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Abstract
The reliability and reproducibility of gene biomarkers for classification of cancer patients has been
challenged due to measurement noise and biological heterogeneity among patients. In this paper,
we propose a novel module-based feature selection framework, which integrates biological
network information and gene expression data to identify biomarkers not as individual genes but
as functional modules. Results from four breast cancer studies demonstrate that the identified
module biomarkers i) achieve higher classification accuracy in independent validation datasets; ii)
are more reproducible than individual gene markers; iii) improve the biological interpretability of
results; and iv) are enriched in cancer “disease drivers”.
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1. Introduction
Over the last few decades, high-throughput genomic and proteomic techniques have
generated a large number of diagnostic, prognostic and predictive molecular signatures
related to many diseases [1–7]. Traditional biomarker discovery approaches for disease
classification are typically selected by scoring individual genes for how well their
expression pattern discriminate between different subclasses of disease or between cases and
controls. However, there are several disadvantages of these approaches including the
following:

Lack of adequate biological interpretation: the genes selected by traditional biomarker
discovery methods are mainly “downstream” reflectors of the perturbations defining clinical
outcomes through the complex interplay of biological networks. They may not directly
account for the activity, perturbations or roles that disease-related cellular networks show
[8].

Oversimplified assumption of gene independence: traditional biomarker discovery
approaches make biological and statistical assumption of between gene independence, i.e.,
gene biomarkers are typically selected independently although proteins are well known to
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function coordinately within protein complexes, signaling pathways, and higher-order
cellular processes. Thus, the resulting classifiers may contain marker genes with redundant
information that may lead to decreased classification performance.

Low reproducibility/reliability: biomarker sets identified from different labs share very few
genes in common. This is well illustrated by two prominent studies of survival prediction in
breast cancer. van’t Veer et al. [9] generated a list of 70 genes from 96 patient samples,
which were subsequently tested successfully on a larger cohort of 295 patients [2]. Wang et
al. [10] analyzed the gene expression profiles of 286 patients and reported a gene biomarker
set of 76 genes. Each gene set was trained and tested within its own samples and achieved
good prediction performance. However, the overlap of these two gene sets was very small:
only three genes are in common. As a result, the predictive power of a classifier developed
from one study could not be adequately reproduced when testing it on samples of another
study, although both studies contain patients with similar phenotypes. Cellular heterogeneity
within tissues and genetic heterogeneity across patients in complex diseases (e.g., breast
cancer) may weaken the discriminative power of individual genes, even within a clinically
homogeneous patient group [11].

Inadequate focus on genes that are “disease drivers”: oncogenes and tumor suppressors are
disease drivers whose mutations result in a detrimental change of function that leads to
cancer. These genes are generally more conserved than other proteins, and tend not to be
highly differentially expressed between different clinical groups of patients [12]. These
genes would not be selected by traditional statistical ranking methods, such as TP53 and
MYC. However, their expression patterns are more stable in patients of the same clinical
subgroups and more robust across different studies. Search for biomarkers that may
represent upstream regulators with potential causal roles in the determination of differential
phenotypes may help us define more reliable and reproducible biomarker sets.

The above limitations of traditional biomarker discovery approaches have received great
attention by the community of cancer research [11, 13–15]. We argue that the fundamental
reason for these limitations is that these traditional biomarker identification methods lead to
genes whose roles are mostly “passengers” rather than “drivers” of the phenotypic
differences between sample groups (e.g., poor versus good outcomes). Regulatory networks
often act as amplification cascade, where highly differentially expressed genes tend to be
further downstream from the somatic or inherited determinants of the clinical outcomes.
Since the regulatory networks comprise the complex interactions of multiple potential casual
factors and sources of biological noise [16], these downstream genes are more prone to be
most unstable across and within samples. On the other hand, oncogenes and tumor
suppressors are generally not the most differentially expressed genes although they may
show an outlier behavior in some samples [17]. The biomarkers enriched in these disease
drivers may represent upstream regulators with potential causal roles in the determination of
differential phenotypes, which will improve the reliability and reproducibility of the
prediction model in unknown samples. Lim et al. succeeded in detecting candidate
biomarkers by identifying “upstream regulators” causally related to the phenotypic
differences [18]. In Lim et al., the transcriptional factors were determined if they caused the
up/down-regulation of genes linked to poor outcome through patient samples in gene
interaction networks inferred by ARACNe algorithm [19]. The inferred sets of “master
regulators” were shown to be more powerful and robust than the signatures proposed by
original investigations based on standard gene-based analysis. Such studies imply that
systems approaches to biomarker discovery in a biological network context would identify
biomarkers more indicative of phenotypic changes.
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The availability of large protein-protein interaction, protein-DNA interaction, and signal
transduction pathway data enables new opportunities for elucidating modules involved in
major diseases and pathologies [20]. Several approaches have been demonstrated to extract
the relevant functional modules based on coherent expression patterns of their genes [21,
22]. However, these biological interaction networks have been typically analyzed separately
in previous studies [21–24]. Such approaches tend to hide the full complexity of the cellular
circuitry since many processes involve combinations of different types of interactions.

In this work, we propose a novel module-based systems biology approach to identifying
module biomarkers of diseases by integrating patient gene expression profiles and different
types of biological network data, including protein-protein interaction network, protein-
DNA interaction network, and signaling pathway network. The biomarkers here are not
encoded as individual genes or proteins, but as modules of interacting proteins within a
large-scale human interaction network. Our experiments on four breast cancer cohorts show
that the proposed method has several advantages over previous analyses of differential
expression. First, the resulting module biomarkers provide models of the molecular
mechanisms underlying disease mechanisms. Second, module-based classification achieves
higher accuracy in prediction, which is ascertained by selecting markers from a training set
and evaluating them on an independent validation set. Third, the identified module
biomarkers are likely to be more reproducible between different disease experiments than
individual marker genes selected without network information. Also, our approach provides
the capability to detect genes with known disease mutations that are typically not detected
through gene-based differential expression analysis. These genes are referred to as “disease
drivers” that are causally responsible for the determinations of differential phenotypes.

2. Materials and methods
We describe here the data and the methods we used in this study. The data consist of four
breast cancer gene expression datasets and human interaction data collected from public
databases. Our proposed module-based biomarker discovery approach integrates gene
expression profiles and biological network information. Figure 1 illustrates the steps
involved in this approach. In the following sections, we briefly describe the data and the
analytical steps presented in Figure 1.

2.1 Datasets
Gene expression data: we obtained three mRNA expression datasets from three breast
cancer studies [2, 10, 25] and one in house dataset. We divided these datasets into two
groups: (1) prognosis group and (2) endocrine treatment prediction group. The prognosis
group includes the van de Vijer and the Wang datasets that consist of patients with either
poor or good outcomes. Poor outcome is defined as all patients with time of metastasis
within five years of surgery, and good outcome as those with time of metastasis greater than
or equal to five years after surgery. The endocrine treatment prediction group includes the
Loi and our in house datasets consisting of patients with either early recurrence or non-
recurrence. Early recurrence is defined as patients with recurrence within three years of
endocrine treatment, and non-recurrence refers to those with time of recurrence greater than
fifteen years after endocrine treatment. Table 1 presents the number of patients in each
dataset and the microarray platform used to generate gene expression data. Since the four
studies were performed on different microarray platforms, we restrict our analysis to the
common genes present in all datasets (all probesets were mapped to gene Entrez IDs). For
simplicity, we used the terms “gene” and “protein” interchangeably in this work.

We normalized the expression of each gene across all samples in every dataset separately.
For the dataset generated by Agilent platform, we used log ratio (base 2) between the
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measured and control samples. For datasets generated by Affymetrix chips, we used log
(base 2) to transform the original expression values of each gene in each array. For both
types of datasets, we normalize the log-space gene expression values by

(1)

where gij is the intensity of gene i on a particular sample j, and  is the mean intensity of
gene gi over all samples. This normalization mimics a two channel microarray where the
reference channel is a pool of all samples under consideration [26].

Biological network data: protein-protein interaction data were extracted from eight protein
interaction databases [27–34] and two high-throughput yeast two-hybrid studies [35, 36].
Protein-DNA interaction data were extracted from the TRANSFAC database [37]. Signaling
network data were extracted from the following three sources: i) manually curating the most
comprehensive signaling pathway database, BioCarta (http://www.biocarta.com/); ii) a
literature-mined signaling network [38]; and iii) 10 manually curated signaling pathways for
cancer from the Cancer Cell Map (http://cancer.cellmap.org/cellmap/). To construct a
corresponding human interaction network for both gene expression datasets, we extracted
available interactions among common genes in four datasets. Totally, we found 63,113
protein-protein interactions, 1,789 protein-DNA interactions and 3,862 signaling interactions
among 10,650 common genes in four datasets.

2.2 Module biomarker identification
To detect the modules, we first extracted the significant network motifs in the integrated
cellular network as previously described. Network motifs are statistically significant
recurring structural patterns that are found more often in a real network than that would be
expected in a random network with same network topologies [39, 40]. They are the smallest
basic functional and evolutionarily conserved units in the biological network. Cancer-related
genes have also been shown to be more conserved compared to other genes along evolution
[41, 42]. We assume that network motifs in a biological network are enriched in “disease
driver” genes which are more conserved than other downstream “passenger” genes. These
network motifs could form large aggregated modules that perform specific functions by
forming collaborations among a large number of network motifs. In this work, we focused
on three-node network motifs since larger size network motifs (number of nodes > 3) are
composed of three-node ones in most cases [43]. All connected subnetworks containing
three nodes in the interaction network were collated into isomorphic patterns, and the
number of times each pattern occurred was counted. If the number of occurrences was at
least five and statistically significantly higher than random networks, then the pattern was
considered as a network motif. The significance test was performed by generating 1000
random networks and computing the fraction of random networks in which the pattern
appeared at least as often as in the interaction network. A pattern with P≤0.05 was
considered statistically significant.

All the identified network motifs were then examined by calculating their activity scores via
gene expression data. Each network motif was considered as a subnetwork. We assume that
in a subnetwork A, there are M genes with expression levels across N patient samples:

(2)
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Given a particular gene i, the expression values gij are normalized to z-transformed scores zij
so that the z score vector zi has mean µ = 0 and standard deviation σ = 1 over all samples j.
The z score is defined by

(3)

where µ̑i is mean expression value of gene i across samples, and σ̑i is standard deviation of
expression value of gene i across samples.

Let z represent the corresponding vector of class labels (e.g., tumor metastatic or non-
metastatic). The discriminative score of gene i is defined as the mutual information MIi(x;y)
between the expression levels of gene i and sample labels c:

(4)

where x is the discretized value of zi, and y is the sample lables, p(x,y) is the joint
probability density function of zi and c, and p(x) and p(y) are the marginal pdf’s of zi and c.
A histogram technique is applied to transform the continuous gene expression values to
discrete ones for the calculation of the mutual information [44].

The activity score of a subnetwork A is then calculated by combining the transformed z
scores derived from the expression of its individual genes. The individual zij of each
member gene in one subnetwork are combined into the activity of a ZA_j by

(5)

where wi denotes the weight that is defined as

(6)

The weighted z score is intended to emphasize the hub genes which are surrounded by many
highly discriminative genes although they are not highly differently expressed themselves.

The discriminative score of subnetwork A is calculated similarly as defined in Eq. (4):

(7)

where x is the discretized value of ZA, and y is the sample labels.

We performed two permutation tests to assess the significance of the identified network
motifs. For the first test, we tested whether the mutual information with the disease class is
stronger than that obtained with random assignments of classes to patients [45]. For the
random model, we permuted the sample labels for 100000 trials, yielding a null distribution
of mutual information scores for each trial, and the real score of each network motif was
indexed on this null distribution. For the second test, we tested if the mutual information
with network interactions was stronger than that obtained with random assignments of gene
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expression vectors to individual genes. The mutual information for each network motif was
calculated over 100000 random trials in which the expression vectors of individual genes
were permuted over the network. The score of each network motif was indexed on the
“global” null distribution of all random network motif activity scores. In this study,
significant network motifs were selected that have both permutation test P values less than
0.0001.

The network motifs that passed the significance tests were clustered in the network motif
dimension using the hierarchical clustering method. This resulted in a tree in which each
internal leaf node is associated with a vector representing the average of all of the network
motif vectors at its decent leaves. We annotated each interior node with the Pearson
correlation between the vectors associated with its two children in the hierarchy. We defined
as network motif cluster in which each interior node whose Pearson correlation differed by
more than 0.05 from the Pearson correlation of its parent node in the hierarchy. The module
was then formed by taking the union of the clustered network motifs.

2.3 Ensemble classification evaluation
After the module biomarkers are identified their reliability is evaluated across different
datasets. An ensemble strategy is proposed to increase the stability of our feature selection
algorithm, which is a wrapper approach that combines colony optimization with support
vector machine (ACO-SVM). The following section describes this feature selection method
and evaluation of the method on the basis of classification performance.

2.3.1 Ant colony optimization—Ant colony optimization (ACO) studies artificial
systems that takes inspiration from the behavior of real ant colonies [46]. The basic idea of
ACO is that a large number of simple artificial agents are able to build good solutions to
solve hard combinatorial optimization problems via low-level based communications. Real
ants cooperate in their search for food by depositing chemical traces (pheromones) on the
ground. Artificial ants cooperate by using a common memory that corresponds to the
pheromone deposited by real ants. The artificial pheromone is accumulated at runtime
through a learning mechanism. Artificial ants are implemented as parallel processes whose
role is to build problem solutions using a constructive procedure driven by a combination of
artificial pheromone and a heuristic function to evaluate successively constructive steps.

In this paper, we propose to use ACO for feature selection because of its efficiency and
capability in identifying a set of interacting variables that are useful for classification. Also,
ACO allows the integration of prior information into the algorithm for improved feature
selection.

Through the probability function given below, each ant picks n sets of distinct features from
L candidate features:

(8)

where τi(t) is the amount of pheromone trail at time t for the feature represented by index i;
ηi, represents prior information (e.g. univariate t-statistic) for the feature represented by
index i; α and β are parameters that determine the relative influence of pheromone trail and
prior information.

At t = 0, τi(t) is set to a constant for all features. Thus, at the first iteration, each ant chooses
n distinct features (a trail) from L features with probabilities proportional to the existing
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prior knowledge. Let Sj be the jth ant consisting of n distinct features. Depending on the
performance of Sj, the amount of pheromone trail for Sj is updated. The performance
function is evaluated on the basis of disease state classification capability of each Sj. We use
the features in Sj to build a classifier and estimate the classification accuracy through the
cross validation (CV) method. The amount of pheromone trail for each feature in Sj is
updated in proportion to the corresponding classification accuracy using

(9)

where ρ is a constant between 0 and 1, representing the evaporation of pheromone trails;
Δτi(t) is an amount proportional to the classification accuracy of Sj. Δτi(t) is set to zero if
the ith feature fi ∉ Sj. This update is made for all N ants (S1,S2,…,SN). Note that at t=0,
Δτi(t) is set to zero for all features. The updating rule allows trails that yield good
classification accuracy to have their amount of pheromone trail increased, while others
gradually evaporate. As the algorithm progresses, features with larger amounts of
pheromone trails and strong prior information influence the probability function to lead the
ants towards them.

Compared to particle swarm optimization (PSO) that we previously used in [47] and which
is mostly used for continuous optimization problem, ACO is more suitable for discrete
optimization problem due to the following reasons: (1) ACO is driven by two parameters:
heuristic value and pheromone value. Mostly these values are derived from parameters
having discrete values. (2) PSO is driven by neighbor's velocity, which is a continuous
parameter as one of the parameters used for deriving velocity is time. Thus, ACO fits better
at graph searching problems while PSO fits better at parameter optimization in patter
recognition algorithms, because parameters used for graph searching are mostly discrete
parameters whereas parameters used for learning/recognition are continuous parameters.

2.3.2 Support vector machines—Support vector machines (SVMs) are learning kernel-
based systems that use a hypothesis space of linear functions in high-dimensional feature
spaces [48]. In classification problems that involve two classes, linear SVMs search for the
optimal hyperplane that maximizes the margin of separation between the hyperplane and the
closest data points on both sides of the hyperplane. Thus, parameters of SVMs are
determined on the basis of structural risk minimization, not error-risk minimization. Thus,
they have the tendency to overcome the overfitting problem. In high dimensional data
classification problems, SVMs have proven themselves as one of the pattern classification
algorithms with great generalization ability. We will use a linear SVM as the reference
classifier for feature selection in module space.

2.3.3 ACO-SVM feature selection algorithm—Ant colony optimization-support vector
machine combines ACO and SVM to select features that are useful for SVM classification
of samples into two groups. ACO starts with a population of N module sets, where each
module set consists of a pre-specified number (n) of distinct modules. Each module is
selected from a given set of candidate modules (L) based on its probability function
described previously in Eq. (8). SVM classifiers are then built for each module set and the
performance of the module set in distinguishing the two groups is evaluated through the
five-fold cross-validation method. Using Eq. (9), we update the amount of pheromone trail
for each module in proportion to the classification accuracy of the module set, in which the
module is involved. The goal is to provide those modules that can lead to improved
classification accuracy with better probability of being selected in subsequent iterations.

2.3.4 Ensemble feature selection based on ACO-SVM—In order to select robust
module biomarkers for classification in unknown patient samples, we applied an ensemble
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feature selection technique to select module subsets in training dataset and validate their
discriminative power in an independent validation dataset. Similar to ensemble learning for
classification, ensemble feature selection techniques use a two-step procedure: i) a number
of different feature selectors are created; ii) the outputs of these component feature selectors
are aggregated to generate the final ensemble results. We focused on the analysis of
ensemble feature selection techniques using ant colony optimization –support vector
machine (ACO-SVM) feature selection approach we previously developed [49]. The ACO-
SVM approach was used to select the best features in terms of their ability to distinguish
between two patient phenotypes in a validation dataset which were not involved in the
feature selection step.

To generate a robust module biomarker set in one dataset, we generated slight variations of
the original dataset, and aggregated the outputs of the ACO-SVM feature selection method
using these variant samples. The rationale behind this is that for a stable biomarker set,
training datasets with small change should generate biomarker sets with high similarities.
The biomarkers with high frequencies in these biomarker sets are presumed to be most
relevant to sample distinction and used to predict the class membership of independent
samples. A subsampling approach was proposed to generate the training datasets with slight
variations: a large number (e.g., 500) of datasets can be generated by stratified subsampling
the original dataset without replacement. As gene expression datasets generally contain only
tens of samples, we generated subsamplings containing 90% of the samples of the original
dataset, and the remaining 10% of the samples were used as internal validation dataset to
estimate the performance of a classifier, called within-dataset validation. Since we
considered typically 500 independent partitions in 90% training and 10% validation, we
reduced the risk of overoptimistic results of traditional cross-validation experiments on
small sample domains [50].

The biomarker sets generated from 500 subsampling datasets using the ACO-SVM approach
were then evaluated through a frequency plot, where we computed the frequency with which
modules were selected was then analyzed. The most frequently selected set of modules was
then validated by using it to classify an independent validation dataset. This approach is
referred to as cross-dataset validation.

The double-validation procedure stated above was designed to provide an unbiased
evaluation of the generalization error in independent dataset. Since both prognostic and
treatment outcome prediction groups contain two datasets, we evaluated the classification
performance of the module biomarker set generated from one dataset on the other dataset in
the same group, or vice versa.

3. Results
We report here the experimental evaluations of our methods to search for module
biomarkers with discriminative power between different subgroups of breast cancer patients
in a biological network context. Four breast cancer datasets were used to identify biomarkers
for prognosis purposes. In the following, we present our results and comparison to
previously proposed methods applied to the same public datasets.

3.1 Biological interpretability of module biomarkers
The collected biological network involved 72,562 three-node network motifs detected using
FANMOD tool [51]. Totally, 1017, 752, 696 and 908 network motifs were identified in the
four breast cancer datasets (van de Vijer, Wang, Loi, and in house datasets, respectively).
This is based on two permutation tests for statistical significance consisting of 581, 707,
793, and 886 genes, respectively. Using hierarchical clustering analysis, 162, 313, 270 and

Zhang et al. Page 8

Int J Data Min Bioinform. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



343 module markers were constructed as candidate module biomarkers of the four datasets,
respectively. Each module may be viewed as a putative marker for breast cancer. The
modules are not based on individual detected genes, but rather on the aggregate behavior of
genes connected in a functional module. This approach is indeed a departure from
conventional gene-based expression analysis, which does not provide biological insight into
the identified markers.

We investigated whether the proposed module-based analysis can implicate upstream
disease driver genes with relative low discriminative potential (e.g., those with larger P
value in two-tailed t-test). Such proteins can arise within a significant module if they are
essential for maintaining its integrity. Moreover, these disease driver genes are mostly in the
upstream of the gene regulatory cascade, regulating their downstream genes to be
differentially expressed under different disease status. Detecting modules containing these
disease driver genes is expected to improve the reliability and robustness of these module
biomarkers across different datasets. To evaluate the power of a module-based method to
identify disease driver genes, we assembled a list consisting of 711 breast cancer genes
(BCGs) extracted from the Online Mendelian Inheritance in Man (OMIM) database. The
genes in the module markers identified from four datasets are more enriched with these
BCGs than the ones from a conventional gene expression based analysis without network
information (Figure 2). In particular, we found that 69 out of 162, 123 out of 313, 120 out of
270, and 136 out of 343 module markers contained at least one known BCG. We observed
that 31, 26, 41 and 44 module biomarkers contained two or more known BCGs,
respectively. Most of these BCGs were not significantly differently expressed (Table 2).
Disease genes that can be only detected by the proposed approach include BRCA1, ESR1,
TP53, etc.

The “disease driver” genes are usually hub genes in the interaction data, i.e., genes with
more than ten surrounding genes. We retrieved the existing interactions surrounding hub
genes (genes with more than ten interactions) from the collected molecular interaction data.
We observed that only 4 out of 23 hub genes showed discriminative potential (P value
<0.01) in module biomarkers identified from van de Vijer dataset. However, these hub genes
are important biological markers than other members in one module since they are the center
to gather its surrounding differential genes into one module biomarkers.

We also examined the agreement between module markers identified from different cohorts
of patients. The same classification process was also run for gene biomarkers selected by
conventional methods. For comparison purpose, the top 581, 707, 793, and 886
discriminative genes in four datasets, respectively, were used as inputs to the classification
process, which is the same number of genes covered by the module biomarkers for four
datasets. As shown in Figure 3, the module markers are more reproducible between datasets
than individual marker genes selected without network information (e.g. t-test).

3.2 Classification evaluation of module biomarkers
We tested the classification ability of the identified module biomarkers from four datasets
using the proposed ACO-SVM approach. To use module information for classification, the
weighted z score of module biomarkers were used as input feature values to a classifier
based on SVM. An ensemble ACO-SVM approach was used to select the optimal features
based on Area Under the ROC Curve (AUC) scores in a double-validation procedure, as
described in Methods section. We used a baseline ACO-SVM approach for comparison
purpose. To perform ensemble feature selection for gene biomarkers, the z score of
candidate gene biomarkers were used as input feature values to a classifier based on SVM.
The AUC scores of the second independent validation dataset by the classifier built from
both module and gene biomarkers selected from the first dataset are shown in Figure 4.
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Through the double-validation strategy, we showed that the module biomarkers
outperformed the gene biomarkers in all four experiments. This implies that the module
biomarkers are more robust across different datasets generated on different platforms.

3.3 Comparison to existing methods
Several studies have been reported to integrate interaction network information and other
biological data (e.g., microarray data) for identification of genetic mediators of disease
progression [23, 24, 52, 53]. However, only individual interaction layers, such as the
transcriptional layer or the protein complex layer, were modeled by these methods. We
propose an integrative approach for the identification of module-based biomarkers
associated with the presentation of a specific tumor phenotype. In our approach, we choose
to use a biological network containing protein-protein, protein-DNA and signaling pathway
information. By adopting a genome-wide, mixed-interaction network, instead of the
individual interaction layers of previous studies, we cover a far greater range of processes
within the cell. This integration allows the method to capture several different mechanisms
of action associated cancer progression and metastasis.

Compared to Chuang et al. [24] and Lee et al. [23], besides larger coverage of biological
processes in our analysis, our approach utilizes an ensemble feature selection method to
improve the classification accuracy and reliability of the module biomarkers. Both Chuang
et al. and Lee et al. applied five-fold cross validation for one single dataset, which would
generate overoptimistic results that do not adequately reproduce in independent datasets. In
this work, a strict double validation strategy was used to estimate the classification
performance. Such strategy leads to better classification accuracy in applying the resulting
module marker set to classify previously unseen samples.

4. Discussions
In this paper, we introduced a module-based feature selection framework to identify module
biomarkers with high reproducibility and classification accuracy. This was accomplished by
a novel hybrid feature selection approach that identifies groups of associated genes by
incorporating biological network information, called module biomarkers. Different from
traditional data-driven group feature selection methods, we identified the “active
subnetworks” within biological network context. The motivation is that a disease or clinical
response may be viewed as an emergent behavior of biological network that is altered by the
complex interplay of genetic and environmental stimuli. Individual genes tend to collaborate
to carry out some specific biological function, in which these genes are called a functional
module. In our study, we decomposed biological networks into network motifs - statistically
over-represented subgraphs. Cancer-associated genes have been shown to be enriched in
particular network motif types, called hotspots in the mammalian cellular signaling network
[41]. These hotspots are potentially biomarker clusters or drug target clusters for curing
cancer. If a cancer-related gene is mutated in one phenotype, this mutation will influence its
surrounding interaction partners at a functional module level. Since the cancer-related genes
are usually upstream disease “drivers”, they tend not to be highly differentially expressed
compared to their downstream “passenger” genes. On the other hand, these disease driver
genes are more stable and study-independent than their downstream “passenger” genes
across and within patient samples. We hypothesize that these functional modules are
expected to have higher stability and reproducibility in unknown samples, since they have
disease “drivers” as the hubs surrounded by their downstream “passengers”. Our findings
demonstrated that module biomarkers are more enriched with these disease driver genes
such as TP53, which could not be identified by gene-based univariate methods (e.g., t
statistic). The reliability of the module biomarkers from different dataset were compared to
gene-based approach. The overlaps of module biomarkers from different datasets were
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largely improved, further confirming that the module biomarkers we identified are likely to
be involved in cancer related mechanisms.

Also, we introduced in this paper a strategy in which a set of ensemble feature selection
methods was applied to improve biomarker stability and classification performance. In
module space, the ensemble feature selection methods were combined with a double-
validation strategy to select the optimal module biomarkers according to their classification
accuracy on independent datasets. The stability of our ensemble feature selection approach
was improved compared to non-ensemble method (Figure 4). This is particularly convenient
since it corresponds to sizes of practical interest for the design of a diagnosis/predictive
model. As high-quality interaction data become available, such hybrid feature selection
methods will help us exploit more disease related information in these and other similar
datasets available in human diseases.
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Figure 1.
Schematic overview of module-based biomarker identification and disease classification.
NM: network motif; ACO: ant colony optimization; SVM: support vector machine; AUC:
area under curve.
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Figure 2.
Detection of BCGs in module biomarkers of four datasets. The enrichment of disease genes
is shown for modules or individual genes selected from van de Vijer dataset (a), Wang
dataset (b), Loi dataset (c) and our in house dataset (d). Blue bars chart the percentage of
BCGs among all genes covered in the markers on the left axis; the red dots chart the
hypergeometric P values of enrichment on the right axis.
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Figure 3.
Agreement in markers selected from one dataset versus those selected from the other dataset
in the same clinical group.
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Figure 4.
AUC classification performance of modules, genes with ensemble feature selection strategy,
and without the ensemble strategy.
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Table 1

Four datasets used for method evaluation.

Name Microarray platform Number of samples

van de Vijver dataset Agilent oligonucleotide
Hu25K

Poor outcome: 78 samples
Good outcome: 217 samples

Wang dataset Affymetrix HG-U133a Poor outcome: 106 samples
Good outcome: 180 samples

Loi dataset Affymetrix HG-U133 Early recurrence: 12 samples
Non recurrence: 12 samples

In house dataset Affymetrix HG-U133 Early recurrence: 24 samples
Non recurrence: 40 samples
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Table 2

BCGs in module markers derived from four datasets

BCG van de Vijer dataset Wang dataset Loi dataset In house dataset

Differentially expressed (P value<0.05) 10 15 16 13

Not differentially expressed 61 64 62 88

Total 71 79 78 131
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