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Abstract
The brain is naturally considered as a network of interacting elements which, when functioning
properly, produces an enormous range of dynamic, adaptable behavior. However, when elements
of this network fail, pathological changes ensue, including epilepsy, one of the most common
brain disorders. This review examines some aspects of cortical network organization that
distinguish epileptic cortex from normal brain as well as the dynamics of network activity before
and during seizures, focusing primarily on focal seizures. The review is organized around four
phases of the seizure: the interictal period, onset, propagation, and termination. For each phase, the
authors discuss the most common rhythmic characteristics of macroscopic brain voltage activity
and outline the observed functional network features. Although the characteristics of functional
networks that support the epileptic seizure remain an area of active research, the prevailing trends
point to a complex set of network dynamics between, before, and during seizures.
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Epilepsy, the condition of recurrent unprovoked seizures resulting from a wide variety of
causes, is the world’s most prominent serious brain disorder, affecting some 50 million
people worldwide. For an estimated 30% of these patients, seizures remain poorly controlled
despite maximal medical management (Duncan and others 2006). Moreover, control of
epilepsy through medication and surgery often results in significant, sometimes debilitating,
side effects. Advancing the therapeutic management of epilepsy requires a detailed
understanding of the neurophysiological underpinnings that give rise to seizures and how
seizures are initiated and subsequently spread across interconnected brain regions. The
majority of work in this field has focused on the molecular, anatomical, and cellular
physiological changes involved in the development of epilepsy (epileptogenesis) and in the
initiation of seizures (ictogenesis). Until recently, little attention had been paid to
interactions between activities in different brain regions. This type of analysis—focused on
functional connectivity and resulting network maps—has expanded enormously in the last 5
years and has offered important new perspectives and insights into the nature of epilepsy.
Research into the network organization of seizures has spanned a variety of different model
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systems and data sources, explored the rhythmic nature of epileptic activity, and both used
and motivated the development of innovative analytic techniques. In this review, we briefly
discuss some of the relevant background information on these different aspects of epilepsy,
provide a short course on network analysis, and then delve more deeply into recent findings
and implications of network investigations in patients with epilepsy.

Overview of Epilepsy and Seizures, Rhythms, and Networks
Different Kinds of Seizures and Implications for Spatial Characterization of Epilepsy

Seizures and epilepsy have traditionally been divided into two different types: primary
generalized seizures and focal seizures. Primary generalized seizures involve all of the brain
or large portions of the brain at the outset. A substantial body of work has indicated that
generalized seizures likely involve a perturbation in existing thalamocortical network
interrelationships (for an excellent review, see Chang and Lowenstein 2003). Focal seizures,
in contrast, originate from a circumscribed region of the brain and may or may not spread.
As implied by the name, the focus of the seizure may determine exactly what symptoms
occur. In addition, localization of the focus can be enormously important in trying to
understand the cause of the disease, the prognosis, and—especially when surgical options
are considered—targets for therapy. Although the division between these types of seizures
or epileptic syndromes seems clear, there is mounting evidence that these phenomena exist
on a spectrum with overlapping or at least related mechanisms.

Sources of Data
Animal models, both in vitro and in vivo, provide powerful techniques to address the
biophysical mechanisms that support the seizure (McCormick and Contreras 2001) and have
been the mainstay of much of the research in epilepsy. However, both methods possess
important qualifications. First, in vitro preparations necessarily remove a brain section from
its surrounding network. Second, animal models of epilepsy are just that—models. A
powerful alternative to animal models of epilepsy is to study spontaneously occurring
seizures in vivo from human patients. Although significant work has been done based on
electroencephalogram (EEG) recordings made from the scalp surface of patients with
epilepsy, even more detail has been derived from intracranial recordings. In some cases of
pharmaco-resistant epilepsy (when medications fail to prevent seizures), invasive
electrocorticogram (ECoG) recordings are performed. These recordings of voltage activity
—directly from the brain’s surface or deep brain regions—provide both high temporal and
spatial resolution as well as adequate brain coverage (Fig. 1).

Neuronal Rhythms of Seizures
Understanding the vast quantities of voltage data recorded in the ECoG typically requires
analysis beyond visual inspection. One technique to characterize these activities is the
quantitative assessment of neuronal rhythms that appear during the seizure. Epilepsy is
perhaps best characterized as a disease of brain rhythms—a paroxysmal cerebral
dysrhythmia (Gibbs and others 2002)—and the voltage activity recorded from an ECoG
electrode often reveals stereotyped dynamics (e.g., spike-wave complexes during the
“absence seizures” of a primary generalized epilepsy). During a typical secondarily
generalized seizure (i.e., a seizure that spreads from a focus to include a large portion of the
brain network), there is often a characteristic sequence of neuronal rhythms evolving from
low amplitude, fast activity to large amplitude, slow activity. The appearance and
characterization of these changing neuronal rhythms provide critical information about the
different stages of the seizure (Pinto and others 2005; Schiff and others 2005), as we
described in detail below.
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Characterization of Coupling and Networks
Characterizing the synchronization—or coupling—between brain areas during seizures is
critical for developing a deeper understanding of epilepsy. The synchronization between a
few electrode pairs is readily visualized and interpreted. However, for the high- density,
multi-electrode recordings of interest here (Fig. 1), complex patterns of network
connectivity may emerge whose quantitative understanding requires graph theory and
network analysis techniques. In the next section, we provide a brief introduction to the
growing field of networks in neuroscience. There already exist many excellent and thorough
reviews of this subject (Bullmore and Sporns 2009; Sporns 2010; Stam and Reijneveld
2007); our purpose in the next section is simply to familiarize the reader with some terms
from network science that will be helpful in understanding the results for seizure networks
presented below.

Primer on Network Analysis and Synthetic Networks
Structural versus Functional Networks

The human brain is naturally conceived as a network consisting of two fundamental
components: nodes (e.g., individual neurons or brain regions) and edges (e.g., synaptic
connections or white matter tracts) that connect node pairs. In neuroscience, “brain
networks” (i.e., graphs representing the connectivity of brain components) are typically
divided into two categories: structural networks and functional networks. In structural
networks, the edges represent physical connections between nodes (Fig. 2). At the
microscopic spatial scale, these include synaptic or gap junctional connections between
individual neurons. The only complete brain structural network mapped at this scale is for
the 302 neurons of the nematode worm Caenorhabditis elegans (White and others 1986). For
the human brain, consisting of more than 1010 neurons and 1012 synapses, defining the
complete structural network remains intractable. At a coarser spatial scale, noninvasive in
vivo neuroimaging techniques (e.g., magnetic resonance imaging or MRI) can be used to
infer the brain’s white matter tracks and construct millimeter scale, macroscopic structural
networks in humans (Gong and others 2009; Hagmann and others 2008; Iturria-Medina and
others 2007).

In contrast to the anatomically defined structural network, functional networks represent the
coupling between dynamic activity recorded from separate brain areas (Fig. 2) (Friston
1994). Different types of multivariate neuroimaging data, from single neuron recordings to
the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD)
signal, are used to construct functional networks at different spatial and temporal scales
(Sporns 2010). Critical to the establishment of a functional network is the choice of coupling
measure, of which there are many options (Pereda and others 2005). An open question, and
area of active research, is determining which coupling measures are most appropriate.
Different measures exist that focus on linear interactions, nonlinear interactions, wavelet
coherence, causality, and many other methods (Pereda and others 2005). Each measure
provides a different view of the coupling and requires different processing methods and
assumptions (e.g., filtering the data in a specific frequency band to extract phase
information, or choice of embedding dimension). Recent studies suggest that linear and
nonlinear coupling measures perform equally well when applied to macroscopic voltage
data, although subtle changes in the physiological state of the brain may require more
sophisticated approaches (Ansari-Asl and others 2006; Mormann and others 2005;
Osterhage and others 2007).

After selecting a coupling measure for building a functional network, additional choices
must be made. One of the most important is determining the level of coupling that
constitutes an edge. In Figure 2 we connected electrode pairs with edges whose coupling
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measure exceeded a threshold value (e.g., 0.5), and different choices of threshold may result
in different networks. For example, a higher threshold choice (e.g., 0.95) results in fewer
edges (Fig. 2). No technique yet exists to choose the most appropriate coupling threshold.
One approach is to examine the networks produced for a variety of threshold values and
seek consistent results (e.g., Kramer and others 2008; Ponten and others 2007).

Another approach to defining coupling threshold is first to apply a statistical hypothesis test
to the coupling result computed for each electrode pair. Doing so, a P value may be assigned
to each edge and these P values thresholded, rather than the original coupling measure value.
An advantage of this approach is that multiple comparisons (a P value exists for each
electrode pair) may be addressed using sophisticated statistical techniques and a measure of
network uncertainty deduced, namely the number of spurious edges in the network (Kramer
and others 2009). One difficulty of this approach is the development of an appropriate
method to assess the statistical significance of a coupling value. For classical linear
measures (such as the coherence or cross-correlation), analytic techniques exist to determine
the statistical significance of the measure, although these typically require specific
assumptions about the data (e.g., the asymptotic case of extremely large sample sizes). For
modern nonlinear measures, no such analytic methods to assess statistical significance exist.
Instead, one might use a bootstrapping procedure; however, bootstrapping techniques are
computationally expensive and may not be tractable for large networks.

Linking Structural and Functional Brain Networks
Brain structural and functional networks are intimately related. In general, structural
networks constrain functional networks—coupled activity between two areas typically
requires (direct or indirect) structural connections. But brain dynamics (used to infer the
functional networks) modify brain structure, through processes such as spike-timing-
dependent plasticity (Rubinov and others 2009). Computational studies have examined the
relationship between brain structural and functional networks (Ponten and others 2010; Zhou
and others 2006) and suggested that the structure–function relationship depends on the time
scale of activity (Honey and others 2007). At the slow time scale of fMRI and BOLD
observations (i.e., on the order of seconds), a general relationship exists between brain
structural and functional connectivity (Hagmann and others 2008). But the voltage dynamics
of the seizure evolve on a much faster time scale, and recent observations suggest that so do
the functional networks (Kramer and others 2010). How functional networks inferred at the
faster time scale of ECoG voltage recordings relate to structural networks remains
incompletely understood.

Definition of Network Measures and Simple Network Models
Many network models and measures to characterize networks exist. We outline below the
network models and measures used to describe the cortical networks of seizure. In doing so
we attempt to provide some intuition for these characterizations, and the interested reader is
referred to the literature for many excellent and thorough discussions (e.g., Kolaczyk 2009;
Newman 2003; Rubinov and Sporns 2010; Stam and Reijneveld 2007).

Network Measures: Density, Path Length, Clustering Coefficient
Brain functional networks are typically complicated structures that require characterization
tools beyond visual inspection. Many such tools exist, of which we describe three of the
most important. Perhaps the most fundamental network measure is the density—the actual
number of edges in the network divided by the number of possible edges. A network with
density 0 contains no edges, whereas a density of 1 indicates that all possible edges exist.
The path length is the minimum number of edges traversed to travel from one node to
another in the network, and the average path length is calculated as the path length between
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all possible node pairs. Short average path lengths typically suggest fast communication in a
network. Finally, the average clustering coefficient measures the number of completed
triangles in a network. In social networks, clustering is typically high (i.e., near 1); for
example, the friends (nearest neighbors) of an individual (the chosen node) also tend to be
friends. These three measures of network structure provide simple numeric summaries to
characterize complex networks, consisting of many nodes and edges. There are many
additional possible measures that characterize the topology of the network in more detailed
and specific fashion (Kolaczyk 2009; Rubinov and Sporns 2010).

Network Models: Regular, Random, and Small-World
Many different types of model networks exist (Newman 2003). We focus here on three
simple models important to understanding the cortical networks in epilepsy (Fig. 3). In a
regular network, each node connects to its k nearest neighbors. Regular networks have a
mesh-like connectivity, resulting in many completed triangles (i.e., high average clustering
coefficient) and a large average path length—traveling between nodes requires proceeding
along the circumference of the circle in Figure 3A. In a traditional random network, node
pairs are connected randomly with some probability P. The result is a network with low
average clustering coefficient (the probability that a node’s “friends” are also friends in a
random network is P) and low average path length (because travel is no longer restricted to
the circumference in Fig. 3C). Finally, a small-world network possesses high clustering
coefficients (like regular networks) and short average path lengths (like random networks)
(Bassett and Bullmore 2006; Watts and Strogatz 1998). To construct a small-world network,
a small number of edges in a regular network are “rewired.” The modified edges typically
serve as shortcuts through the network, allowing quick traversal from one side of the
network to the other. Because only a few edges are modified, the clustering coefficient
remains large (Fig. 3B). We will see that all three network models can be used to represent
different stages of functional network progression during seizures and may characterize
ictogenic cortex in general.

Networks That Characterize the Epileptic Brain between Seizures
Classically seizures are thought to represent a hyper-synchronous state (Penfield and Jasper
1954) and epilepsy is rudimentarily considered to be a disease of hypersynchronization—a
problem of regions and neurons connected or communicating too readily. With this baseline
idea in mind, several groups have sought evidence of pathological network relationships in
the resting (i.e., not seizing) brain of patients with epilepsy. Even the healthy brain at rest is
expected to show some synchronized activity, typically dominated by low-frequency
rhythms. The expectation, however, is that in patients with epilepsy the degree of
connectivity will be higher, particularly but not necessarily exclusively in the seizure-onset
zone. A variety of different studies suggest that this concept has some validity. In patients
with mesial temporal lobe epilepsy, for example, fMRI (Zhang and others 2009) and EEG
(Bettus and others 2008; Liao and others 2010) studies have indicated that there is increased
connectivity in the temporal lobes. In these same studies there was decreased connectivity in
frontal and parietal lobes—regions outside of the location of seizure initiation. Furthermore,
abnormal connectivity and network topology have also been reported, specifically in the δ
and θ bands, in patients with focal epilepsy (Horstmann and others 2010; Wilke and others
2010). This later study also reported a more regular network topology, again in the θ band,
in patients with epilepsy compared with healthy controls as measured with EEG (Horstmann
and others 2010).

This emerging area of translational neuroscience has already begun to deepen our
understanding of how epilepsy arises and suggests some new pathways for diagnosis and
treatment. For example, it may soon be possible to take a short segment of non-invasive
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physiological data (EEG or magnetoencephalogram) or imaging data (fMRI or even
structural MRI) and make direct inferences about the underlying disease. For example, the
development of network analysis techniques may allow researchers to (1) predict that a
patient with a single seizure will go on to develop epilepsy or (2) help localize the area of
seizure onset in a patient with intractable focal epilepsy.

Recent research points to the feasibility of both approaches. For example, if global
synchronization differs between healthy subjects and epilepsy patients in the interictal state
(the periods between seizures), these differences may be present early in the disease and
enable an early diagnosis. Indeed, EEG-based measures of functional connectivity from
children with absence seizures (Rosso and others 2009) and mixed types of idiopathic
epilepsy (Righi and others 2008) differed from healthy controls, suggesting a diagnostic
utility of such measures. Similarly, synchronization likelihood analysis of EEG from
patients with new-onset seizures could predict later development of epilepsy, albeit with
sensitivity and specificity of 62% and 76%, respectively (Douw and others 2010).

These functional network approaches provide new techniques not only for diagnosis but also
for localization of seizure-onset areas in focal epilepsy. It is reasonable to expect that
ictogenic regions will show some form of increased correlation with other brain areas—a
form of hypersynchrony (for review, see Lehnertz and others 2009). Indeed, a variety of
different studies using widely different measures of synchrony in the interictal EEG have
shown some ability to delineate epileptogenic cortex (Arnhold and others 1999; Ben-Jacob
and others 2007; Mormann and others 2000; Ortega and others 2008; Schevon and others
2007; Towle and others 1999). Nonetheless, much work is needed to more completely
understand which measures of connectivity work best to delineate ictogenic regions and how
to incorporate these topological results into clinical determinations.

In summary, a rapidly expanding body of literature has identified differences in functional
connectivity between healthy subjects and patients with epilepsy during seizure free
intervals. These differences might be seen in patients with generalized epilepsy and those
with focal forms of epilepsy, and the differences may be robust enough to be used as a
marker of epilepsy and ictal onset areas. This growing body of information is also beginning
to illuminate why seizures actually arise. What happens in the brain during the seizure itself
—namely, its initiation, spread, and termination—is the focus of the next section of this
review.

Networks That Characterize the Seizure Itself
Synchronization during the Seizure

From a simplistic perspective, focal seizures can be understood as local events that begin in
a circumscribed region. This local activity may then spread, from the central focus outward,
through the recruitment of other brain areas in a cascade of activity that includes both
pathological and normal brain tissue. Presumably, this spread manifests as increased
synchronization throughout the brain network. Mathematical measures now allow a formal
characterization of this claim, and recent observations challenge the assertion that seizures
are uniformly hypersynchronous events (Bartolomei and others 2004; Netoff and others
2004; Kramer and others 2010; Truccolo and others 2011). In the next sections, we describe
the different seizure stages and how neural rhythms and synchronization evolve during the
seizure. To organize our discussion, we focus on three stages of the focal seizure: onset,
propagation, and termination. Within each stage, we consider three issues: (1) the types of
rhythmic activity observed, (2) the coupling between voltage data recorded from separate
spatial locations, and (3) the types of network structures observed within each stage. As
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described in detail below, these insights have altered the traditional perspective of the
seizure as a purely hypersynchronous state.

Seizure Onset: HFO, Decoupling, and the Axon Plexus
Rhythms—There exist many informal definitions for seizure onset. Perhaps the most
obvious manifestation of seizure onset is the emergence of clinical symptoms (e.g.,
convulsions in tonic–clonic seizures). But more subtle changes in brain voltage activity
typically precede this clinical onset. These include rhythmic phenomena, such as the low-
amplitude, high-frequency “beta buzz” (near 20 Hz) (Curtis and Gnatkovsky 2009). These
rapid discharges are associated with the epileptogenic zone, and optimal resection may
target these localized sites of high-frequency activity (Alarcon and others 1995). Recently,
even faster rhythms have been associated with seizure onset. These include high-frequency
oscillations (HFOs) with frequency ranges that typically exceed 100 Hz (Bragin and others
1999). Localization of seizure onset, through identification of pathological HFO activity,
may also help target the epileptogenic zone critical for seizure resection (Fisher and others
1992; Jirsch and others 2006).

A proposed biological mechanism supporting HFO, of particular relevance to this review,
involves a structural network between individual neurons: the axon plexus. The axon plexus
is a collection of pyramidal cells with axons connected by gap junctions. To support HFO,
relatively infrequent spontaneous action potentials propagate across gap junctions between
pyramidal cell axons. In this network model, the period of the HFO is determined by the
global topological structure of the axon plexus network (Traub and Whittington 2010). We
note that the biological mechanisms supporting HFO remain under investigation; another
possible mechanism—inhibitory interneuron discharges on pyramidal cells (Penttonen and
others 1998)—does not depend on the network structure of the axon plexus.

Coupling and networks—Analysis of voltage activity recorded at seizure onset has
typically revealed decreases in coupling between brain regions, although not always.
Decoupling has been observed in the 80- to 200-Hz frequency band among different gyri
(although correlated activity appears within a gyrus) (Grenier and others 2001) and during β
frequency discharges from patients with mesial temporal lobe epilepsy (Bartolomei and
others 2004). In addition, depth electrode recordings of initial fast ictal discharges (60–90
Hz) in patients with partial epilepsy exhibit spatial decorrelations, compared with intervals
immediately preceding and following (Wendling and others 2003). Decorrelations also
appear immediately at seizure onset in high-frequency bands (80–200 Hz) in depth and strip
electrode recordings from patients with complex-partial and secondarily generalized seizures
(Schindler and others 2010). However, other analyses that focused on lower frequency
bands have revealed increased correlation at seizure onset. A measure of non-linear
coupling, the synchronization likelihood, increases in the α (8–13 Hz), β (13–30 Hz), and δ
(1–4 Hz) frequency bands during the rapid discharges characteristic of seizure onset. The
associated functional networks tend to exhibit increased clustering coefficients and path
lengths during the rapid discharges compared with interictal intervals (Ponten and others
2007). In addition, cross-correlation analysis of wideband ECoG data from surface and
depth electrodes suggests increased correlation (and therefore increased network density)
immediately at seizure onset (Kramer and others 2010; Schindler, Leung, and others 2007).
The different results may occur for many reasons, including differences in coupling
measures, patient populations, recording electrodes, definitions of seizure onset, and
selection of “nodes” included in the analysis. The observation of decorrelation in high-
frequency bands at seizure onset may be interpreted as an initial functional disconnection
between distant brain regions, whereas the observation of increased correlation in low-
frequency bands at onset may reflect recruitment of brain regions preceding seizure spread.
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Thus the properties of brain functional connectivity at seizure onset remain an open area of
active research.

Propagation: Ictal Chirps and Decoupling
Rhythms—Following a focal onset, the pathological seizure activity spreads throughout
the cortical network. At this point, the macroscopic brain voltage dynamics (i.e., as recorded
in the ECoG) typically transition from low-amplitude, fast rhythmic activity in spatially
focal regions to large-amplitude, slower rhythmic activity across spatially widespread areas.
Different types of widespread rhythmic patterns appear, including spike-wave complexes
(Gibbs and others 2002) and voltage rhythms that decrease in frequency with time—the
“brain chirp” (Schiff and others 2000)—in generalized seizures (Fig. 4).

In generalized seizures, this rhythmic activity is widespread, appearing throughout the brain.
The large-amplitude oscillations characteristic of seizure are commonly thought of as
“hypersynchronous” events (Schindler, Leung, and others 2007). This may be true at the
mesoscopic spatial scale in which the summed postsynaptic activity of many thousands of
synapses generates population voltage activity observable in a single EEG electrode
(Penfield and Jasper 1954). However, whether hypersynchrony persists at the microscopic
scale of individual neurons or larger macroscopic spatial scales is questionable. Individual
neuronal activity during focal seizures in humans seems not to show the highly ordered
synchrony that would be expected (Truccolo and others 2011). Furthermore, recent analysis
has shown that at the macroscopic spatial scale of ECoG recordings, brain activity
decouples, as we now describe.

Coupling and networks—At the macroscopic spatial scale (e.g., in ECoG recordings)
the transition from seizure onset to propagation may result in a period of decreased (linear)
correlation between brain regions (Kramer and others 2010; Schindler and others 2008;
Schindler, Leung, and others 2007). This decoupling appears independent of the anatomical
location of seizure onset, duration of seizure, and number of recording channels (Schindler,
Leung, and others 2007). However other measures of coupling, including phase or amplitude
correlations (Schiff and others 2005) and the synchronization likelihood (Ponten and others
2007), remain elevated during the seizure. The elevated synchronization likelihood has also
been observed in different seizure types and frequency bands, including the 8- to 12-Hz
band from patients with nocturnal frontal lobe seizures (Ferri and others 2004) and
broadband in neonatal patients (Altenburg and others 2003). Again, this apparent
inconsistency in coupling changes during the middle part of seizure may result from many
factors, including differences in the coupling measures (e.g., linear versus nonlinear) and
differences in seizure types.

As coupling of voltage activity changes between brain regions, so too does the functional
network structure. Changes in the simplest measure of network structure—the density—
follow patterns consistent with some of the coupling results; decreased linear correlation
during seizure propagation results in sparser functional networks (i.e., network with fewer
edges) (Schindler and others 2008), and the dominant connected components fracture into
smaller structures (Kramer and others 2010). Measures of more subtle network properties
include the average path length (PL) and clustering coefficient (CC). Functional networks
(based on correlation measures) suggest that the CC and PL increase during the first half of
the seizure and then gradually decrease (Kramer and others 2010; Schindler and others
2008). A nonlinear measure of coupling (synchronization likelihood) also results in
functional networks whose CC and PL increase during the seizure (Ponten and others 2007).
These results all suggest a shift toward a more regular (less random) network topology
during seizure propagation. In addition, the PL and CC permit assessment of the small-world
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characteristics of the networks. The small-world property has been proposed to become
more significant during seizure (Ponten and others 2007; Wu and others 2006) but remains
controversial (Antiqueira and others 2010; Bialonski and others 2010; Gerhard and others
2011).

The network mechanisms that support seizure propagation remain unknown. One proposal,
consistent with the decrease in coupling during propagation, is that an initial interval of
extremely intense neuronal firing at seizure onset saturates “hub” neurons—which maintain
many connections to other neurons. When these hub neurons shut off, the result is a
functional disconnection between local substructures and decreased coupling (Schindler and
others 2008). In computational models of seizure (Morgan and Soltesz 2008) and in
observations of human seizures (Kramer and others 2008), hubs serve important roles and
may perhaps be useful as targets for surgical treatment of epilepsy (Wilke and others 2011).
In addition, simulation studies suggest that the pathological organization of seizing activity
is supported by small-world topologies (Netoff and others 2004; Percha and others 2005).
Although network topology itself influences the neuronal activity, the interaction of network
structure and intrinsic neuronal properties is also crucial (Bogaard and others 2009;
Dyhrfjeld-Johnsen and others 2007) but remains poorly understood.

Termination: Slow Rhythms and Recoupling
Rhythms—Like the other stages of the seizure, the voltage dynamics of seizure
termination exhibit characteristic behaviors. The first, as mentioned in the previous section,
is the slowing of the voltage rhythms (i.e., the brain chirp; Schiff and others 2000) in the
approach to seizure termination. The second is the nearly simultaneous cessation of voltage
activity across the brain at termination, as observed in both macroscale ECoG recording and
the microscale activity of individual neurons (Fig. 5). Analyses of functional network
topologies in the approach to seizure termination are providing additional information.

Coupling and networks—One hypothesis is that in the approach to seizure termination,
the coupling of brain activity increases. This has been observed using (linear) measures of
cross-correlation in the broadband (Kramer and others 2010; Schindler and others 2008;
Schindler, Elger, and others 2007) and high-frequency (80–200 Hz) band (Schindler and
others 2010), appeared independent of anatomical location of seizure-onset zone and
duration of seizure, and occurred for both partial complex and secondarily generalized
seizures (Schindler, Leung, and others 2007). In addition, the non-linear correlation
coefficient, applied to voltage activity recorded at temporal lobe and thalamus, increased in
the approach to seizure termination, and the maximal values of synchrony were observed
during the last part of the seizure (Guye and others 2006). These results are consistent with
animal models showing that synchrony progressively increased toward the late seizure stage
(Topolnik and others 2003).

This coupling increase affects the functional network structure by increasing the network
density (i.e., the number of edges) (Kramer and others 2010; Schindler and others 2008) and
supporting the emergence of a giant connected component—the coalescence of the
functional network (Kramer and others 2010). More specific measures of the network
structure suggest that in the approach to seizure termination the PL and CC decrease, and
therefore the networks move in the direction of becoming more random (Kramer and others
2010; Schindler and others 2008).

Understanding the mechanisms that end the seizure remains an important goal, and these
analyses of coupling and functional network structure at seizure termination are beginning to
provide additional clues. An important question to address is whether the increase in
synchrony before termination is an epiphenomenon of another process or an active
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mechanism for seizure termination. One proposal for seizure termination is that the self-
organization of neuronal activity (as reflected by the increased coupling) drives neuronal
populations into a hypo-excitable, refractory state (Schindler, Elger, and others 2007). The
biophysical mechanisms that may support this transition include the activation of potassium
currents across large neuronal networks that overcome hyperpolarization- activated
depolarizing currents (Schindler, Elger, and others 2007). The role of deep brain structures,
such as the thalamus, in seizures remains an area of active research with some observations
from animal models suggesting an important role for the thalamus (Bertram and others
2001), and others not (Timofeev and Steriade 2004). Whether the thalamus, or another deep
brain region, serves to mediate coordination between cortical regions and thereby terminate
activity remains unknown (Lado and Moshé 2008).

Conclusions and Open Questions
In this review we considered the rhythmic activity and functional networks observed during
seizures and in the interictal state. We focused on three stages of seizure—onset,
propagation, and termination—and summarized the types of rhythms and functional
networks observed in each stage. In general, the rhythmic stages of seizure are fairly well
characterized, although new recording modalities have allowed the observation of new
phenomena (e.g., high-frequency voltage recordings and HFO). The inference and
characterization of functional networks during seizures remain an active area of research;
nonetheless, we attempted to summarize some of most common observations (Fig. 6). These
include changes in coupling during the seizure and in particular increased coupling at
seizure termination. In terms of network structure, observations suggest that networks
acquire larger path lengths and clustering coefficients near the beginning of the seizure and
that networks become more small-world during seizure propagation and more random at
seizure termination. For each stage, we also noted contradicting observations. These
discrepancies may exist for many reasons, including differences in the types of coupling
measures used (e.g., linear versus nonlinear) and the types of patients analyzed. We hope
that future research will help reduce these discrepancies and will further understanding of
the functional networks of seizure.

These observations suggest a refinement of the traditional idea that seizures are
hypersynchronous events. Although the current analysis of interictal data points to at least
some degree of increased coupling between brain regions, particularly within the seizure-
onset zone in patients with focal epilepsy, this hypothesis needs substantiation across larger
patient groups and situations and will likely lead to a more nuanced conclusion regarding
what regions show hypersynchronization at a network level. At the microscopic spatial scale
of individual neurons, some correlated neuronal activity must occur to produce the large-
amplitude, macroscopic fields observable in the ECoG during the seizure (although seizure-
like activity induced in rat hippocampal slices also shows desynchronization of neuronal
firing; Netoff and Schiff 2002). However, hypersynchrony at the microscopic spatial scale
does not imply correlated activity between macroscopic brain regions. In fact, variability in
propagation between brain regions may act to decorrelate macroscopic brain activity during
the seizure (Schindler, Leung, and others 2007). The results reviewed here and other
investigations are beginning to reveal more details of the entire scope of interictal and ictal
activity.

Epilepsy is a disease with many causes and manifestations and one for which many research
questions remain. For example, are the network characteristics between and during seizures
of different causes the same; in other words, is there a “final common pathway” linking the
different causes at a mechanistic level? Perhaps the most important remaining issue, and
perhaps the most difficult to approach, is how to link these network-level descriptions with
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the vast but still incomplete understanding of seizures and epilepsy at the cellular and
subcellular levels. Linking these different spatial scales and intellectual frameworks would
provide a comprehensive description of the disease and undoubtedly lead to novel
therapeutic interventions.
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Figure 1.
Example ECoG recording. (A) An 8 × 8 electrode grid (1 cm spacing between electrodes) is
placed directly on the cortical surface and recordings are made usually for several days or
even weeks. The voltage data (B) recorded continuously for multiple days typically exhibit
complicated dynamic activity.
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Figure 2.
Structural networks (left) represent physical connections between nodes (e.g., axons or
white matter tracks). Here the nodes represent macroscopic brain regions that generate
population voltage activity (middle). From the coupling between the node dynamics,
functional networks are inferred (right) whose structure depends upon the choice of coupling
measure and threshold.
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Figure 3.
Examples of three networks structures: regular (A), small-world (B), and random (C). In the
regular network, a path between two nodes (green and yellow) is shown in green. For each
network, the approximate average path length and clustering coefficient are shown.
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Figure 4.
Example of ictal dynamics. (A) Voltage trace from a single ECoG electrode during seizure.
Visual inspection begins to suggest the different dynamic regimes. (B) A time–frequency
spectrum of the voltage signal in (A). Warm (cool) colors indicate high (low) amplitude
oscillations. As time evolves, the dominant rhythms slow.
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Figure 5.
Neuronal spike raster recorded in vivo from a human subject during seizure. The neurons (n
= 149) are arranged according to increasing mean spike rate. The seizure begins at t = 0 min
(solid red line) and ends near t = 1 min. Visual inspection suggests a nearly simultaneous
cessation of spiking activity for most neurons at seizure termination. Adapted from Truccolo
and others (2011).
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Figure 6.
Summary of functional network organization during different seizure stages. Three different
stages of seizure—onset, propagation, and termination—are shown with a typical voltage
trace during seizure. The characteristics of the rhythms (top row), coupling (middle row),
and networks (bottom row) are indicated as observed in each state and with references to the
literature. HFO = high-frequency oscillation, CC = clustering coefficient, PL = path length.
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