased in
tissues of old rats [128], and overexpression of caveolin-1leads
to a senescent phenotype, likely through the p53/p21 pathway
[116]. In addition, angiogenic growth factor (AGF) treatment
in human chondrocytes downregulated interleukin-1p3- (IL-
1$3-) induced caveolin-1 expression and prevented chondro-
cyte replicative lifespan shortening. Inhibition of p42/p44
mitogen-activated protein kinase (MAPK) and phospho-
inositide 3-kinase (PI3K) abolished the effect of AGF on
caveolin-1, suggesting that the AGF-mediated inhibition of
IL-1B-induced chondrocyte aging is regulated, at least in part,
by p42/44 MAPK and PI3K [129].

The Wnt family of secreted glycosylated proteins are
linked to the development of a number of age-related pathol-
ogies such as osteoarthritis. Manipulation of Wnt signal-
ing has the potential to impact both cellular survival and
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FIGURE 3: Schematic diagram showing the role of Wnt signaling
in age-related changes of cartilage. Wnt could bind to Frizzled
receptors and LRP5/6 coreceptors and lead to stabilization of f3-
catenin via inhibition of GSK-3f mediated ubiquitination and
degradation. Then -catenin translocated to the nucleus and bound
to TCF/LEF-1 transcription factors, which can inhibit and promote
early chondrogenesis as well as promote hypertrophy and chondro-
cyte dedifferentiation.

longevity; however, aberrant Wnt signaling can promote cell
senescence [130]. Disruption of Wnt signaling has also been
associated with altered joint formation, chondrogenesis, and
OA [131-133]. Wnt signaling occurs through canonical (f-
catenin dependent) and noncanonical (-catenin indepen-
dent) pathways. In canonical Wnt signaling, Wnt binding to
Frizzled receptors and LRP5/6 coreceptors leads to stabiliza-
tion of B-catenin via inhibition of GSK-3f mediated ubiq-
uitination and degradation (Figure 3). f-catenin can then
translocate to the nucleus and bind to TCF/LEF-1 tran-
scription factors (Figure 3). OA-like changes occur in mice
following both under- and overactivation of the Wnt pathway
[134] (Figure 3). Canonical Wnt signaling has been reported
to both inhibit and promote early chondrogenesis and to pro-
mote hypertrophy and chondrocyte dedifferentiation [135]
(Figure 3). In contrast, the noncanonical pathway, through
Wnt5a and Wnt5b, can promote chondrogenesis and inhibit
hypertrophy [136]. This suggests that fine regulation of the
Wnt pathway is essential for proper cartilage development
and homeostasis. Recently, activation of the Wnt pathway
was shown to inhibit IL-1-mediated MMP-13 expression in
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human chondrocytes. This was TCF/LEF independent and
mediated through a direct interaction between NF-«B and f3-
catenin, suggesting a potential protective function of Wnt in
aging and OA [137]. Interestingly, HMGB2 and Wnt activity
colocalize in the superficial zone of articular cartilage [138].
Age-related loss of HMGB2 and OA could also be associated
with loss of Wnt activity in the superficial zone of artic-
ular cartilage, although Wnt activity is enhanced in other
zones within articular cartilage, along with osteophytes and
subchondral bone [138]. Understanding the impact and
mechanisms underlying the imbalance of Wnt activity across
the joint will provide insights into aging and OA-related
cartilage degradation.

6. Epigenetics

There is a growing interest in the role epigenetics play in
age-related conditions including OA. Epigenetic regulation of
gene expression includes DNA methylation, histone acetyla-
tion and methylation, and micro-RNA (miRNA). Sirtuins are
a family of NADt-dependent deacetylases that are linked to
aging and more recently shown to be involved in OA through
the regulation of cellular energy and metabolism [139]. The
sirtuin SirT1 promotes chondrocyte survival and matrix gene
expression. TNF-« cleaves and inactivates SirT1 and thereby
contributes to reduced matrix gene expression [140]. Mice
heterozygous for SirT1 (+/-) with significantly decreased
SirT1 expression developed premature OA-like changes at 9
months of age, which may be due to increased chondrocyte
apoptosis [141].

Recent evidence [142] showed that a site within the
promoter region of MMP-13 was demethylated in OA chon-
drocytes. It not only can make the cAMP response element
bind to the promoter region but also can upregulate MMP-
13 expression. Histone methylation is implicated in the age-
dependent expression of the nuclear factor of activated T
cells, cytoplasmic, calcineurin-dependent 1 (NFATcl) that
promotes cartilage homeostasis [143]. In one study [144],
miR-199a-3p and miR-193b were upregulated with age,
whereas miR-320c was downregulated. These two upregu-
lated miRNAs were found to reduce collagen and aggrecan
expression in vitro, suggesting that they are antianabolic and
may be involved in the age-related decrease in matrix gene
expression. The development of postgenomics enabled the
extensive and intensive study of the role of long noncoding
RNA (IncRNA) in gene regulation [144]. So far, few studies on
microRNA and IncRNA have been reported in the field of
age-related OA [145]. A growing interest in this field of
research may provide valuable clues to elucidate the patho-
genesis of age-related OA.

7. Conclusion

OA-induced financial and social burdens have become more
and more severe with aging of the population. Age-related
changes in cartilage have been identified as critical factors in
OA development. However, the underlying molecular mech-
anisms are not completely clarified yet, even though some
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theories have been proposed. Critical factors and signal-
ing pathways that may play important roles in age-related
changes of OA cartilage need to be further investigated. In
addition, the importance of IncRNA in gene regulation is now
better understood, and the potential role of IncRNAs as bio-
logical markers in diagnosis and prognosis of clinical diseases
has also been considered. Studies focusing on these topics will
provide more important clues for better understanding of the
age-related OA.
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