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Summary
Acute infectious diseases are transmitted over networks of social contacts. Epidemic models are
used to predict the spread of emergent pathogens and compare intervention strategies. Many of
these models assume equal probability of contact within mixing groups (homes, schools, etc.), but
little work has inferred the actual contact network, which may influence epidemic estimates. We
develop a penalized likelihood method to infer contact networks within households, a key area for
disease transmission. Using egocentric surveys of contact behavior in Belgium, we estimate
within-household contact networks for six different age compositions. Our estimates show
dependency in contact behavior and vary substantively by age composition, with fewer contacts
occurring in older households. Our results are relevant for epidemic models used to make policy
recommendations.

1. Introduction
Acute infectious diseases, such as influenza, spread through networks of face-to-face social
contacts. When a new strain of influenza virus emerges, a variety of epidemic models are
used to estimate key epidemic parameters, simulate and predict epidemic spread, and
compare intervention strategies. The majority of these models are based on the simplistic
“random mixing” assumption regarding social contact behavior. Under this assumption,
people contact each other with equal probability within mixing groups (homes, schools,
workplaces, etc.), but no other social contact structure is modeled. For example, the large
scale agent-based models in Eubank et al. (2004), Germann et al. (2006), Ferguson et al.
(2006), and Halloran et al. (2008) assume random mixing within homes, grades and/or
schools, workplaces and workgroups, and communities. Furthermore, random mixing within
households is used in models estimating secondary attack rates within households. See
Longini et al. (1988); Halloran et al. (2007); Yang et al. (2007) and Yang et al. (2009).
Classical models to estimate the basic reproductive number R0 assume random mixing with
age-specific contact probabilities (e.g. Diekmann et al. (1990) and Anderson and May
(1991)). Because these models use infection or symptom data but not contact data, age
differentials in their transmission rate estimates result both from differential infectiousness
and susceptibility by age, as well as differences in contact behavior by age. An
understanding of the contact network is essential to disentangle the effects of biology and
behavior.

Researchers have demonstrated that network structure can result in different epidemic
predictions than random mixing. Keeling and Eames (2005) reviewed idealized types of
networks which have been used to approximate the contact network, and compared the
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epidemic curve from simulated disease transmission over various network types to that
obtained over random mixing. Keeling and Eames (2005) and Miller (2009) showed that
clustering affects the course of the epidemic and explored how the effect varies by clustering
level and for different types of networks. Researchers are actively involved in estimating
properties of contact networks and integrating survey-based network information into
epidemic estimation models. Wallinga et al. (2006) supplemented infectious disease data
with social contact data to improve estimates of age-specific transmission parameters. They
demonstrated that their model, which integrates the age-specific contact rates and mixing
patterns, improves model fit over random mixing. Ogunjimi et al. (2009) extended the
methodology in Wallinga et al. (2006) and applied it to the Belgian data from the
POLYMOD study, a multi-country European survey of contact behavior, which we analyze
in this paper. In addition, Goeyvaerts et al. (2011) combined social contact data with
serological data for human parovirus B19 (PVB19) and found evidence for age-specific
waning of PVB19 immunity in four of five European countries they analyzed.

Households are known to be a primary component of the disease transmission process, but
relatively little work has been done to estimate contact networks within households. As
mentioned previously, most household models assume random mixing within households.
Britton and O’Neill (2002) developed a Bayesian method to estimate the infection rate,
mean of the infection period, and probability of social contact, and assumed this probability
is equal for all pairs; i.e. random mixing. Demiris and O’Neill (2005) developed inference
for infection rates and imputed the contact graph, assuming random mixing within and
between groups. Potter et al. (2011) is the first paper we know of that develops inference for
within-household contact networks from egocentric data. They applied their parametric
model to the same data set we analyze here.

We contribute to this area by developing a method to estimate small contact networks from
survey data and applying it to model networks of household contacts using the Belgian
POLYMOD data. We estimate the probability distributions for household networks of size
four of various age compositions in Belgium. We compare the results to a random mixing
scenario, and we investigate the effect of age composition on the contact network. Our
method requires fewer assumptions about contact behavior than that of Potter et al. (2011).

Our method also contributes to the field of social network methodology by inferring the
probability distribution for complete networks from partially observed network data. We
represent a network graphically by using nodes to represent social actors and ties to
represent contacts between people, and mathematically by a square matrix Y where Yij = 1
if persons i and j make contact and Yij = 0 if not. One standard class of network models,
exponential family random graph models (ERGMs) represent global network structure as a
function of local social behavior (Strauss and Ikeda, 1990). Inference for ERGMs was
developed assuming observation of the complete network; Handcock and Gile (2010)
developed inference for ERGMs from partially observed networks. Such estimation assumes
that the ERGM is correctly specified: that the features of the network are indeed captured by
the network statistics included in the model. For exploratory work to describe an unknown
network or get an initial sense of which statistics will be relevant, a nonparametric
estimation procedure of the probability distribution would be very useful.

The network data we analyze is egocentric: randomly sampled respondents were interviewed
about their contacts to other members, but they did not report on contacts between other
members. They reported attributes of people they contacted but not identities. Egocentric
data is a commonly available network data type. It contains information about assortative
mixing (the tendency to contact others with similar attributes) and the degree distribution,
where the degree is the number of contacts a person makes. Egocentric data does not include
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information about transitivity or other higher-level network structures. Network inference
for egocentric data may be performed by assuming contacts occur independently conditional
on individual-level attributes (as described in Koehly et al. (2004)), or by imposing a
dependence structure. We ascertain the identities of household contacts by matching the age
of the contacted member to the household age roster. Thus, our data set contains more
information than a random egocentric sample, permitting us to estimate dependence in
contact behavior. The networks we analyze are size four with a single respondent per
household, so each respondent reported half of the network (three of six possible contacts).
Reports from different respondents in multiple households therefore contain a fair amount of
information to characterize the probability distribution of the network.

This paper is organized as follows. In section 2, we describe the POLYMOD study. In
section 3.1 we present a nonparametric maximum likelihood method to estimate the
probability distribution of a small contact network of fixed size from egocentric data. With
the constraint of assuming that children are exchangeable and adults are exchangeable, this
method can be used to estimate the nonparametric MLE of the contact network distribution
for a large data set, but in smaller data sets such as ours, the parameters are not identifiable.
We resolve this through a penalized likelihood approach, described in section 3.2. Our
penalty imposes a mathematical preference for distributions representing networks where
contacts between members occur independently of each other. In section 3.4 we describe a
simulation study to assess predictive performance of our method in large data sets. We
estimate the probability distribution of within-household contact networks for households of
size four of six different age compositions in Belgium. Estimates for three household types
are presented and compared in section 4.1; we also compare the estimates to random mixing.
Results from the three other household compositions are in the supplementary material.
Results from the simulation study are presented in section 4.2. In section 5 we discuss our
findings and the performance of our method.

2. The POLYMOD Data
The POLYMOD survey was administered in eight European countries in 2006 and contains
detailed diaries of contact behavior during a day. We analyze the Belgian POLYMOD data.
Mossong et al. (2008) analyzed the POLYMOD data set and compare contact patterns
between countries, and Hens et al. (2009) analyzed the Belgian POLYMOD data using
association rules and classification trees. In Belgium, random digit dialing was used to
obtain consent, and sampling weights ensure that the three main regions of Belgium were
represented (Flemish, Walloon, and Brussels). Children were oversampled because they are
key transmitters of infections. Data were collected from 750 respondents during March–May
of 2006, with one respondent per household. Each respondent was mailed a paper diary and
was assigned two randomly selected days, one weekday and one weekend day. To ensure
that observations are independent, we analyze the first day reported by each respondent.
Approximately half of respondents (381 of 750) filled out the first day of their diary during
the two-week Easter holiday period (April 3–17), during which schools were closed. For
each assigned day, respondents were instructed to record information about all social
contacts from 5 a.m. till 5 a.m. the next morning. A contact was defined to be a two-way
conversation of at least three words in the same location and/or a physical contact. The age
and sex of the person contacted were recorded, as well as attributes of the contact itself
including frequency (daily or almost daily, once or twice a week, etc.), and location (home,
work, school, leisure, transport, or other). Respondents also listed demographic information
of self and their households, including ages of all household members.

Respondents did not report whether people contacted were household members, and our aim
is to estimate the contact networks between household members. We assume that contacts
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were to household members if they occurred “at home”, were reported as “daily or almost
daily”, and if their age matches one of the reported ages of household members. For each
household we observe a partial contact network: we have information on ties between the
respondent and all other members, but not on contacts between other members. Our data is
egocentric, but with the assumptions we have made, includes the identity of the alters.

We develop a method to model the contact network for households of fixed size and age
composition and apply this method to households of size four in the Belgian POLYMOD
data. We classify members into the following age categories which we expect to exhibit
different contact behavior: 0–5, 6–11, 12–18, 19–35, and 36+. Table 1 shows the
distribution of age compositions of households of size four in our data set.

Table 2 shows the six household composition types we analyze in this paper. In households
with small children, we collapsed the two adult age groups to obtain adequate sample sizes
for each group. Based on our understanding of social norms, we expect each of these
households to exhibit different contact patterns.

Figure 1 shows our observed data for households with two 0–5 year olds and two 19+ year
olds. The respondent is marked in blue, and lines indicate reported contacts. Because of our
structurally missing data, contact status on dyads excluding the respondent is not observed.
In order to display the observed data concisely, we assume that the two children are
exchangeable and the two adults are exchangeable. However, we do not make this
assumption in our model. Figure 2 shows observed data for households with two young
adults and two older adults. Density of contact is substantially smaller than it is in the
younger household type, and we see more diverse reporting patterns in this type of
household.

3. Methodology
3.1. A Nonparametric Approach

We develop a technique for estimating the probability distribution of a small household
network of fixed size from egocentric data. The method makes no assumptions about the
similarity in behavior between household members. Here we discuss its application to a
household of size four with two 0–5 year olds, and two 19+ year olds. Contacts as defined

by the survey are symmetric, so there are  possible contacts in each household. We
will use vector notation to represent the network, since it is more compact than matrix
notation and easier to display our results. We represent the household network by a 6-vector,
z, where each element of z represents a possible contact between two members. The total
number of possible contact networks for a household of this age composition is 26 = 64.

For each surveyed household, only three of the six possible contacts are observed. Let y
denote the observed network, a 6-vector where three elements are missing.

We first express the likelihood of the data in the most general form, which allows for any
parametrization. Let Yi denote the vector representing the network reported by respondent i,
and let n be the number of respondents. Let Ri denote the respondent type of respondent i
(younger child, older child, female adult, or male adult). We denote the probability of
network k by pθ(k). Sampling probabilities of the various respondent types are denoted pψ
(Ri = ri). The separate parametrization of the network probability distribution and the
sampling probabilities is justified by the sampling design: the process of selecting
respondents was independent of the within-household contact network.
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Each observation includes the respondent type which determines which dyads are observed,
as well as the values of the observed dyads. We can compute the likelihood contribution of
one respondent by summing the probabilities of all complete networks which are consistent
with the partially observed network. The joint probability mass function of observed
respondent type and observed dyadic data is thus

where

The joint likelihood function of θ and ψ is thus:

We are concerned with estimation of θ, and it’s clear that the score equations for θ will be
free of ψ. Thus we can restrict our attention to the likelihood for θ alone:

We begin by describing a nonparametric approach, in which we assume no functional
relationship between the probabilities of different networks; that is pθ (k) ≡ pk, where p is a
vector in 64-space. This approach makes no assumptions about the similarity of contact
behavior between household members. The likelihood of p is thus

We would like to obtain the maximum likelihood estimate (MLE), but we have an
identifiability problem. The likelihood function includes 63 free parameters (64 which sum
to one). The number of possible distinct data configurations is 32, as there are four types of
respondents (so four missingness patterns) and 23 = 8 possible reports from each respondent.
Estimation will only be possible if we can restrict our parameter space to have 32 or fewer
free parameters. One way to reduce the identifiability problem is to assume that the two
children are exchangeable and the two adults are exchangeable. This reduces the dimension
of the parameter space to 27 (28 parameters which sum to one). However, we feel this
approach is sensible only when the two children fall into the same age group, so the method
could not be applied to households with two children in different age groups. In addition, we
expect the female and male adults in the household to behave differently. Moreover, we still
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do not have enough observed data points to accurately estimate the parameters. Although
there are 27 types of data configurations, only nine of these possibilities are observed in our
data set with two 0–5 year olds and two 19+ year olds. Our data does not contain enough
information to estimate all the parameters in the likelihood.

3.2. A Penalized Likelihood Approach
To resolve the identifiability problem, we use a penalized likelihood approach, also referred
to as regularization (Kim and Sanderson, 2008). We add to the likelihood a smoothing
penalty which imposes a preference for probability distributions of networks in which
contacts occur independently, a common assumption in epidemic models.

When we assume independence, we have only six parameters, the probabilities of contact
between each pair of household members. We’ll denote them by η, a vector with six
elements. We estimate ηj with the MLE of the binomial distribution:

where dj,i = 1 if respondent i reports contact on dyad j, dj,i = 0 if non-contact is reported, and
dj,i is not observed for all respondents due to the structurally missing data.

When we assume independence, the probabilities of each network are a deterministic
function of η:

Let pk,ind denote the probability of network k under the independence assumption as
described above, while (as mentioned previously) pk denotes the unknown probability of
network k with no independence restriction. We use the squared Hellinger distance to
compare these distributions, so our penalized likelihood function with the independence
penalty is:

The tuning parameter, λ, controls the degree of smoothness that is applied to the likelihood.
When λ = 0, the estimates are completely informed by the data without any parametric
assumptions. As λ → ∞, the penalty dominates the formula, and our estimate converges to
the independence estimate.

The choice of penalty may influence the results. We tried two other penalty functions and
compared their effect on the results. We tried a penalty which imposes a preference for
distributions in which networks differing on a single dyad have similar probabilities, defined
by:
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As expected, this penalty smooths the probability parameters, but we found the extent of
smoothing to result in unrealistic estimates of probability distributions. Results are included
in the supplementary material.

We also tried a penalty which imposes a preference for probability distributions in which the
two children are exchangeable and the two adults are exchangeable. We define the penalized
log likelihood function with this penalty as follows:

We found that this penalty does not contribute enough information to resolve our
identifiability problem. There are a total of 28 unique networks when accounting for
isomorphisms under exchangeability, but our subset of households with two 0–5 year olds
and two 19+ year olds contains only nine types of partially observed networks. Thus, even
with a very large tuning parameter, the exchangeability penalty is insufficient to identify the
parameters.

To select the tuning parameter, we performed leave-one-out cross-validation (CV) as
described by Hastie et al. (2008). We implemented the procedure as follows:

We performed the following algorithm for λ on a grid ranging from 0 to 40:

a. Omit one data point, maximize the penalized likelihood for the remaining n − 1.

b. for the (penalized) MLE, compute the non-penalized likelihood for the omitted
point.

c. Repeat (1) and (2) n times, so that each data point is omitted for one iteration.

d. Compute the mean of the non-penalized likelihood over all n iterations.

We selected the value of λ which maximized the mean of the non-penalized likelihood. This
is an extension of cross-validation from a prediction setting to a likelihood setting, in which
we replace minimization of mean squared error with maximization of the likelihood.

An alternate way to define the optimal tuning parameter is the smallest λ which results in an
identifiable penalized likelihood. According to Catchpole and Morgan (1997), we can
measure the identifiability of a likelihood equation by the rank of the Hessian matrix at the
MLE, for exponential families. We tried this approach, but the large amount of noise we
observed in the relationship between the rank of the Hessian and the tuning parameter made
it difficult to precisely identify the cutoff. We estimated the rank of the true Hessian by
computing the rank of the observed Hessian with the qr function in R. We expect the
relationship between the rank of the true Hessian and the tuning parameter to be
monotonically increasing, but we found a non-monotone, noisy relationship. We believe the
problem arises from limited precision in our rank computation method. The Hessian is
computed by qr based on the number of eigenvalues of the matrix which are zero, so
depends on the precision with which R measures the magnitude of the eigenvalues, several
of which are very close to zero. Computing the rank of the true (rather than observed) 63 by
63 Hessian matrix is a non-trivial problem and is beyond the scope of this paper. Because
this approach was unsuccessful, we present only results using the cross-validation-selected
λ.

We maximized the penalized likelihood function, subject to the constraint that the
probabilities sum to 1 and all lie between 0 and 1, to obtain the penalized maximum

Potter and Hens Page 7

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



likelihood estimate. We performed optimization in R version 2.9.2 (R Development Core
Team, 2009), with the optim function and the BFGS method (Broyden, 1970).

We believe that in most cases the penalized likelihood maximum is unique, but it is not clear
that uniqueness is guaranteed for all data sets. In the unpenalized setting, the uniqueness of
the maximum likelihood estimate is not guaranteed for a fixed sample size, except in the
case of exponential families under certain conditions (Lehmann and Casella, 1998). As λ →
∞, the penalized likelihood approaches a product of binomial random variables, whose
likelihood has a unique maximum. When λ is too small to ensure identifiability, we expect
multiple maxima. When λ is large enough to ensure identifiability, we expect a unique
maxima for most data sets. We found the results from the optimization procedure to vary
with the starting value provided, because for some starting values the routine converged to a
local rather than global maximum. We report results based on a uniform starting probability
distribution, which we found to consistently produce the largest maximum. In exploring
appropriate starting values, we did not find evidence for multiple global maxima. However,
it is not clear to us that a unique maximum is guaranteed for our penalized likelihood, and it
is possible that certain data sets may produce multiple maxima.

Unpenalized estimates were computed by maximizing the unpenalized likelihood using the
optim function in R. Since the parameter is not identifiable, multiple maxima may exist. One
example in households with two 0–5 year olds and two 19+ year olds, is that the data do not
contain information to distinguish between the following two networks: (0 1 0 0 0 1) and (0
1 1 0 0 1). Denoting unobserved dyads by ., these networks are consistent with the following
observed data points: (0 . . 0 0 .), (0 . . 0 0 .), and (. 1 . 0 . 1), none of which give evidence
favoring one of the true networks over the other. The maximum returned by the optimization
routine placed equal probability on the two networks, but distributing that probability mass
differently between the two does not shift the likelihood value. We report the maximum
returned by optim.

The classical likelihood-based method to estimate uncertainty by inverting the Fisher
information matrix does not apply when the likelihood is penalized (Lehmann and Casella,
1998). The classical approach also fails for the unpenalized likelihood since it requires an
identifiable parameter. Instead we compute standard errors for the penalized and
unpenalized maximum likelihood estimates through a nonparametric bootstrap, as described
by Efron and Tibshirani (1993). We used 500 bootstrap resamples. For the penalized
likelihood bootstrap, we fixed the tuning parameter to the one selected on the original data
set. For comparison purposes, we also computed estimates and confidence intervals (also
using the nonparametric bootstrap) for the independence model described above.

3.3. Model Comparison
We performed a hypothesis test to assess whether the penalized likelihood model differs
significantly from an independence model. A classical likelihood ratio test assesses whether
the parameter of a larger model falls inside a constrained subspace of the parameter space,
or outside of the subspace, so testing whether releasing the constraints improves model fit.
In our case, the subspace is the set of parameter vector satisfying the independence
assumption:

We want to test:
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H0 : The true parameter is associated with an independence model.

HA : The true parameter is not associated with an independence model.

The classical LRT will not work in our setting, because we are not working in a likelihood
framework; we’re using a semi-parametric method. The classical theorems do not apply. We
are not aware of an analogous approach for penalized likelihood. Instead we used a
bootstrap to approximate the distribution of the LRT statistic, as follows.

1. We simulated data sets with the same size and respondent composition as ours from
the independence estimates (H0).

2. For each data set, we performed cross validation to compute the optimal lambda.

3. For the simulated data set, we estimated the penalized MLE, and the penalized
MLE when parameters are constrained to the subspace associated only with
independence models.

4. We computed the difference in log likelihoods, the test statistic: value of penalized
log likelihood at its maximum - value of penalized log likelihood with
independence constraint at its maximum.

5. We repeated (1–4) 300 times.

We computed the p-value: the probability that the statistic under H0 is greater than or equal
to the observed statistic. When calculating the likelihood ratio test results, we found that
about 9% of the 300 evaluations resulted in a negative likelihood ratio test statistic, likely
due to convergence of the algorithm to a local maximum. We discarded these evaluations
from analysis.

3.4. Simulation Study
We performed a simulation study to assess predictive performance of our method as follows.
We used the unpenalized MLE for households with two 0–5 year olds and two 19+ year olds
to generate 200 samples of size 30, the observed sample size for this household composition.
Next, we randomly assigned respondent status to one person in each simulated household
using the observed frequency of different respondent types: six younger children, 17 elder
children, four female adults, and three male adults. We recoded dyads which would not be
reported by the respondent as missing. The penalized likelihood approach was then used to
estimate the multinomial probability vector for a grid of λ-values ranging from 0 to 50 by
steps of 0.5. Based on the estimated probability vector we computed the mean average
squared error and its bias-variance decomposition using the following definitions:

We repeated this procedure using the unpenalized MLE from a different household type:
households with two 12–18 and two 36+ year olds, using the observed sample size (40) and
respondent frequency (8 younger children, 20 elder children, 4 female adults, and 8 male
adults) for this household composition. We performed the simulation study with the
independence penalty and the adjacency penalty. For the adjacency penalty, we performed
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simulations for λ-values ranging from 0 to 10 by steps of 0.25, because the trends in bias,
MSE, and variance are more visible in this range.

Whereas the cross-entropy and the Hellinger distance are more appropriate to measure the
difference between probabilities, we chose to use the MSE because of its bias-variance
decomposition. Due to the limited available data, the MSE was calculated on the same data
that was used to estimate the CV. Future studies with larger sample sizes would allow using
a second dataset to evaluate the MSE more properly.

4. Results
4.1. Penalized likelihood estimates

Figure 3 shows the relationship between the tuning parameter and the mean of the likelihood
from the cross-validation procedure for households with two 0–5 year olds and two 19+ year
olds. The maximum occurs at λ = 23.5. As expected, the curve is concave down, although
there is more noise than expected. Other household compositions showed less noise in the
relationship; those plots are included in the supplementary material.

Table 3 shows estimates for the probability distribution of the network from three methods:
unpenalized MLE, independence MLE, and penalized MLE. To ease comparison of
estimates between the three methods, we display the estimates in adjacent columns,
followed by confidence intervals in adjacent columns. We omit from display networks
whose probability estimates under all three models were less than 0.02. The complete
network (in which all contacts occur) receives a high probability estimate by all three
methods. As we would expect, the penalized likelihood estimates generally lie between the
unpenalized estimates and the independence estimates. The second network in the table
receives non-negligible probability mass under both the penalized and unpenalized methods,
but zero probability under the independence model. This indicates that the data give support
for this network, but the restrictions of the independence model are too strong to detect that
support. The smoothing imposed by the penalty does not remove the preference for this
network.

Table 4 shows the estimates for households with two 12–18 year olds and two 36+ year olds.
Because the CV-selected λ = 199 was much larger for this household, the penalized
likelihood estimates are closer to the independence estimates. The bootstrap-based
likelihood ratio test results showed a significant departure from independence for the
households with two 0–5 year olds and two 19+ year olds (p-value< 0.01) whereas no
significant departure from independence was found for the households with two 12–18 year
olds and two 36+ year olds (p-value 0.24). These results are in line with the values of λ
estimated for these two household types. Tables of estimates for the other four household
composition types are included in the supplementary material. The values of λ estimated by
cross-validation varied from 20 to 199. Small values of λ suggest that the data set
contributes a fair amount of predictive power, so less smoothing is necessary. Larger values
of λ show the need for more smoothing.

Figure 4 displays the estimated probability distribution for contact networks in households
with two 0–5 year olds and two 19+ year olds. This figure graphically displays the penalized
likelihood estimates in Table 3. Networks with estimated probabilities less than 0.03 are
omitted from the plot. The complete network has an estimated probability of 0.65. The next
most likely network has all contacts except contact between the two adults, and has an
estimated probability of 0.12. The third most likely network includes all contacts except
between the elder child and the female adult, and has an estimated probability of 0.08. The
fourth most likely network has the elder child as an isolate, with all possible contacts
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occurring between the other three members. Prior to analyzing this data, we would not have
expected this network to have a non-negligible probability in households with such young
children, as they require parental care. However, it fits with two observations in our data set
in which the elder 0–5 year old child was the respondent and reported no ties to other family
members. We hypothesize that the child was not at home on the survey date. Since
respondents were identified in advance of the survey date and mailed paper diaries to carry
with them on the specified day, they were not necessarily at home. This isolate effect is one
source of dependency in our network estimates. The plots show that in the five most likely
networks, representing 97% of the probability mass, the elder child contacts two or three of
the other three members, or contacts none of them. Networks in which the elder child
contacts a single member are very unlikely. If the elder child contacts at least one other
household member, then he or she is more likely to contact the other two.

We include plots analogous to Figure 4 for the other household types in the supplementary
material. These plots show variation in contact patterns by household age composition. For
example, households with two teenagers and two adults have a smaller estimated probability
of the complete network (0.34), and networks in which one child does not contact one parent
are more likely in this household type.

4.2. Simulation study results
Figure 5 shows the mean average squared error and its bias-variance decomposition from
simulations based on the characteristics of two different household age compositions. In the
younger household composition, after an initial decrease the mean averaged squared error
stabilizes with increasing λ, due to decreasing bias and increasing variance. The initial
decrease in mean average squared error shows the improvement in predictive performance
as the weight on the penalty term is increased. The eventual stabilization of MSE shows
similar predictive performance for a range of λ-values. Households with two 12–18 and two
36+ year olds show a different pattern from the simulations. For this household composition,
MSE shows a very small decrease and then increases. The squared bias increases steadily
while variance decreases monotonically. The right-hand plots show that as λ increases, the
probability parameter estimates converge to the independence model estimates as we would
expect.

5. Discussion
We have used egocentric data to estimate within-household contact networks, a key
component of epidemic spread. We analyzed several different household types and found
substantial differences in contact behavior between households of different age
compositions. Contact density decreased as members’ age increased, suggesting that the
higher transmission probabilities estimated for children than adults may be due to
differences in contact behavior rather than biological differences. We also found evidence
for departure from the “random mixing” assumption commonly used in epidemic models. A
likelihood ratio test shows showed departure from the independence assumption required for
random mixing in households with two small children, giving evidence for dependence in
some household networks. The same test found no evidence for departure from
independence in households with two teenagers and two adults, indicating that the
independence model adequately represents contacts in these households. We conclude the
independence assumption is appropriate for some household types but not others. One
possible source of contact dependency is an isolate effect, in which members who are not at
home make no contacts to at-home household members. One strength of our method is that
it uses very few parametric assumptions. As such, our results can be used to build a
parametric model based on the patterns we found or to assess assumptions made by existing
models. This work also contributes to the field of social network inference. Using egocentric
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data collected from multiple small networks, we develop methodology to infer the
probability distribution of the complete network with minimal assumptions. Our method
could be applied to network data with the same structure from other settings.

Our method does require some assumptions. Our choice of smoothing penalty imposes a
preference for probability distributions that are similar to an independence model. This is a
lighter constraint than assuming independence, and permits dependence in our final
estimates. We found this penalty to work better than the other two we tried. The adjacency
penalty oversmoothed and produced unrealistic estimates, and the exchangeability penalty
did not sufficiently constrain the parameter space.

An alternate solution to the identifiability problem would be a Bayesian approach, in which
we restrict the parameter space by expressing our beliefs about the parameter values through
prior distributions. However, the state of prior knowledge in the field is weak. The only
paper we know of inferring household contact networks is Potter et al. (2011), and that paper
uses the same data set we analyze here, so does not truly give prior knowledge. Therefore,
we prefer the penalized likelihood approach scientifically. However, we did perform
Bayesian analysis as an exploration. A Dirichlet distribution is an appropriate prior since its
range satisfies the constraints on our parameter vector. A noninformative prior is a
symmetric Dirichlet distribution with α = 1, giving equal weight to all possible parameter
vectors. The posterior distribution was only slightly shifted from the prior distribution: it
distributed probability mass fairly evenly among networks, with slightly higher mass (0.09)
on the complete network. These results are unrealistic and inconsistent with the data. Since
the data contain insufficient information to estimate our parameter, the prior has a strong
influence on the posterior. We also tried symmetric Dirichlet distributions with α ranging
from 0.01 to 2.0, but again the influence of the prior was so strong that patterns present in
the data were not apparent in the posterior. Our understanding of social behavior might
motivate us to create a prior distribution imposing a preference for denser networks, since
we expect most household members to contact each other on a given day. However, Figure 2
shows that this prior distribution would be inappropriate for some household types. We are
estimating 63 dependent parameters, and a prior distribution placing large weight on denser
networks necessarily places negligible weight on networks with zero, one, or two contacts.
Furthermore, the variance of the prior distribution for each parameter needs to be small,
because priors with large variance were insufficient to constrain the parameter space. Thus,
networks which are actually fairly likely given this data set received negligible probability
mass in the posterior. We feel a Bayesian approach would be appropriate if we had a high
level of confidence in our prior beliefs, and the exploration described here shows that the
belief in denser household networks was not borne out by the data.

As Kim and Sanderson (2008) show, the relation between penalized likelihood and Bayesian
methods is revealed by expressing a general penalized likelihood with penalty g(p) as:

Which is equivalent to a Bayesian approach where e−λg(p) is a partially improper prior. This
approach does not work in our case, because our independence penalty is itself a function of
the data, and a Bayesian prior must not depend on the data. We believe this is why our
method succeeds while Bayesian methods failed. The prior distributions in the Bayesian
approach constrained our parameter space so heavily that results were unreasonably
different from the data. Our penalty constrains our space in a way that is informed by and
compatible with the data.
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Our work has a number of limitations. First, we made assumptions regarding which
contacted individuals are household members since this information was not collected, and
we made assumptions about the identity of each contacted person based on their reported
age and sex. In future surveys, we recommend having respondents identify which of their
contacts are to household members. In addition, since we found evidence that some
household members are away from home on the survey date, we recommend collection of
home/away status for each household member.

Our approach is for networks of a fixed size and age composition and requires adequate
sample size. Our data set contains 750 respondents, but because we performed analyses
separately for each age composition, sample sizes ranged from 23–40. In two of the six
household types we analyzed, the optimal tuning parameter was large and estimates were
close to those assuming independence. The high contribution of the penalty to the estimates
indicates a high level of non-identifiability for these household types. Our method works
only for small networks because the proportion of the network observed from one

respondent per household is , which decreases quickly with network size. In future
surveys we recommend collecting contact reports from all household members to obtain the
fullest possible understanding of the contact network. Our nonparametric approach will
directly apply to completely observed household networks, and without missing data, the
penalty term will be unnecessary and inference will be straightforward. In cases where
nonresponse results in a small amount of missing data, the parameters may be identifiable
with the nonparametric method. If not, our penalized likelihood approach can be easily
modified to accomodate reports from multiple respondents per household.

The quality of the bootstrap approximation relies on the degree to which the empirical
distribution approximates the true distribution. The sparseness of our data set, combined
with the large number of parameters we are estimating, limit our ability to estimate
uncertainty. We do not expect any confidence intervals for the MLE to perform well since
the parameter is not identifiable. The nonparametric bootstrap may underestimate
uncertainty in the independence model because for some dyads, 100% of contacts were
observed, so each resample yields a probability estimate for that dyad of 1. As the penalized
likelihood model is a combination of these two, uncertainty in its estimates may be
underestimated as well. Furthermore, the confidence intervals for the penalized likelihood
model do not take into account uncertainty arising from selection of the tuning parameter.

In our analysis, we assumed that contact behavior is the same on weekdays and weekends,
and during the Easter holiday versus a non-holiday period. In fact, contact patterns may
change during these periods, but sample sizes were too small to perform separate estimates
since we performed estimates separately for each household age composition. A parametric
model based on explicit assumptions of contact behavior could use the entire data set to
estimate patterns, thus increasing our power to detect weekend and holiday effects.

One example of a parametric model was implemented in Potter et al. (2011). In that paper,
the authors estimated a latent variable indicating whether each household member is at home
on a given day. They assumed the home/away statuses of the different members were
independent, and that contacts occurred independently between members at home, with
contact probabilities depending only on age. They assumed that members away from home
were not contacted. One advantage of this approach is that they combined reports from
households of different sizes and age compositions, so increasing the sample size, while
estimating a smaller number (20) of parameters. By estimating fewer parameters with a
larger sample size, they were also able to estimate separate network effects for weekday vs.
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weekend and holiday vs. non-holiday. They found no evidence for differences in contact
patterns between the weekday and the weekend. They found that holiday and non-holiday
parameter estimates were statistically different, but did not show a clear and substantively
important pattern in the differences. The disadvantage to the parametric model is the large
number of assumptions required. In this paper, our goal was to perform estimation with as
few assumptions as possible. The approach outlined here is well suited to that purpose, and
is preferable when we have limited prior knowledge about our parameters of interest and a
large amount of data. We recommend the parametric approach when researchers feel
confident that model assumptions hold.

We have developed a new technique to infer small contact networks from egocentric data
using minimal assumptions and applied it to estimate household contact networks in
Belgium. Our estimates show departure from the random mixing assumption found in many
epidemic models. We recommend collecting additional contact data and further
investigation of the contact network structure and its relevance for infectious disease
transmission.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Subset of observed data: households with two 0–5 year olds and two 19+ year olds;
respondent in blue. Lines indicate reported contact. Labels are: ch=child, ad=adult.
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Fig. 2.
Subset of observed data: households with two 19–35 year olds and two 36+ year olds;
respondent in blue. Lines indicate reported contact. Labels are: ch=child, ad=adult.

Potter and Hens Page 17

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Cross-validation results for the independence penalty
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Fig. 4.
Estimated probability distribution for households with two 0–5 year olds and two 19+ year
olds. Labels are: ch1 = younger child, ch2 = older child, ad1 = female adult, ad2 = male
adult
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Fig. 5.
Simulation results based on the characteristics of households with two 0–5 year olds and two
19+ year-olds. The left-hand plots show the mean squared error, squared bias, and variance
averaged over probability parameters. The right-hand plots show the probability parameter
estimates averaged over simulations.
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