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Abstract

Common genetic variation frequently accounts for only a modest amount of inter-individual
variation in quantitative traits and complex disease susceptibility. Circulating adiponectin, an
adipocytokine implicated in metabolic disease, is a model for assessing the contribution of genetic
and clinical factors to quantitative trait variation. The adiponectin locus, AD/POQ, is the primary
source of genetically-mediated variation in plasma adiponectin levels. This study sought to define
the genetic architecture of AD/POQ in the comprehensively phenotyped Hispanic (h=1151) and
African American (n=574) participants from the Insulin Resistance Atherosclerosis Family Study
(IRASFS). Through resequencing and bioinformatic analysis, rare/low frequency (<5% MAF) and
common variants (>5% MAF) in AD/POQ were identified. Genetic variants and clinical variables
were assessed for association with adiponectin levels and contribution to adiponectin variance in
the Hispanic and African American cohorts. Clinical traits accounted for the greatest proportion of
variance (POV) at 31% (p=1.16x10"47) and 47% (p=5.82x10720), respectively. Rare/low
frequency variants contributed more than common variants to variance in Hispanics: POV=18%
(p= 6.40x1071%) and POV=5% (p=0.19), respectively. In African Americans, rare/low frequency
and common variants both contributed approximately equally to variance: POV=6%
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(p=5.44x10712) and POV=9% (P=1.44x10710), respectively. Importantly, single low frequency
alleles in each ethnic group were as important as, or more important than, common variants in
explaining variation in adiponectin. Cumulatively, these clinical and ethnicity-specific genetic
contributors explained half or more of the variance in Hispanic and African Americans and
provide new insight into the sources of variation for this important adipocytokine.

adiponectin; proportion of variation; rare variants; common variants; clinical traits

Introduction

Genome Wide Association Studies (GWAS), based on evaluation of common genetic
variation, have made remarkable contributions to the understanding of the genetic basis for
many complex traits and common diseases. With these successes, it is now recognized that
much of the source of inter-individual variation in quantitative traits or susceptibility to
disease remains to be explained, the so-called “missing heritability” [Manolio, et al. 2009].
Numerous contributors to “missing heritability” beyond common variations have been
proposed: copy number variations, epigenetic mechanisms, and microRNAs, to name a few.
Low frequency (LF) or rare variants, especially coding mutations, as a source of variance in
traits have recently become of great interest with the advent of next generation DNA
sequencing methods. In this report we assessed the relative contributions of common genetic
variants (>5% minor allele frequency; MAF), LF and rare genetic variants (<5% MAF), and
clinical contributors to variation in a model trait, plasma adiponectin.

Adiponectin is an adipocytokine that is secreted primarily by the adipose tissue and has been
implicated in glucose homeostasis and fatty acid oxidation [Fruebis, et al. 2001; Hotta, et al.
2000]. Adiponectin is the most abundant adipocytokine found in the plasma, accounting for
0.01% of total plasma protein. Low circulating adiponectin levels are observed in a wide
variety of conditions including insulin resistance [Berg, et al. 2001], type 2 diabetes (T2D)
[Hotta, et al. 2000; Scherer 2006], obesity [Arita, et al. 1999; Yamamoto, et al. 2002],
hypertension [Adamczak, et al. 2003; Ohashi, et al. 2006], dyslipidemia [Matsubara, et al.
2002], atherosclerosis [Okamoto, et al. 2002], and metabolic syndrome [Comuzzie, et al.
2001].

Family studies have shown plasma adiponectin levels to be highly heritable with values
ranging from 40-70% [Chuang, et al. 2004; Comuzzie, et al. 2001; Lindsay, et al. 2003].
Variation in circulating adiponectin levels has been associated with multiple genetic loci
including at the adiponectin coding gene AD/POQ on chromosome 3 [Guo, et al. 2006], and
chromosomes 5, 14 [Comuzzie, et al. 2001; Richards, et al. 2009], 9 [Lindsay, et al. 2003],
and 16 [Ling, et al. 2009] in various populations. Importantly, efforts to date strongly
suggest that the AD/POQ gene itself is the major genetic determinant of variance in
circulating adiponectin [Dastani, et al. 2012; Heid, et al. 2010]. Common variations, i.e.
single nucleotide polymorphisms (SNPs), in the AD/POQ gene have been genotyped in
multiple studies. Heid et a/[Heid, et al. 2010] reported that common variants in AD/POQ
cumulatively accounted for 6.7% of the variance in adiponectin levels in a study of
European-derived individuals. Recently, we described a low frequency coding variant
(G45R) in Hispanic Americans which alone accounts for approximately 17% of the variance
in plasma adiponectin levels in the Insulin Resistance Atherosclerosis Family Study
(IRASFS) Hispanic American population [Bowden, et al. 2010].
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While the association of AD/POQ polymorphisms with circulating adiponectin levels is now
compellingly demonstrated [Heid, et al. 2010], the case for association of these variants with
biomedical traits such as diabetes, obesity, and insulin sensitivity is less compelling.
Fundamental to a clearer understanding of the influence of adiponectin on biomedical traits
is a more comprehensive understanding of the contributors, i.e. genetic, clinical, and
biometric, to variation in adiponectin.

There have been few studies in which both genetic and non-genetic contributions to variance
of a trait have been documented in detail. In light of previously documented contributions of
both genetic and clinical variables, adiponectin is an ideal trait to assess the magnitude of
different influences on variation in levels of the circulating protein. The IRASFS provides a
unique opportunity to study this question with its comprehensive phenotyping in a large
number of Hispanic and African Americans which include detailed assessments of insulin
sensitivity, adipose tissue distribution as measured by computed tomography, and serum
biomarkers.

The goal of this study was to measure the individual and cumulative contributions of
common genetic variants, LF and rare genetic variants, and clinical measures to variation in
circulating adiponectin in two different ethnicities: Hispanic and African Americans.

Clinical measures

The mean (SD) circulating adiponectin level was 13.5 (7.0) pg/ml and 9.06 (5.23) pg/ml in
the Hispanic (n=1151) and African American (n=574) IRASFS samples, respectively. It was
associated with a wide range of clinical traits in univariate analyses (Table 1 and Table 2).
The most strongly associated clinical trait was high density lipoproteins (HDL) with a p-
value of 9.29x10777 and 2.03x10729 in Hispanic (n=1148) and African Americans (n=574),
respectively. Lipids, adiposity measures, and glucose homeostasis variables were highly
correlated with plasma adiponectin levels in both cohorts. These associations with clinical
traits are consistent with prior studies [Hanley, et al. 2007; Hanley, et al. 2011] documenting
the negative correlation of adiponectin levels and metabolic derangement.

ADIPOQ variant identification in Hispanic Americans by direct sequencing

Previously we identified a G45R AD/POQ mutation using a linkage based strategy
[Bowden, et al. 2010]. The G45R allele had a large effect on adiponectin levels suggesting a
detailed survey of the AD/POQ gene in an effort to find additional variants that influence
adiponectin levels. AD/IPOQ was sequenced in DNASs from subjects in the bottom decile of
plasma adiponectin levels in both the Hispanic (n=115) and African American (n=60)
IRASFS sample following the logic that variations in the coding sequence were most likely
to result in mutations that lower the amount of circulating adiponectin. The individuals in
the top decile of adiponectin levels in the Hispanic American cohort (n=115) were
sequenced for completeness, but no additional variants were identified. The results of this
survey in the Hispanic American cohort are summarized in Supplementary Table 1. In the
Hispanics, this sequencing identified a promoter variant, 3 variants in exon 2, and 1 variant
in exon 3. The promoter variant (C-186T) was not previously identified. Three of the four
coding variants were previously identified. Of the three previously identified coding
variants, rs2241766 (G15G, MAF 0.14) and rs17366743 (Y111H, MAF 0.022), are well
documented and in the dbSNP database. The other previously identified variant is a novel
SNP, G133C (G45R, MAF 0.011), reported by Bowden et a/in 2010 [Bowden, et al. 2010].
The coding SNP C75T (MAF 0.0087), which results in a synonymous mutation at amino
acid 25, had not previously been identified in the IRASFS. In a parallel sequencing effort in
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African Americans (An et a/submitted), five coding variants were identified, rs2241766,
G113A, C163T, rs17366743 including two well documented variants also identified in the
Hispanic cohort, rs2241766 and rs17366743. The remaining coding variant was a low
frequency variant, G113A (G38D, MAF 0.014).

Genotyping and analysis of common and LF/rare variants

Genotype data from the SNPs were analyzed for association with plasma adiponectin levels
using a variance component model implemented in SOLAR (Table 3 and Table 4) for both
the Hispanic (n=1151) and African American (n=574) cohorts.

In the Hispanic American cohort (Table 3), there was nominal evidence of association
(p<0.05) with plasma adiponectin levels in four common SNPs including rs822387,
rs822391, rs822394, and rs822396 with p-values ranging from 0.0072 to 0.025 and the beta
values ranging from 0.058 to 0.11. There were a total of 10 polymorphic LF/rare variants
(MAF<5%) genotyped in the sample. The frequency of these variants ranged from 0.0044 to
0.047 in Hispanic Americans. The majority of the LF/rare variants selected for genotyping
from the literature were not found in this Hispanic sample. The most strongly associated LF
variant was the previously reported G45R variant [Bowden, et al. 2010] with a p-value of
5.03 x 10740 for association with plasma adiponectin. Two additional rare variants,
rs17300539 (—363 bp 5’ of the AD/POQ promoter) and rs62625753 (a G90S coding
mutation) showed association with plasma adiponectin levels with p-values of 0.0079 and
0.025, respectively. Individuals carrying the minor allele (A) of rs17300539 had higher
levels of adiponectin in a dose dependent manner, with mean (SD) adiponectin levels of
13.3 (6.9) pg/mL, 16.4 (10.9) pg/mL, and 24.5 (11.0) pg/mL for 0, 1, 2 copies of the minor
allele, respectively. In contrast, individuals with the minor allele (A) of rs62625753 had
lower adiponectin levels with mean (SD) adiponectin levels of 13.7 (7.4) pg/mL and 10.3
(4.1) pg/mL for individuals with 0 and 1 copy of the minor allele, respectively.

Of the common SNPs found to be associated with adiponectin levels in Hispanic Americans,
rs822391 (located in intron 1) had the strongest evidence of association with a p-value of
0.0072. This SNP showed some differences in mean adiponectin between individuals with 2
copies of the minor allele (15.6 £ 7.1 pg/mL) and those with no copies of the minor allele
(13.6 £ 7.8 pg/mL), however these differences were not as dramatic as those seen with the
LF variants. The only other common variant with similar differences in mean plasma
adiponectin levels was rs822387 (—3786 bp 5’ of the AD/POQ promoter), in which the
minor allele led to higher levels of adiponectin in a dose-dependent manner. Average (SD)
adiponectin levels were 13.4(6.9) pg/mL, 15.8 (10.7) pg/mL, and 24.5 (11.0) pg/mL for
individuals with O, 1, 2 copies of the minor allele, respectively.

Figure 1 shows a gene map of the AD/POQ locus with a linkage disequilibrium (LD) plot of
all genotyped SNPs showing five major LD blocks within the Hispanic American sample.
There were three SNPs (rs822387, rs7649121, and rs3821799) associated with adiponectin
that did not fall within any of the LD blocks. The remaining seven associated variants were
found within the LD blocks, with four of the variants (rs822391, rs16861210, rs822394, and
rs822396) within block 3.

In a similar analysis of the IRASFS African Americans (Table 4), seven SNPs were
associated with adiponectin (P<0.05), two of which were low frequency. Of all the SNPs
associated with plasma adiponectin levels, the low frequency SNPs, rs17300539 and the
novel SNP, R55C, were most strongly associated, with p-values of 0.0018 and 0.00030,
respectively. rs17300539 is a low frequency variant (MAF 0.028) found —363 bp 5’ of the
ADIPOQ promoter. Individuals with the minor allele (A) for rs17300539 had higher plasma
adiponectin levels with mean (SD) adiponectin levels of 8.98 (5.25) pg/mL and 11.16 (5.21)
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pg/mL with 0 and 1 copy of the minor allele, respectively. The most strongly associated
variant was the R55C coding variant (p=0.00030), initially identified through sequencing
analysis in the IRASFS. It is located in exon 2 of the AD/POQ gene in the collagen-like
domain of the adiponectin protein. Individuals with the minor allele (T) had substantially
lower levels of adiponectin with mean (SD) adiponectin levels of 9.06 (5.01) g/mL and
1.20 (0.37) pg/mL with 0 and 1 copy of the minor allele, respectively. For both these low
frequency variants, there were no individuals homozygous for the minor allele.

Of the common variants associated with plasma adiponectin levels in the African American
cohort, rs7648121 was the most strongly associated variant with a p-value of 0.0052. This
SNP is located in the intron of FAM19A1, a gene upstream of AD/POQ. The differences in
the genotypic means for the variant were not as dramatic in individuals with 0 (8.63 + 4.85
pg/mL) and 1 (10.68 = 5.53 pg/mL) copy of the minor allele (T), compared to the genotypic
means seen in LF variants.

Figure 2 shows a gene map of the AD/POQ gene with a LD plot of all the genotyped SNPs
within the African American cohort. There is only one LD block within the AD/POQ gene.
None of the seven associated variants were located within the LD block.

Proportion of variance explained by clinical factors, LF/rare variants, and common

variants

The proportion of the variance (POV) in plasma adiponectin levels was determined using a
variance component analysis implemented in SOLAR for each trait category (clinical traits,
LF / rare SNPs, and common SNPs) in both the Hispanic and African American cohorts
(Table 5). In the Hispanic American cohort, clinical traits explained 31% of the POV
(n=820), the ten LF/rare variants included in the analysis explained 18% of the POV
(n=1104), and finally, the remaining 31 common variants explained 5% of the POV
(n=890). When the clinical traits and genetic variants were combined, they explained 49% of
the POV in the IRASFS Hispanic American sample (n=628). The POV estimates were
highly consistent and the p-values for association of the clinical traits with adiponectin level
are highly significant (p-value of 1.16x10747). The second most significant contributor to
adiponectin variation was LF/rare SNPs, with a p-value of 6.40x10715, Common SNPs did
not have a statistically significant association with adiponectin levels with a p-value of 0.19.
Clinical traits had the strongest association, even conditional on both common and rare
SNPs with a p-value of 1.21x10754 (data not showry). Rare [ LF variants were also
significantly associated conditional on common variants and clinical traits with a p-value of
5.53x1071% and common SNPs are not statistically significant with adiponectin levels
conditional on rare SNPs and clinical traits, with a p-value of 0.301 (data not shown).

The proportion of variance analysis was also performed in the African American cohort of
the IRASFS for comparison (Table 5). It is noteworthy that 11 SNPs that were classified as
LF/rare (MAF<5%) in the Hispanic sample were classified as common variants (MAF>5%)
in the African American sample. Clinical traits explained 44% (n=437) of the variation with
LF/rare and common variants explained 5.7% (n=494) and 8.5% (n=479), respectively.
Thus, in African Americans, the LF/rare variants and the common variants explained
comparable proportions of the variance. Cumulatively, the clinical traits and genetic variants
accounted for 59% of the variance in adiponectin levels (n=360). The most significant
contributor to adiponectin variation was clinical traits with a p-value of 5.82x10720, The
second most significant contributor to adiponectin variation is LF/rare variants with a p-
value of 5.44x10712, with common variants contributing similarly to the POV (1.44x10710),

Genet Epidemiol. Author manuscript; available in PMC 2014 January 01.
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Discussion

In this study we assessed the relative contributions of common, LF and rare genetic variants,
and clinical factors to the variance of a model quantitative trait, plasma adiponectin in
Hispanic and African Americans. Plasma adiponectin as a model trait has several
advantages. The quantitative assay measures mass rather than activity, which could vary
with protein variants. Although common variation in other genes, including L YZL1, CDH13
[Ling, et al. 2009] and ARL15[Richards, et al. 2009] have been shown to be associated with
adiponectin levels, prior studies have documented the AD/POQ locus itself is the primary
GWAS signal for plasma adiponectin levels [Dastani, et al. 2012; Heid, et al. 2010] and thus
likely the primary source of variation. The IRASFS is an ideal sample in which to assess
contributions to variance due to the extensive and detailed phenotyping of participants with
an emphasis on metabolic measures. In addition, subjects in the two ethnic groups were
ascertained and examined using a common protocol. As a result, this study design enabled
us to assess the contributions of both clinical and genetic phenotypes for their effects on
adiponectin variance in a uniform analysis.

We found that clinical traits and LF/rare variants contributed the largest POV in plasma
adiponectin levels in the Hispanic American cohort. Clinical traits accounted for the largest
component of variance in adiponectin levels at 31% with the previously identified LF
variant, G45R, having the largest genetic contribution (16.7%) [Bowden, et al. 2010]. There
was only one other LF/rare variant (rs62625753), found to be associated with lower plasma
adiponectin levels in a Caucasian population (p=0.016) [Vasseur, et al. 2002], that was
associated with adiponectin (p=0.025). It is noteworthy that (1) other LF/rare SNPs added
little additional influence on adiponectin variance beyond the G45R, and (2) common
variants contributed only modestly to the variance. Thus, if G45R was absent from the
Hispanic American population, the contributions to variance by LF/rare variants would be
dramatically changed. The G45R mutation has only been observed in Hispanic Americans
[Bowden, et al. 2010].

In contrast and in the absence of a strong variant like the G45R, LF/rare variants explained a
modest but significant amount of the variation of adiponectin in African Americans (6.3%).
When comparing the two groups, it is interesting to note that there were only two SNPs that
remained LF/rare variants in both cohorts when classified based on MAF<5%. Eight
variants, classified as LF/rare in Hispanic Americans, were reclassified as common variants
in the African American cohort. Similar to Hispanic Americans, a single rare variant, the
R55C, made the largest single contribution to the variance. Common variants were able to
explain a nominally greater percentage of the variation (8.1%). However, LF/rare variants
were more strongly associated than common variation with plasma adiponectin levels with
p-values of 5.44 x 10712 and 1.44 x 10710, respectively, in spite of the smaller amount of
variation explained by rare variants. This highlights the importance of LF/rare SNPs in
adiponectin variation.

Cumulatively, the clinical traits and genetic variants included in this analysis accounted for a
substantial POV (Hispanic American: 49%; African American: 59%) in adiponectin levels.
While these estimates are unlikely to be precise measures, this suggests that approximately
half of the variance is still unexplained. We have estimated the heritability of adiponectin in
the IRASFS sample to be 71% and 64% in Hispanic and African Americans, respectively
[Guo, et al. 2006]. We estimate that the common, LF, and rare variants tested in this study
account for approximately 50-60% of the heritability leaving 40-50% of unexplained
residual heritability. This means that there are most likely other genetic and non-genetic
factors yet to be identified. The analysis of of the clinical and genetic components shows
that clinical traits are the most significant contributors to adiponectin variation
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(p=1.16x10"4" and 5.82x10720 in Hispanic and African Americans, respectively).
Additional non-genetic contributors to adiponectin variation that were not included in these
analyses could be traits such as vitamin D levels [Vaidya, et al. 2012] and dairy intake
[Stancliffe, et al. 2011]. In addition, our results show that genetic variation is also an
important contributor to adiponectin variation (p=1.16x10"2 and 4.68x10~ in Hispanic and
African Americans, respectively). Rare/LF variants were the most strongly associated
genetic variants (p=6.40x10715 and 5.44x10712 in the Hispanic and African American
cohorts, respectively). Common SNPs explained similar variation in African Americans
(p=1.44x10710), and more interestingly, did not contribute significantly in Hispanic
Americans (p=0.19).

LF/rare variants explained the greatest proportion of genetic risk (16%) in the Hispanic
Americans and were more strongly associated with adiponectin variation (p=6.40x10715), In
comparison, LF/rare variants explained less of the variation than common SNPs in the
African Americans, but were more strongly associated with adiponectin variation than
common variants with p=5.44x10712 vs. 1.44x10710, It is interesting to note that we have
also resequenced AD/POQ in a large number of European Americans and found no
mutations with the G45R/R55C-like phenotype, i.e. mutations resulting in a significant
reduction in circulating adiponectin levels. Thus, we predict that LF/rare coding variants in
ADIPOQ will have a modest contribution to variance in European-derived populations.
Thus, there is no consistent pattern between ethnicities and the impact of LF/rare variants.

The source(s) of the remaining contributors to adiponectin variation remain to be identified.
Although there are other genes, e.g. ARL15[Richards, et al. 2009], CDH13, L YZL1[Ling,
etal. 2009], FER[QI, et al. 2011], and chromosomal intervals, e.g. 16g23.2, 19q13.11,
12924.31, 8924.13, 6p21.1 and 1941 [Dastani, et al. 2012], identified from GWAS that have
been associated with adiponectin levels and may contribute additional common variants as a
source of variance. Common variants in the AD/POQ locus contribute only a small
proportion of variance and extending this analysis to common variations in other, weaker
contributors seems unlikely to capture additional sources of variation. There is a counter to
this argument. Yang et a/[Yang, et al. 2010] recently proposed that common variants
account for a greater proportion of variance than explained by variants identified solely by
highly stringent statistical criteria. Another possible source of variation, epigenetic
influences, seems unlikely to have a large impact on adiponectin levels as there are no CpG
islands within the AD/POQ locus with the closest island approximately 15 kb upstream.
Copy number variants have not been identified in the AD/POQ locus, and thus not a likely
source of variation. Studies have shown that microRNAs, such as miR-369-5p and miR-371,
down-regulate and up-regulate AD/POQ expression respectively [Bork, et al. 2010] and are
thus a plausible source of variance. Finally LF/rare coding variants in other genes that have
the potential to modulate plasma adiponectin levels, such as ADIPOQR1, ADIPORZ,
CDH13 ARL15, LYZL 1, and FER. While a single LF/rare variant in the Hispanic
American cohort explained a significant proportion of the variance, there could be multiple
LF/rare SNP in and/or outside of AD/POQ that could be important in African Americans.
Resources from exome sequencing in Hispanic Americans are not yet available to
systematically test this possibility and there are limited resources for African American
exomes. These are possibilities given we have an example in hand, i.e. the high impact
G45R and R55C variants. It is widely recognized that such coding variants are frequently
found in genes in which common variants have been shown to influence a trait [Johansen, et
al. 2010]. Another consideration for future studies is the use of high molecular weight
(HMW) adiponectin, which may have some effect on the results. The G45R mutation, for
example, results in low levels of total adiponectin, but even lower levels of HMW
adiponectin [Bowden, et al. 2010].
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Most prior studies have looked solely at common SNPs for their contribution to adiponectin
variation [Menzaghi, et al. 2004] or LF SNPs for their functional impact [Morandi, et al.
2010]. These studies have primarily been conducted in European-derived or Asian
populations. Among these studies, the amount of adiponectin variation explained has not
been comparable with Heid et al. explaining 6.7% in a sample of 4,659 Europeans [Heid, et
al. 2010] and Warren et al explaining 6% in a sample of 14,002 individuals (including
Europeans, African Americans, and Indian Asians) [Warren, et al. 2012]. This study is novel
in that it was conducted in well-phenotyped samples of large Hispanic and African
American families in which we have examined a variety of contributions to adiponectin
variation.

While not the focus of this study, the implications of the observations summarized here are
provocative in relation to understanding the role of adiponectin variation in human health.
We have estimated that half or more of variation in adiponectin is explained with clinical
relationships being more important than genetic influences. The relatively minor influences
of common variations make it unlikely that they directly influence clinically relevant
phenotypes. It is striking that Hispanic Americans with the G45R mutation were clinically
little different from subjects without the G45R variant [Bowden, et al. 2010]. We have made
similar observations with R55C in the African American population (An et al., submitted).
What is striking is that both variants reduce adiponectin levels >80% without obvious
metabolic impact. Given the well documented action of adiponectin in cell and animal
models, this suggests that individuals with these mutations somehow compensate for the loss
of adiponectin-mediated metabolic effects.

In conclusion, we have assessed the contributions to variation of a model trait, plasma
adiponectin, in a comprehensively phenotyped bi-ethnic sample. Simple genetic variations
in the gene itself, either common or low frequency and rare variation, in combination with
clinical measures account for a substantial proportion of the variation in adiponectin. These
results highlight the importance of rare variants in adiponectin variation. With this
observation though, it is clear that other sources of variation remain to be identified.

Research Design and Methods

Insulin Resistance Atherosclerosis Family Study (IRASFS)

Characteristics of the study sample are summarized in Tables 1 and 2. The study design,
recruitment, and phenotyping for IRASFS have been described in detail [Henkin, et al.
2003]. Briefly, the IRASFS was designed to identify the genetic and environmental basis of
insulin resistance and adiposity. Subjects included in this report were recruited from clinical
centers in San Luis Valley, Colorado (a rural Hispanic population), San Antonio, Texas (an
urban Hispanic population) (Table 1), and Los Angeles, California (an urban African
American population) (Table 2). Family members were recruited to obtain an average of
12-13 family members. The exam included a fasting blood draw and medical history
interview. The clinical examination included an insulin-modified frequently sampled
intravenous glucose tolerance test (FSIGT) using the reduced sampling protocol [Steil, et al.
1993]. Glucose homeostasis parameters were computed with the MINMOD analysis
program [Bergman, et al. 1985]. Height, weight, and waist and hip circumferences were
measured and computed tomography (CT) was used to estimate visceral and subcutaneous
fat areas and liver density [Wagenknecht, et al. 2009]. Glucose, insulin, triglycerides, HDL,
CRP, PAI-1, and fibrinogen levels were assayed using standard laboratory methods.
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Laboratory Methods

Biomarkers—Total plasma adiponectin levels were measured by radioimmunoassay (RIA;
Linco Research, St. Charles, MO). This RIA uses a polyclonal anti-adiponectin antibody
which recognizes trimers and higher multimers of adiponectin and includes recognition of
the globular domain. In addition, a subset of 200 samples was measured with a monoclonal
antibody-based ELISA, with good correlation with the RIA [Bowden, et al. 2010].

DNA Isolation—Genomic DNA was purified using PUREGENE DNA isolation kits
(Gentra Inc., Minneapolis, MN, USA). Total genomic DNA was quantified using a
fluorometric assay by Hoefer DyNA Quant 200 fluorometer (Hoefer Pharmacia Biotech
Inc., San Francisco, CA, USA).

Sequencing and Genotyping—Targeted promoter and exonic sequences of AD/POQ
were PCR amplified and directly sequenced using Big Dye Ready Reaction Mix on an
ABI3730xI sequencer (Applied Biosystems, Foster City, CA). Sequence data was visualized
using Sequencher Software version 4.9 (GeneCodes Corporation, Ann Arbor, MI). The
coding regions of AD/POQ were sequenced, as well as the promoter region as defined by
Kita et al. [Kita, et al. 2005]. SNPs identified in prior association studies [Heid, et al. 2010;
Hivert, et al. 2008; Vasseur, et al. 2002], functional studies [Waki, et al. 2003], and LF and
rare variants identified from DNA sequencing described above and studies in diverse
populations as summarized in Waki et al [Waki, et al. 2003] were also identified for
genotyping. In addition, common SNPs across the AD/POQ gene and the surrounding +/
-50kb region were selected using HapMap YRI and CEU populations (www.hapmap.org).
Thirty-eight tag-SNPs were selected with an /2 threshold of 0.8 and MAF>5%. A total set of
41 SNPs was genotyped in the IRASFS Hispanic American sample (n=1240). SNP
genotyping was performed on a Sequenom MassARRAY Genotyping System (Sequenom,
San Diego, CA) using methods previously described [Palmer, et al.]. The genotyping
efficiency was >97% and 48 blind duplicate samples included to evaluate genotyping
accuracy were 100% concordant. These data were combined with data from six SNPs
previously genotyped in IRASFS [Bowden, et al. 2010; Guo, et al. 2006; Sutton, et al. 2005]
resulting in a total of 47 SNPs. Of the 47 SNPs included in the analysis, six of them were
monomorphic (T31l, C36S, G38D, R55C, 1164T, and rs1865762) and thus excluded from
further study. In parallel, the same tag SNPs and rare variants identified in the literature as
described above were also genotyped in the African American cohort. Similarly, this
genotype data was combined with previously genotyped three SNPs previously in the
IRASFS [Bowden, et al. 2010; Guo, et al. 2006; Sutton, et al. 2005] resulting in a total of 44
SNPs. In addition, there were four monomorphic SNPs (C36S, G45R, G84R, and
rs62625753) that were excluded from further analysis in the African American sample.

Statistical Analysis

All variants were examined for Mendelian inconsistencies using PEDCHECK [O'Connell
and Weeks 1998], resulting in <0.05% discrepancies which were converted to missing.
Plasma adiponectin levels were log transformed to best approximate the distributional
assumptions of the test and to minimize heterogeneity of the variance. Tests of association
between the variants and plasma adiponectin were computed using a variance component
model as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR)
[Almasy and Blangero 1998] with primary inference based on the additive genetic model
adjusting for age, gender, recruitment center, BMI, and admixture proportions. The
covariates for admixture were estimated using principal components analysis on 80 ancestry
informative markers (AIMSs) in the Hispanic American population [Palmer, et al. 2010] and
36 AlIMs selected in African Americans population [Palmer, et al. 2010].
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SOLAR was also used to determine the contribution of genetic factors to adiponectin levels.
A variance components analysis of family data decomposes the total variance of the
phenotype into components that are due to genetic (polygenic) effects (additive genetic
variance), measured covariates, and random environmental effects. Clinical and phenotypic
traits were selected for inclusion in the models based on prior reports of association from
these data with adiponectin levels [Hanley, et al. 2007; Hanley, et al. 2011] or at least weak
suggestive evidence of association in univariate analysis (P<0.20). Additionally, fibrinogen
was included as a clinical trait in the analysis despite lack of association due to published
association of fibrinogen with diabetes, cardiovascular disease, and subclinical inflammation
[Rooney, et al. 2011; Tosetto, et al. 2011; Zhao, et al. 2011], conditions that are also
associated with adiponectin levels. The glucose homeostasis measures included adjustment
for insulin sensitivity (S;) and acute insulin response (AIR). The adiposity measures
included in analysis were body mass index (BMI), visceral adipose tissue (VAT),
subcutaneous adipose tissue (SAT), and the ratio of VAT to SAT. Additional factors
included fasting insulin, fasting glucose, HDL, triglycerides, PAI-1, fibrinogen, CRP, and
systolic and diastolic blood pressure. Analysis was completed on all individuals with
complete phenotypic and genotypic data. Additionally, the proportion of variance explained
was calculated in SOLAR following adjustment for clinical traits, genetic variants (both LF/
rare and common), and the two in combination. To test for the statistical significance of the
sets of clinical characteristics, rare, or common SNPs, the corresponding likelihood ratio
tests were computed based on the individuals with full clinical and genotype data. For
example, the test of the rare SNPs conditional on the clinical characteristics used the
difference in -2 log (likelihood) from the models that only contained the clinical
characteristics versus those that contained both the clinical characteristics and the rare SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Gene map of AD/POQ matched to the haploview-generated LD matrix for ADIPOQ +/
-50kb in the Hispanic IRASFS sample. Figures generated with Haploview 4.0. Regions of
high LD (D’ = 1 and logarithm of odds [LOD]>2) are shown in the darkest shade. Markers
with lower LD (0.45<D’<1 and LOD>2) are shown in dark through light shades, with the
color intensity decreasing with decreasing D’ value. Regions of low LD and low LOD
scores (LOD<2) are shown in white. The number within each box indicates the r? statistic
value between the corresponding two SNPs. Black triangles represent LD blocks based on
the confidence intervals [Gabriel, et al. 2002].
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Figure 2.

Gene map of AD/POQ matched to the haploview-generated LD matrix for AD/IPOQ +/
—-50kb in the African American IRASFS sample. Figures generated with Haploview 4.0.
Regions of high LD (D’ = 1 and logarithm of odds [LOD]>2) are shown in the darkest
shade. Markers with lower LD (0.45<D’<1 and LOD>2) are shown in dark through light
shades, with the color intensity decreasing with decreasing D’ value. Regions of low LD and
low LOD scores (LOD<2) are shown in white. The number within each box indicates the r?
statistic value between the corresponding two SNPs. Black triangles represent LD blocks
based on the confidence intervals [Gabriel, et al. 2002].
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Table 1
Summary statistics for IRASFS Hispanic American participants

For the descriptive demographic features gender and T2D status the total number of samples evaluated (n)
with the number of samples for the trait (all samples) and corresponding percentage are listed. For quantitative
demographic feature adiponectin levels and age as well as traits by trait class, the total number of samples
evaluated (n), the mean trait value (mean) and standard deviation are listed. For each trait, the results of
univariate association with adiponectin are listed as the beta + standard error (B£SE) with the corresponding
p-value.

Trait Class Trait n all samples percentage B+SE p-value
(assoc with

adp)
Gender (n, female, %) 1151 672 58.4 0.28 +£0.025 2.32E-27

T2D (n, affected, percent total) 1149 126 11 -0.0036 + 0.044 0.934

n mean standard deviation
Adiponectin (ug/mL) 1151 135 7 NA

Age (years) 1151 411 139 0.0039 + 0.0010 0.0002

Insulin Sensitivity (SI; x107° 964 221 1.88 0.24 +£0.027 1.60E-18
min~t pmol/L)
Acute Insulin Response (AIR; 964 775 659 -0.0059 = -0.0013 1.34E-05
pmol/L)

Fasting Glucose (mg/dL) 1023 93.2 9.4 -0.012 + 0.0014 7.44E-18
Glucose Homeostasis Fasting Insulin (uU/mL) 1021 14.7 10.6 -0.21 +£0.019 3.09E-26
Body Mass Index (kg/m?) 1144 28.8 6.2 -0.021 + 0.0023 6.57E-19
Visceral Adipose Tissue (cm?) 1101 110 59 -0.048 + 0.0048 2.66E-22

Subcutaneous Adipose Tissue 1101 338 155 -0.0088 + 0.0034 0.0092

(cm?)

Adiposity Visceral Subcutaneous Ratio 1061 0.36 0.2 -0.23 £ 0.026 1.19E-17
Triglycerides (mg/dL) 1146 121 85 -0.24 +0.022 1.38E-27
Lipids HDL (mg/dL) 1148 43.6 12.9 0.85+0.042 9.29€E-77

Systolic Blood Pressure (mmHg) 1151 118 17 -0.19 +0.10 0.0598
Hypertension Diastolic Blood Pressure (mmHg) 1151 76.1 9.8 -0.64+0.11 1.30E-09
C-reactive protein (mg/dL) 1071 35 4.28 —-0.056 + 0.012 2.58E-06
PAI-1 (ng/mL) 1150 42.7 37.7 -0.16 £ 0.015 5.20E-25

Inflammation Fibrinogen (mg/dL) 1149 264 62 -0.023 + 0.062 0.708

Footnote: sample sizes range from 964 to 1151 due to incomplete data for some measures. In particular, the FSIGT was not performed in those
with diabetes, reducing the sample size for Sl and AIR
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Table 2
Summary statistics for IRASFS African American participants

For the descriptive demographic features gender and T2D status the total number of samples evaluated (n)
with the number of samples for the trait (all samples) and corresponding percentage are listed. For quantitative
demographic feature adiponectin levels and age as well as traits by trait class, the total number of samples
evaluated (n), the mean trait value (mean) and standard deviation are listed. For each trait, the results of
univariate association with adiponectin are listed as the beta + standard error (B£SE) with the corresponding
p-value.

Trait Class Trait n  all samples percentage B+SE p-value
(assoc with

adp)
Gender (n, female, %) 574 339 59.1 0.34+0.036 2.23E-19

T2D (n, affected, percent total) 574 62 10.8 -0.013 + 0.063 0.834

n mean standard deviation
Adiponectin (ug/mL) 574 9.06 5.23

Age (years) 572 425 139 -0.0026 + 0.0015 0.0839

Insulin Sensitivity (SI; x10° min™1 498 1.63 117 0.47 £0.044 9.98E-25
pmol/L)
Acute Insulin Response (AIR; 497 1010 828 —-0.0032 + 0.0018 0.0739
Glucose Homeostasis pmol/L)
Fasting Glucose (mg/dL) 512 94.6 9.7 -0.017 £ 0.0020 3.85E-17
Fasting Insulin (uU/mL) 512 14.3 11.3 -0.20 £ 0.027 3.00E-12
Body Mass Index (kg/m?) 570 30 6.8 -0.018 + 0.0029 2.00E-09
Visceral Adipose Tissue (cm?) 522 93.3 59.5 -0.061 + 0.0066 7.16E-19
Adiposity
Subcutaneous Adipose Tissue (cm?) 522 355 192 -0.011 + 0.0040 4.79E-03
Visceral Subcutaneous Ratio 504 0.3 0.19 -0.27 £ 0.035 1.26E-13
Linid Triglycerides (mg/dL) 574 81.5 70.5 -0.27 £0.033 8.88E-16
ipids

HDL (mg/dL) 574 47.2 12.7 0.86 +0.072 2.03E-29

Systolic Blood Pressure (mmHg) 574 119 18.6 -0.086 + 0.14 0.539

Hypertension

Diastolic Blood Pressure (mmHg) 574 74.9 10.5 -0.53+0.15 2.55E-04
C-reactive protein (mg/dL) 563 3.93 4.93 -0.084 + 0.015 5.16E-08
Inflammation PAI-1 (ng/mL) 574 28.4 27.6 -0.16 +£ 0.020 4.44E-15

Fibrinogen (mg/dL) 574 279 65.1 -0.21 £ 0.089 0.0207

Footnote: sample sizes range from 497 to 574 due to incomplete data for some measures. In particular, the FSIGT was not performed in those with
diabetes, reducing the sample size for Sl and AIR
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Table 5
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Proportion of variance explained by clinical characteristics, common variants, and LF/
rare variants in IRASFS Hispanic and African American cohorts

For each population, the contributors to the variance delineated with the number of observations, proportion of
variance explained for the full cohort or limited to individuals with complete data for all contributors and the
corresponding p-value.

Contributors to variance N Proportion of Variation N Proportion of Variation p-value
Explained Explained
None 1151 - 628 - -
Clinical Characteristics 820 0.31 628 0.32 1.16E-47
Rare SNPs 1104 0.18 628 0.16 6.40E-15
Common SNPs 890 0.050 628 0.069 0.194
Hispanics
All SNPs 880 0.23 628 0.21 1.16E-09
Clinical + Rare SNPs 785 0.44 628 0.44 5.39E-66
Clinical + Common SNPs 637 0.38 628 0.38 3.13E-40
Clinical + All SNPs 628 0.49 628 0.49 1.33E-56
None 574 -- 360 -- --
Clinical Characteristics 437 0.44 360 0.47 5.82E-20
Rare SNPs 494 0.057 360 0.063 5.44E-12
Common SNPs 479 0.085 360 0.081 1.44E-10
African Americans

All SNPs 477 0.14 360 0.15 4.68E-09
Clinical + Rare SNPs 374 0.50 360 0.51 7.77E-18
Clinical + Common SNPs 362 0.54 360 0.54 6.87E-16
Clinical + All SNPs 360 0.59 360 0.59 4.48E-13
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