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Abstract

Preterm birth is the single biggest cause of significant neonatal morbidity and mortality, and the incidence is rising.
Development of new therapies to treat and prevent preterm labour is seriously hampered by incomplete understanding of
the molecular mechanisms that initiate labour at term and preterm. Computational modelling provides a new opportunity
to improve this understanding. It is a useful tool in (i) identifying gaps in knowledge and informing future research, and (ii)
providing the basis for an in silico model of parturition in which novel drugs to prevent or treat preterm labour can be
‘‘tested’’. Despite their merits, computational models are rarely used to study the molecular events initiating labour. Here,
we present the first attempt to generate a dynamic kinetic model that has relevance to the molecular mechanisms of
preterm labour. Using published data, we model an important candidate signalling pathway in infection-induced preterm
labour: that of lipopolysaccharide (LPS) -induced activation of Nuclear Factor kappa B. This is the first model of this pathway
to explicitly include molecular interactions upstream of Nuclear Factor kappa B activation. We produced a formalised
graphical depiction of the pathway and built a kinetic model based on ordinary differential equations. The kinetic model
accurately reproduced published in vitro time course plots of Lipopolysaccharide-induced Nuclear Factor kappa B activation
in mouse embryo fibroblasts. In this preliminary work we have provided proof of concept that it is possible to build
computational models of signalling pathways that are relevant to the regulation of labour, and suggest that models that are
validated with wet-lab experiments have the potential to greatly benefit the field.
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Introduction

Our limited understanding of the molecular mechanisms

associated with the onset of labour in women at term makes it

difficult to pinpoint ‘what goes wrong’ when women go into labour

too early. Improving our understanding of this is a major priority

because preterm labour induced preterm birth is the single biggest

cause of significant neonatal morbidity and mortality [1–3]. Rates

of preterm birth are rising, and even ‘‘perfect’’ application of

current therapies will reduce absolute rates of preterm birth by less

than 0.5% [4]. We and others have argued that development of

new therapies for preterm labour prevention is seriously hampered

by incomplete understanding of the molecular mechanisms that

initiate labour at term and preterm [5]. Additionally, attempts to

improve our understanding of parturition are often restricted by

the inaccessibility of human gestational tissues to study during

pregnancy, and by the lack of fully informative animal models.

The novel paradigm of ‘‘systems biology’’ provides a promising

opportunity to overcome these restrictions and improve our

understanding of the key molecular pathways that initiate labour

in women [6]. Systems biology provides useful strategies to

integrate the complex interactions within biological systems

through building computational models. Such models can be

used to develop comprehensive in silico reproductions of ‘‘preg-

nant’’ tissues that demonstrate emergent properties [7]. Compu-

tational models of the molecular mechanisms initiating parturition

could (i) identify gaps in knowledge where additional wet lab

experiments are required, and (ii) provide the basis for an in silico

model of parturition for ‘‘testing’’ novel drugs to treat or prevent

preterm labour.

Computational modelling is a major growth area in biomedical

research, but has only rarely been applied to pregnancy physiology

or pathology. There is only one report of a computational model

to study the molecular events initiating labour [8]. This model by
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Equils et al. uses published data to model the immune-endocrine

interactions in a uterine smooth muscle cell with an increase in the

ratio of progesterone receptor A (PR-A) to progesterone receptor B

(PR-B) as an endpoint. It showed that nuclear factor kappa B p65-

p50 heterodimer (NF-kB) increased the PR-A:PR-B ratio, and that

higher doses of NF-kB shortened the time to reach the PR-A:PR-B

ratio observed in labour. The model assumes that NF-kB is a

marker of infection so these results reflect the known association

between infection and preterm birth. This is an encouraging and

useful first step towards modelling preterm labour, however the

model does not include the molecular interactions upstream of

NF-kB activation that initiate the whole pathway, and so does not

allow in silico exploration of the importance of these interactions to

the system. Additionally, the model does not include the complex

interactions between molecules at an intracellular level and

therefore risks oversimplifying the system.

Here, we use published data to build a comprehensive model of

the intracellular signalling pathway that activates NF-kB p65-p50

in response to lipopolysaccharide (LPS). This is an important

candidate signalling pathway in infection-induced preterm labour.

The actions of LPS and NF-kB are well characterised: LPS is a

gram negative bacterial endotoxin that triggers an inflammatory

response in many cells including uterine smooth muscle cells [9].

LPS is often used in animal and culture studies to mimic

intrauterine infection which subsequently induces preterm labour

[10–13], therefore the actions of LPS could be considered to

replicate the actions of the initiator of some cases of infection-

induced preterm labour. NF-kB is a protein complex transcription

factor with a particular role in the immune response to infection. It

is activated in response to pro-inflammatory stimuli [14], but also

regulates the transcription of inflammatory genes [15–17]. NF-kB
activity increases in human labour, particularly in the fetal

membranes [18], but also in the myometrium where labour is

associated with an increase in the NF-kB p65-p50 heterodimer in

pregnancy and labouring tissue compared to non-labouring tissue

[19]. In this way NF-kB may act as a feed-forward mechanism for

the inflammatory events associated with labour [20]. Therefore, in

a uterine smooth muscle cell this signalling pathway is likely to be

involved in triggering preterm labour in response to intrauterine

infection. The pathway has been modelled previously in scenarios

outwith pregnancy [21–23], but we are the first not only to model

in pregnancy but also to include the molecular interactions

upstream of IKK (IkB kinase), which include events from LPS to

IKK and the production and action of TNFa (tumour necrosis

factor alpha). Therefore our model allows us to assess the

importance of these upstream interactions to the behaviour of

the system. To our knowledge, this is the first attempt to generate a

kinetic model specifically to improve understanding of parturition.

The model is based on ordinary differential equations (ODEs),

which have a well-established biophysical basis and straightfor-

ward molecular interpretation, and are therefore the most widely-

used method to model signalling pathways [24]. ODE models are

very comprehensive because they include all the known molecular

entities in a system and quantitatively describe the kinetics of each

physical interaction between them. This increases the likelihood

that the model will allow us to fully understand and manipulate the

complex behaviour of the system [24].

Methods

To provide information on the LPS-NF-kB p65-p50 pathway

structure and reaction kinetics we extensively searched the abstract

repository PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) and

the pathway information resources KEGG (http://www.genome.

jp/kegg/), Nature Pathway Interaction Database (http://pid.nci.

nih.gov/) and Reactome (http://www.reactome.org/). Previously

described computational models of NF-kB activation in scenarios

outwith pregnancy [21–23] were also useful for finding reaction

kinetics and were accessed via Biomodels (http://www.ebi.ac.uk/

biomodels-main/), the online database of peer-reviewed published

models.

We built a formalised pathway diagram using modified

Edinburgh Pathway Notation in the graph editing application

yED (yWorks, Germany).

We chose to build a deterministic-continuous (concentrations of

entities change over time as a result of rate reactions, with no

random variables introduced) model based on ordinary differential

equations (ODEs) because this is the most common approach to

modelling signalling pathways [24]. Kinetic models are highly

detailed and require specific information about initial concentra-

tions of reactants and rates of reactions (kinetic parameters).

Therefore attempting to build a kinetic ODE model using solely

published data is a challenge and a good test of the current level of

knowledge and data accessibility. We considered using a partial

differential equation (PDE) approach, which often allows more

indepth kinetic analysis. However, the PDE approach requires

even more specific data on spatial distribution of molecules within

cells. Therefore, due to limited data availability, we favoured an

ODE approach.

Here we have modelled the LPS-NF- kB p65-p50 pathway

according to the suggestions put forward by Covert et al. [22] who

built a computational model to study LPS-induced NF-kB activity

in mouse embryo fibroblasts (MEFs). The pathway is described in

detail in Text S1.

We developed our model using the modelling tool Copasi [25].

The structure of the IkB-NF-kB signalling portion of the model is

largely based on a high quality model developed by Hoffmann

et al. [21]. The final model was developed through successive

rounds of model building and simulation within Copasi. After

updating the model to steady-state concentrations with

LPS=0 mmol/ml, time course simulations were run with LPS

arbitratily set at 1 mmol/ml.

Results

The Literature Search
Figure 1 shows a simplified overview of the canonical LPS-NF-

kB p65-p50 pathway, derived from generally accepted interactions

in the literature. The pathway is described in more detail in Text

S1. Much of this information was derived from cell types other

than uterine smooth muscle cells. There was insufficient data in

the literature to confirm whether any deviations of this standard

pathway occur in uterine smooth muscle cells and in the scenario

of pregnancy.

Graphical Depiction
We took the individual molecular interactions, which are well

characterised in the experimental literature, and built them into a

single detailed graphical depiction of the canonical pathway (figure

S1). This diagram is built using the standardised graphical

notation Modified Edinburgh Pathway Notation (mEPN) [26]. It

depicts every entity used in the final model, the reactions they are

involved in, and in what way they react (binding, phosphorylation,

etc.). This graphical depiction acts as a blueprint to the static

structure of the model. To our knowledge, this is the first

standardised graphical depiction of this pathway.

A Computational Model Relevant to Preterm Labour
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Kinetic Model Structure and Parameters
A kinetic model was built using known parameters for each of

the processes shown in the graphical depiction. The model

reaction and kinetic equations used in the final model are listed in

the supplementary material (Table S1). Table S2 in the

supplementary material lists the initial concentrations of molecular

species used in the model. The full model, encoded in SBML

format, is available in the Biomodels database (http://www.ebi.ac.

uk/biomodels-main/MODEL1303230000) and the supplementa-

ry material of this article.

An extensive search of the literature retrieved no data on time

course behaviour or kinetic parameter values specific to uterine

smooth muscle cells, so for the IKK-NF-kB portion of the model,

kinetic values were taken from Hoffmann et al.’s model derived

from experiments on mouse embryo fibroblasts (MEFs) [21].

Kinetic values for the novel reactions we included upstream of NF-

kB activation, for example LPS to IKK, and production and

actions of TNFa) were not available in the literature and were

therefore imputed to fit the time course NF-kB activity profile

observed by Covert et al. [22] in LPS-treated MEFs. Data-fitting

is a standard technique in computational modelling and can be

achieved automatically through algorithms that find optimal

values [24], however in this case, we adjusted parameters

manually because data was sparse.

Steady State Behaviour
We ran the model to steady state (i.e. there is no further change

in concentrations over time) using different concentrations of LPS

and found that both IKK (active and inactive) and free NF-kB
(nuclear and cytoplasmic) show a dose response (Figure 2). At LPS

doses over 0.4, there is a switch from the majority of IKK being

inactive to the majority being phosphorylated at steady state.

Concentrations of nuclear and cytoplasmic NF-kB both increase

with higher doses of LPS because LPS treatment leads to an

increase in free cytoplasmic NF-kB via phosphorylated IKK, and

this free cytoplasmic NF-kB then translocates to the nucleus.

Time Course Behaviour
The model mimics in silico the activation of NF-kB p65-p50 over

time that Covert et al. described in vitro in time course experiments

on LPS-treated wild-type MEFs, and in silico in their model of

IKK-NF-kB signalling (Figure 3). Nuclear (active) concentration of

NF-kB shows damped oscillatory behaviour. The model also

mimics in silico the time-course concentration of phosphorylated

IKK found by Covert et al. in vitro (Figure 4). Our in silico model

mimics the pattern of this behaviour, although not to the exact

degree; the timing, number of oscillations and exact concentra-

tions are not the same as found by Covert et al. in vitro.

Figure 1. A simplified overview of the LPS-induced NF-kB signalling pathway. IkB, nuclear factor of kappa light polypeptide gene enhancer
in B-cells inhibitor (alpha, beta and epsilon isoforms are incorporated into the model); IKK, IkB kinase; LPS, lipopolysaccharide; MyD88, myeloid
differentiation primary response gene 88; NF-kB, nuclear factor kappa B; TLR4, toll-like receptor 4; TNFa, tumour necrosis factor alpha; TNFR, tumour
necrosis factor receptor; TRIF, Tir-Domain-Containing Adapter-Inducing Interferon-b.
doi:10.1371/journal.pone.0070180.g001

A Computational Model Relevant to Preterm Labour
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The model predicts that the concentration of the phosphory-

lated (active) form of IKK should increase with a small amount of

oscillation and reach a maximum around 4 hours after LPS

treatment. Covert et al.’s Western blot analysis suggests a similar

pattern, but with a faster, steadier increase in phosphorylated

IKK, reaching a maximum at around two hours after treatment.

The model mimics in silico the activation of NF-kB over time

that Covert et al. found in TRIF (Tir-Domain-Containing

Adapter-Inducing Interferon-b) and MyD88 (Myeloid Differenti-

ation Primary Response Gene 88) (Figure 5) knock-out cells in vitro.

After LPS treatment of both knock-out cells, Covert et al.’s time-

course experiments showed increased oscillatory NF-kB activation

compared to wild-type cells, and the initiation of NF-kB activation

was delayed by around 30 minutes in MyD88 knock-out

compared to wild-type cells. The authors argued that this 30

minute delay occurs because the TRIF-dependent pathway relies

on the synthesis and actions of TNFa. Whereas Covert et al. could

only mimic this behaviour in silico by introducing an artificial delay

to mimic MyD88 knock-out, our extended model allows us to

‘knock-out’ MyD88 or TRIF directly, by fixing their concentra-

tions at 0 before running steady state and time course simulations

as described above. Our model also includes the reactions involved

in the synthesis of TNFa and its autocrine actions on the cell.

Therefore we are able to test the downstream effects of MyD88

and TRIF knock-out more naturally. Our model successfully

predicts increased oscillations in NF-kB activation when TRIF or

MyD88 is ‘knocked out’, and there is a simulated delay in NF-kB
activation when MyD88 is ‘knocked out’. Again, although the

model captures the general pattern of the in vitro data, it is not

quantitatively accurate.

Discussion

To our knowledge, this is the first kinetic model of a signalling

pathway relevant to infection-induced preterm labour. Using only

published data, we have produced a graphical depiction and

kinetic model of LPS-induced NF-kB p65-p50 activation. Previous

models of NF-kB activity published in scenarios outwith pregnan-

cy use IKK as an input to allow the model to be adapted to

simulate NF-kB activity following any treatment [21–23]. How-

ever, in a pregnancy scenario, LPS is a more appropriate input

than IKK because LPS could be considered the initiator of some

cases of infection-induced preterm labour. Therefore, we extended

previous models by using LPS as an input and explicitly modelling

Figure 2. Steady state concentrations at different doses of LPS. A. In silico simulation of steady state concentrations of inactive and
phosphorylated IKK, and B. In silico simulation of steady state concentrations of free nuclear and cytoplasmic NF-kB.
doi:10.1371/journal.pone.0070180.g002

Figure 3. NF-kB time course behaviour of A. Concentrations of nuclear NF-kB over time, simulated using the in silico model
described here, B. Concentrations of nuclear NF-kB over time, simulated using the in silico model described by Covert et al., C.
Experimental data from LPS-treated mouse embryo fibroblasts as described by Covert et al. [22]. C is reprinted from Covert, M. W.,
Leung, T. H., Gaston, J. E., & Baltimore, D. (2005). Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science (New York, N.Y.),
309(5742), 1854-7. under a CC BY license, with permission from AAAS, original copyright 2005.
doi:10.1371/journal.pone.0070180.g003

A Computational Model Relevant to Preterm Labour
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molecular interactions upstream of IKK activation, including LPS

to IKK and the production and action of TNFa. This allows closer
analysis of the interactions that activate IKK and therefore affect

downstream NF-kB activity. After validation using cells from

human uterine smooth muscle cells, this will allow in silico testing of

drugs targeting these upstream interactions.

Ours is the first attempt to explicitly model these upstream

events appropriately. One previous attempt by Selvarajoo [27] was

flawed because although the kinetic rate equations were based on

mass action kinetics, they did not describe physical interactions

between individual entities. For example, the first reaction in the

Selvarajoo model, ‘‘TLR4,-. MyD88’’ (rate equation: Kf

[TLR4] – Kr[MyD88]), describes a reaction where TLR4 is

reversibly converted to MyD88, which does not represent the true

physical interaction between these two molecules.

Explicitly modelling the upstream events produces a more

complete model that is able to reproduce in silico the published

behaviour of the system in vitro in wild-type, MyD88 knock-out

and TRIF knock-out MEFs. Although our model can simulate the

pattern of the in vitro behaviour, the exact timing, number of

oscillations and exact concentrations were different. However, this

is unlikely to invalidate the model because the kinetics of the

pathway are also likely to alter in different experimental conditions

and in different cell types. There are undoubtedly more LPS

targets that could be incorporated into extended versions of the

model to make it more comprehensive and improve its potential to

make predictions about the relative importance of different parts

of the pathway.

We found no published data on the structure or kinetics of the

LPS-NF-kB pathway in uterine smooth muscle cells and therefore

cannot confirm that the pathway deviates from that described in

MEFs. Although this is a major limitation of our model, we do not

anticipate that there would be any major deviations because the

pathway appears to be well conserved [28]. However, wet lab

experiments using uterine smooth muscle cells should be

conducted to validate the model in this cell type. The lack of

Figure 4. IKK time course behaviour. A. Concentrations of nuclear IKK over time, simulated using the in silico model described here, B.
Experimental data from LPS-treated mouse embryo fibroblasts as described by Covert et al. [22]. B is reprinted from Covert, M. W., Leung, T. H.,
Gaston, J. E., & Baltimore, D. (2005). Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science (New York, N.Y.), 309(5742), 1854-
7. under a CC BY license, with permission from AAAS, original copyright 2005.
doi:10.1371/journal.pone.0070180.g004

Figure 5. NF-kB time course behaviour in TRIF and MyD88 knock-out conditions. A. Concentrations of nuclear NF-kB over time, simulated
using TRIF and MyD88 knock-out versions of the in silico model described here, B. Concentrations of nuclear NF-kB over time, simulated using TRIF
and MyD88 knock-out versions of the in silico model described by Covert et al., C. Experimental in vitro data from LPS-treated TRIF or MyD88 knock-
out mouse embryo fibroblasts as described by Covert et al. [22]. B and C are reprinted from Covert, M. W., Leung, T. H., Gaston, J. E., & Baltimore, D.
(2005). Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science (New York, N.Y.), 309(5742), 1854-7. under a CC BY license, with
permission from AAAS, original copyright 2005.
doi:10.1371/journal.pone.0070180.g005
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available published data also highlights the need for the

publication of detailed data from time course experiments to aid

with model building.

We have provided proof of concept that it is possible to build

computational models of signalling pathways relevant to labour.

When validated using wet lab experiments on cells derived from

human gestational tissue (for example, uterine smooth muscle

cells), such models could be used for drug testing in silico, providing

a rapid, safe, economical and ethical strategy to identify candidate

effective therapies for further testing. Thus, these models have the

potential to improve our understanding of parturition and

translate into improved pregnancy outcomes.

Supporting Information

Figure S1 Pathway depiction created using modified
Edinburgh Pathway Notation (mEPN). A key to this

graphical notation is provided at http://www.mepn-pathway.

org/. A full description of the pathway is provided in Text S1.

(PDF)

Table S1 Summary of reactions and reaction parame-
ters used in the model. Red italics=parameters derived during

model fitting to experimental data from Covert et al. [22]; all other

values=parameters used in Hoffmann et al.’s model of NF-kB
signalling [21]. v= reaction rate, kf= rate of the forward reaction,

kr= rate of the reverse reaction.

(PDF)

Table S2 Initial (pre-steady state) concentrations of
species used in the model. All values were set to 1 mmol/ml if

they were assumed to be present at time= 0 s and 0 mM if they

were assumed to be absent. NF-kB was set to 0.1 mmol/ml as in

Hoffmann et al. [21]. Concentrations marked with an asterisk

were ‘fixed’ at their initial concentrations to avoid overcomplicat-

ing the model by modelling synthesis and degradation of these

species.

(PDF)

Text S1 LPS-induced NF-kappa B activation as de-
scribed in the literature.

(DOCX)

Model File S1 The kinetic model encoded in SBML
format.

(XML)
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