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Abstract
Purpose of review—This review presents recent advancements in the mechanisms by which
integrated signaling mechanisms elicit and regulate pancreatic endocrine and exocrine secretion.

Recent findings—Cholecystokinin (CCK) can stimulate exocrine secretion by acting directly
on neurons located in the dorsal motor of the vagus or indirectly by acting on pancreatic stellate
cells. The importance of small GTPases such as RhoA and Rac1 in CCK-induced pancreatic
secretion is also described. Ghrelin attenuates insulin secretion through the AMP-activated protein
kinase–uncoupling protein 2 pathway. An exciting new report describes that leptin can influence
insulin release by osteoclastin, a hormone produced by osteoblasts. This finding adds a new layer
of complexity in the regulation of insulin secretion with implications for glucose and energy
homeostasis. In addition, leptin also mediates insulin secretion through the sympathetic system
and via pro-opiomelanocortin neurons, which could serve as the cross-road for leptin and
melanocortin signaling pathways. Recent reports on the action of numerous other regulators such
as atrial natriuretic peptide, neurotensin, and orexin B are also discussed.

Summary—The pancreas is an extremely complex gland. Elucidation of the secretory and
regulatory pathways that control pancreatic secretion will aid in the development of treatment for
diseases such as pancreatitis, diabetes, and obesity.

Keywords
endocrine; exocrine; pancreas; regulation; secretion

Introduction
Pancreatic secretions play an essential role in digestion and glucose homeostasis. These
secretions are controlled by a host of neuronal and hormonal signaling pathways which
modulate not only secretion, but also the cellular integrity of the gland.

The dorsal vagal complex in the brainstem is comprised of the nucleus of the solitary tract
and the dorsal motor nucleus of the vagus (DMV) and exerts parasympathetic control on
pancreatic secretion. Information relayed by sensory vagal afferent nerves in the pancreas is
first processed in the nucleus of the solitary tract which then projects onto the preganglionic
motor neurons of the DMV. The preganglionic vagal efferent fibers activate postganglionic
nerves which innervate the pancreas. The DMV also receives inputs from other regions of
the brain, such as the hypothalamus, and from numerous hormones and peptides.
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Both endocrine and exocrine pancreatic secretions are also mediated by the actions of
numerous cell surface receptors. Receptor–ligand interaction leads to the activation of
numerous downstream signaling pathways such as opening or closing of ion channels,
increase of intracellular calcium, activation of kinases, and regulation of gene expression.

Here, we discuss the recent findings on the modulation of pancreatic secretion by neural and
hormonal pathways.

Effect of cholecystokinin on pancreatic secretion
Cholecystokinin (CCK) is known to induce pancreatic exocrine secretion by the activation
of CCK1 receptor-mediated signaling pathways. The action of CCK can be direct, through
receptors expressed on pancreatic acinar cells, or indirect by receptors expressed on vagal
afferents, which when depolarized, relay the final signal through efferent nerves present in
the pancreas. Within the last year, two new paradigms have emerged, which propose that
CCK can act directly on the neurons located in the DMV [1•] as well as on pancreatic
stellate cells to stimulate exocrine secretion [2••]. In addition, we summarize the latest
information on the downstream signaling pathways that lead to CCK-mediated pancreatic
stimulation.

Preganglionic neurons of the DMV innervate the pancreas, and activation of these neurons
(by CCK) elicits pancreatic secretion [3]. In order to determine the effects of these neurons
on pancreatic secretion in vivo, deeply anesthetized rats were systemically injected with
sulfated CCK-8 and the firing rate of the neurons in three areas of the DMV was recorded
[1•]. The authors discovered that neurons of the DMV complex behave differently,
depending on their spatial location; neurons in the caudal region were activated, those in the
rostral region were unaffected, whereas those located in the intermediate region were
inhibited. These effects occurred within seconds of drug injection suggesting that this CCK
action was direct and differed from the mechanism mediated by Fos expression in the
nucleus of the solitary tract and DMV as reported by earlier studies.

An intriguing new study proposed a novel mechanism for CCK action on the pancreas.
Phillips et al. [2••] showed that pancreatic stellate cells from rats and humans express CCK1
and CCK2 receptors and also contain the cellular machinery to synthesize and release
acetylcholine. Through a series of elegant experiments, the authors demonstrated that in co-
cultures of stellate and acinar cells, CCK-8 stimulated the release of acetylcholine from
stellate cells which in turn caused the release of amylase from acinar cells. Furthermore,
blockade of muscarinic receptors on acinar cells prevented the release of amylase in the co-
cultures. These results provide evidence for another distinct mechanism for CCK-stimulated
pancreatic secretion.

It was recently reported that CCK-8 and CCK-58 peptides directly stimulated human
pancreatic acinar cells with elevation of intracellular Ca2+ followed by exocytosis [4].
Criddle et al. [5] compared the effects of CCK-8 and CCK-58 on mouse acinar cells and
showed that contrary to the results obtained in rats, these two peptides have similar effects in
mice. They each elicited Ca2+ oscillations at physiological concentrations (1–10 pM) with a
sustained elevation of Ca2+ at supra-physiological concentration (5 nM). CCK-induced
exocytosis was similar as well, suggesting that differences in bioactivity observed
previously were not because of peptide–receptor interactions, but resulted from either the
stability of the peptides in circulation or because of yet unknown mechanisms.

CCK binds to CCK1 receptors that are expressed on pancreatic acinar cells. These receptors
are coupled to heterotrimeric G proteins such as Gαq and Gα12/13 [6], which activate
downstream signal transduction pathways mediated by phospholipase C and small GTPases,
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respectively [7]. RhoA and Rac1 are two small GTP-binding proteins that play a role in
actin cytoskeleton reorganization and have been implicated in CCK stimulated enzyme
secretion from pancreatic acinar cells [8]. Sabbatini et al. [9•] further characterized the
molecules involved in this pathway and showed that CCK stimulation of acinar cells led to
the activation of RhoA by Gα13 and of Rac1 by Gα13 and Gαq. Gα13 and Gαq both play a
role in acinar secretion and actin cytoskeleton reorganization, whereas only Gαq is required
for bleb formation associated with actin–myosin II cytoskeletal reorganization during
secretion. As expected for members of the Gα12/13 family, downstream events mediated by
Gα13 were Ca2+ independent and Rac1 activation was not dependent on signaling via the
phospholipase C pathway.

Ethanol has been shown to impair amylase release [10]. Iwata et al. [11•] provided evidence
that CCK stimulated interaction between Gα13, Vav-2 (guanine nucleotide exchange factors
that activate Rho GTPases) and RhoA, was attenuated by treatment of acini with 20 mM
ethanol. Upon CCK stimulation, RhoA translocated to the subapical area around the lumen
in pancreatic acini [8]. Ethanol caused a reduction in the translocation of RhoA to the
membrane and loss of E-cadherin and p120 catenin from the acinar cell membranes. It had
previously been shown that under conditions that destabilized cell junctions, p120 catenin
could migrate from its cadherin bound membrane state to a cytoplasmic fraction where it
interacted with Vav-2 and decreased Rho activity [12]. These changes in membrane
structure and signaling molecules could impact pancreatic secretion as well as play a role in
the development of alcohol induced pancreatitis.

Previous studies have shown that an isoform of protein kinase C (PKC), PKCδ, played a
role in amylase release from acinar cells; overexpression of PKCδ led to an increase in
CCK-stimulated amylase secretion, whereas expression of a dominant negative decreased
secretion [13]. These effects were re-examined by Thrower et al. [14] using acinar cells
from PKCδ knockout mice, as well as PKCδ inhibitors. CCK stimulated amylase release in
PKCδ knockout mice was similar to wild-type mice and a broad spectrum PKC inhibitor
failed to inhibit CCK-stimulated acinar secretion, suggesting that PKCδ does not play a
significant role in exocrine secretion. It is possible that the physiology of mouse and rat
acinar cells accounts for the differences observed between the two studies.

It has now been shown that CCK can exert a protective effect on β cells and islets of ob/ob
mice. Lavine et al. [15•] showed that islets of ob/ob mice expressed large amounts of CCK
compared to lean mice and helped modulate insulin expression by preventing cell death
from stress-mediated pathways. The new data suggest that the secretory and homeostatic
role of CCK in the pancreas is complex and remains to be fully elucidated.

Effect of ghrelin on pancreatic endocrine secretion
Ghrelin is a 28-amino acid orexigenic peptide that is secreted by X/A cells in the gastric
mucosa. Small amounts of ghrelin are also secreted by other tissues such as the pancreas.
Ghrelin levels increase at meal time and then plummet rapidly with food intake. In addition
to regulating food intake, ghrelin has been shown to modulate glucose homoeostasis.
Several investigators have studied the effect of acyl ghrelin, desacyl ghrelin, and obestatin
on insulin secretion in mice, rats, and humans. An excellent review on this topic has been
published by Granata et al. [16••]. A recent study by Tong et al. [17•] measured the acute
insulin response in humans when intravenous infusions of acyl ghrelin at physiologic (0.3
nmol/kg per h), supraphysiologic (0.9 nmol/kg per h), or pharmacologic (1.5 nmol/kg/h)
doses were given. Insulin secretion was attenuated upon injection of a bolus of glucose at all
doses of ghrelin. Along with plasma insulin, C-peptide levels were also reduced, suggesting
that ghrelin caused a decrease in insulin secretion, rather than clearance.
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The mechanism of ghrelin-induced reduction in insulin secretion is still poorly understood.
Wang et al. [18•] presented evidence that ghrelin inhibited insulin secretion from MIN6 cells
(murine β cells transformed by SV40 large T antigen) through an AMP-activated protein
kinase (AMPK)–uncoupling protein 2 (UCP2) pathway. This pathway is involved in fatty-
acid oxidation and mediates ghrelin action on NPY/AgRP neurons to increase food intake
[19]. In the presence of high glucose, addition of acyl ghrelin to MIN6 cells resulted in
upregulation of UCP-2 mRNA, and overexpression of UCP-2 attenuated glucose stimulated
insulin release by approximately 40%. Agonist-induced activation of AMPK also led to the
upregulation of UCP-2 mRNA and a decrease in glucose-stimulated (but not basal) insulin
secretion However, Chmielewska et al. [20•] showed that UCP-2 mRNA was downregulated
by ghrelin in the presence of high glucose in the INS-1 cells (rat pancreatic cell line) and
that glucose stimulated insulin release. Similar conflicting results have previously been
reported on the effect of ghrelin on insulin release from pancreatic islets [16••].

Pancreatic polypeptide is released in response to food intake and suppresses appetite by
slowing gastric emptying. Kumar et al. [21•] studied the effects of acyl ghrelin, desacyl
ghrelin, and obestatin on the secretion of pancreatic polypeptide from isolated mouse islets.
They discovered that obestatin and acyl ghrelin inhibited the secretion of pancreatic
polypeptide in a concentration-dependent manner, whereas desacyl ghrelin had no effect. In
addition, desacyl ghrelin blocked the effects of acyl ghrelin on pancreatic polypeptide
secretion, but did not have any effect on obestatin-mediated inhibition, suggesting that
obestatin and acyl ghrelin affect pancreatic polypeptide secretion via separate receptors. The
physiological significance of this observation is not completely understood.

Effects of leptin and melanocortin on insulin secretion
Leptin is a hormone that is produced primarily by adipocytes and plays a role in energy
homeostasis by reducing food intake while increasing energy expenditure. It has been shown
to act on the long form of the leptin receptor expressed in pancreatic β cells and inhibits
insulin secretion via the JNK/STAT pathway. Hinoi et al. [22] compared two mouse models,
ob/ob and adipocyte-deficient (both with impaired leptin signaling), to identify novel leptin-
dependent pathways that control insulin secretion. Through the use of numerous knockout
mouse models as well as in-vitro experiments, these authors discovered that although leptin
acts directly on β cells, it also regulates insulin secretion through a second pathway that
involves neuronal signaling and hormone secretion by osteoblasts. Briefly, leptin acts on the
sympathetic neurons in the ventromedial hypothalamus to release sympathetic hormones.
These hormones act on β2 adrenergic receptors located on osteoblasts to increase the
expression of Esp via the transcription factor ATF4. Esp in turn regulated the carboxylation
of osteocalcin (a hormone secreted by osteoblasts), and carboxylation of osteocalcin
decreased insulin secretion in isolated islets.

Park et al. [23•] also showed that leptin modulated insulin secretion via the sympathetic
system. Intracerebro-ventricular leptin was administered to pancreatectomized rats
exhibiting mild type 2 diabetes. This led to a decrease in insulin levels in sham but not
sympathectomized rats, suggesting that sympathectomy led to a loss in leptin action on the
pancreas. However, unlike ob/ob mice, pancreatic β cell mass and area were not
significantly affected, as leptin could exert its effects at the pancreatic level.

Leptin and melanocortin pathways are linked through anorexigenic pro-opiomelanocortin
(POMC) neurons. Leptin increases the expression of POMC in these neurons which is then
proteolyzed to generate α-melanocyte stimulating hormone (α-MSH). α-MSH acts on
melanocortin 3 receptors and melanocortin 4 receptors (MC4R) in the hypothalamus to
decrease appetite [24].
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In order to examine the role of the melatonin pathway in insulin secretion, Mansour et al.
[25•] examined the expression of MC4R and α-MSH in the hypothalamus and pancreas of
Zucker lean (control) and Zucker diabetic fatty (ZDF, leptin receptor mutation) rats. These
investigators found that infusion of NDP-MSH (MC4R agonist) in the brain increased c-Fos
and MC4R mRNA in the pancreas of lean and ZDF rats. In addition, the amount of MC4R
protein and α-MSH also increased after 10 days of NDP-MSH treatment in the
hypothalamus and pancreas. This increase of MC4R was concomitant with a two-fold to
four-fold decrease of circulating insulin in ZDF and lean rats, respectively, suggesting that
the melanocortin pathway can play a role in insulin regulation.

Additional regulators of pancreatic secretion
Atrial natriuretic peptide

A study by Ropero et al. [26••] showed that atrial natriuretic peptide (ANP) increased
insulin secretion through guanylyl cyclase-A receptor coupled with cGMP second-
messenger signaling. Although the concentration at which ANP elicited this response was
supraphysiologic, there is significant evidence to support the involvement of natriuretic
peptides in energy homeostasis through guanylyl cyclase-A receptor-mediated signaling
pathways [27].

Orexin B
Orexins are expressed mainly in hypothalamic neurons and have been implicated in sleep
and energy homeostasis. They are upregulated during fasting and in insulin-mediated
hypoglycemia. Adeghate and Hameed [28•] demonstrated that in the pancreas, orexin B
expressing nerves surround blood vessels. Orexin B was also present in many β cells (but
not α cells) and the number of orexin B positive cells decreased with the onset of diabetes.
Orexin B stimulated the insulin release by a β-adrenergic receptor-mediated pathway in
normal and diabetic islet cells but had no effect on glucagon secretion in diabetic rats.

Per-arnt-sim protein kinase
Per-arnt-sim protein kinase (PASK) plays a role in insulin regulation [29]. In an elegant
study, Da Silva Xavier et al. [30•] showed that PASK is expressed in α and β cells of mouse
and human islets and inhibited glucose-stimulated glucagon release by regulation of
preglucagon and AMPK alpha2 gene expression.

Glucose
The direct effects of glucose on the secretion of glucagon have been somewhat
controversial. Le Marchand and Piston [31••] compared the effects of glucose on a pure
population of α cells versus the intact islet. At low and high concentrations of glucose (1 or
12 mmol/l, respectively), there was an increase in the amount of glucagon released from α
cells compared to intact islets, suggesting that the inhibitory action of glucose on glucagon
release was lost upon α-cell dispersion. They also demonstrated that cellular metabolism of
glucose led to an increase in intracellular Ca2+ and inhibitory effects of glucose were
mediated by mechanisms downstream of Ca2+ signaling. The authors postulated that glucose
does not directly mediate glucagon release but that paracrine factors are likely at play.

In addition to the above agents, ADP [32], neurotensin [33], GABA-A receptor [34], Zn2+-
coupled GPR39 [35], and β-arrestin-1 [36] have also been shown to play a role in pancreatic
secretion.
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Conclusion
This review provides insights into the complex physiology and biology of the pancreas.
Numerous neural, paracrine, and endocrine pathways regulate pancreatic secretion and it
will be important to understand how these signals are integrated and controlled in the body
under normal and diseased conditions. This knowledge will enhance the development of
drugs for treatment of pancreatic diseases such as diabetes, which now affects almost 300
million people worldwide and incurs over US$ 400 billion in healthcare-related costs per
year.
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Key points

• Cholecystokinin (CCK) exerts a protective effect on β cells and can modulate
acinar cell secretion by activation of neurons located in the dorsal motor nucleus
of the vagus, as well as receptors on pancreatic stellate cells.

• Although the function of ghrelin in insulin secretion remains to be fully
elucidated, it appears to decrease secretion, possibly through the AMPK–UCP2
pathway.

• The sympathetic system plays an essential role in leptin-mediated insulin
secretion.

• α-MSH, ANF, orexin B, neurotensin, ADP, glucose, PASK, β-arrestin-1,
GABA-A receptors, and GPR39 receptors are important in regulating pancreatic
secretion.
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