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Abstract
Applied researchers often include mediation effects in applications of advanced methods such as
latent variable models and linear growth curve models. Guidance on how to estimate statistical
power to detect mediation for these models has not yet been addressed in the literature. We
describe a general framework for power analyses for complex mediational models. The approach
is based on the well known technique of generating a large number of samples in a Monte Carlo
study, and estimating power as the percentage of cases in which an estimate of interest is
significantly different from zero. Examples of power calculation for commonly used mediational
models are provided. Power analyses for the single mediator, multiple mediators, three-path
mediation, mediation with latent variables, moderated mediation, and mediation in longitudinal
designs are described. Annotated sample syntax for Mplus is appended and tabled values of
required sample sizes are shown for some models.
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Why Mediation?
The use of mediation analysis is widespread in the social sciences and other disciplines
(MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). One of the original papers on
mediation analysis by Baron and Kenny (1986) has now been cited over 10,000 times,
indicating interest in this method. Mediation analysis is a useful statistical tool for
researchers who want to answer substantive questions about how an independent variable
affects a dependent variable (MacKinnon, 2008). In the simplest mediation model one
variable causes an intervening variable, the mediator, which then causes the outcome as
shown in Figure 1 below (Baron & Kenny, 1986; MacKinnon, 2008).

In the top panel of Figure 1 an independent variable X is related to an outcome Y.
Coefficient c describes the total effect of X on Y. The bottom panel of Figure 1 adds a
mediating variable relating X to Y. The path relating X and the mediator M is labeled a, the
path relating M to Y is labeled b. Under certain assumptions (including an accurately
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specified model) (Holland, 1988; Mackinnon, 2008), the product, ab, is the mediated or
indirect effect. The path labeled c’ is the direct effect. The sum of the indirect and direct
effect is the total effect and is equal to c.

This single mediator model in Figure 1 can be expressed in three regression equations.

(1a)

(1b)

(1c)

The single mediator model described in the equations and Figure 1 has been extensively
studied including assumptions, power, and Type I error rates (e.g. MacKinnon, 2008).
However, most applications of mediation analysis involve much more complex models,
including multiple mediators, longitudinal mediation, and categorical variables.

Power Analysis
Statistical power is the probability of rejecting a false null hypothesis (1 – probability of a
Type II error) and is generally recognized as a critical part of research (Cohen, 1988;
Sedlmaier & Gigerenzer, 1989). One important use of statistical power analysis is to
calculate required sample sizes to achieve at least .80 probability to reject a false null
hypothesis (in some circumstances even higher levels of power might be desirable, e.g.
Topol et al., 1997, cited in Maxwell, 2000). As a result, power analysis is an important
aspect of designing any study. Without proper power analysis, sample sizes for a study
might be too low to find a real effect of small magnitude. On the other hand, a sample size
that is too large is also undesirable because it is usually wasteful to spend additional
resources on larger samples with only marginal benefits.

Power analyses for “traditional” statistical methods have been advocated in psychology and
other social sciences for some time (e.g. Cohen, 1988) and are now routinely required by
some of the major grant agencies, e.g. the National Institute of Health (NIH). Guidelines
have been established and some great practical resources have been published in numerous
outlets (e.g. Lenth, 2001). Furthermore, statistical software for the calculation of power is
now readily and in some cases freely available (e.g. Faul, Erdfelder, Lang, & Buchner,
2007; Lenth, 2006)

Power in mediational models was recently explored by Fritz and MacKinnon (2007), who
provided researchers with sample size requirements for various sizes of the a and b path in
the single mediator model in Figure 1. Fritz and MacKinnon (2007) showed that sample size
requirements can be very large, especially if small mediated effects are to be detected. They
also suggested using asymmetric confidence intervals or resampling methods like the
bootstrap for testing the mediated effect to increase statistical power. No existing literature
provides sufficient information on how to calculate power for more complex mediational
models and there are several aspects of the single mediator model not yet described – such
as power to detect mediation with categorical variables. Substantive researchers, however,
often deal with models that are much more complex than the single mediator model. This
paper describes how researchers can estimate power for complex mediational analyses, such
as multiple mediators, three-path mediation, mediation with latent variables, moderated
mediation, and mediation in longitudinal designs. Several examples of complex structural
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equation models and a general framework for the estimation of power for a very wide
variety of models are described.

Power Analysis in Structural Equation Models (SEM)
The estimation of power in SEM usually requires the researcher to specify the relation
among all variables in the model. In a complex model this might involve a large number of
parameters, which makes it inherently more challenging than estimating power for a t-test or
an ANOVA model. Predicting expected effect sizes is probably the hardest part of any
power analysis. Once these predictions are made, the power analysis consists of formalized
steps that are well laid out or are implemented in software packages. For SEM the process is
more complex because no specialized software exists, and the power analysis has to be
performed using general purpose SEM software (e.g., see Miles, 2003).

There are at least three different methods that have been proposed in the literature to assess
power in SEM. All three are described briefly below.

Satorra and Saris (1985) introduced one of the first methods to estimate power in SEM.
Their approach can be summarized in three steps. In a first step, researchers define each
parameter in an SEM based on past research, pilot studies or theoretical considerations. For
example, in the single mediator model described earlier, researchers would have to provide a
value for the magnitude of the a, b, and c’ paths, and furthermore the variances of each of
the three variables X, M, and Y. This resulting model contains the best available values for
all required parameters. This step is important, as inaccurate parameter values will lead to
power estimates that are based on the wrong population model. For example, if a parameter
is specified to be of large magnitude but in reality this parameter is only small in magnitude,
power will be overestimated. Likewise, guesses for parameters that are too small, will yield
needed sample sizes that are too large. In a second step a covariance matrix is generated
from the parameters chosen for the population model. If this covariance matrix would be
analyzed under the original model, the exact same parameter values that were defined in the
first step would be recovered. In a third step, this generated covariance matrix is analyzed
under a model in which the researcher fixes one or more parameters at a value different from
the first step (usually, but not always, the value is fixed at zero). The parameters that are
fixed are the ones for which a power analysis is desired. The resulting likelihood ratio
statistic from this constrained model is used as an estimate of the non-centrality parameter,
λ, in a power analysis. Power is then calculated as the probability of obtaining a χ2 value
from a non-central χ2 (df,λ) distribution that is larger than the critical value of a central χ2

(df) distribution, where df is the number of parameters with different values in the second
model. Figure 2 below illustrates this point and depicts, as an example, a central χ2 (1)
distribution with an α= .05 cutoff at 3.841 and a non-central χ2 (1, 10) distribution with a
non-centrality parameter λ equal to 10. The shaded area represents power to detect that the
parameter of interest is significantly different from zero.

The Satorra and Saris method may be used to determine power for testing one specific
parameter, e.g. the a path, or joint power for more than one parameter. An advantage of the
method is that these steps only have to be performed one time for each parameter given a
certain sample size. If the χ2 value for one sample size condition is known, then power
values for other sample sizes can be easily computed because the non-centrality parameters
are perfectly linearly related to sample size. In addition, the Satorra and Saris method allows
estimation of power for hypotheses that posit that parameter values are significantly
different from any value of interest, and not just zero, as in the case of the classic null
hypothesis.
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One drawback of this method is that certain characteristics of the data (e.g. non-normality,
missing data, etc) cannot be easily accounted for. Another potentially more severe drawback
is that the definition of a non-centrality parameter becomes difficult in the context of a
mediation analysis. If it is of main interest to assess that a mediated effect (the ab product
term) is adequately powered, a non-centrality parameter could be derived by either setting
the a path, the b path, or both to zero. All three constraints would result in the ab product
term to be zero. However, if the magnitude of a and b differs substantially, power estimates
can vary greatly and it is unclear which estimate would actually best represent power to
detect the mediated effect. The so-called “phantom variable” approach (Rindskopf, 1984) in
which a single variable that represents the product term ab is added to the model (e.g.
Cheung, 2007) does not solve this problem. An example of this issue is presented later for
the single mediator model.

The second approach to test power in SEM, proposed by MacCallum, Browne, & Sugawara
(1995) is also based on using a χ2 value (or more technically a value based upon a χ2 value)
as a non-centrality parameter. In this approach the value of the RMSEA can be used to
estimate power for a comprehensive test of an entire SEM against a generic alternative. The
RMSEA itself is a function of both the χ2 value and the degrees of freedom for a model,
expressed as:

(4)

MacCallum et al. (1995) proposed to test the power of rejecting the null hypothesis of not-
close fit (H0: RMSEA > .05). This type of power analysis has several advantages. First, it is
a general calculation that gives the researcher information about which sample size to
choose based on a whole model. The MacCallum et al. (1995) approach does not require the
researcher to guess any specific parameter values of the model. The power analysis pertains
only to the model as a whole not to single parameters. This strength is also a weakness,
because the researcher does not know whether a crucial parameter of the model, e.g. the
mediated effect, is adequately powered. Maxwell (2004) makes this point in a more general
context and notes that in many models that include multiple hypothesis tests (virtually every
SEM), any particular hypothesis test might be under-, over-, or adequately powered. It
should also be noted that the MacCallum et al. (1995) and the Satorra and Saris (1985)
method can yield identical results if certain values for the RMSEA in the MacCallum et al.
(1995) approach are chosen.1

A third approach that is computationally more demanding but similar to the logic of Satorra
and Saris (1985) is the Monte Carlo approach described by Muthén & Muthén (2002). The
Monte Carlo approach is used in this manuscript because of its flexibility and ease of
implementation. Similar to Satorra and Saris (1985) the first step of this approach is to
define a model in which all parameters are fixed to values based on prior research or theory.
This model represents the best guess of the true population model. Based on this model
specification, a population is defined, and a large number of samples are drawn from this
population. In other words, a population is created in which the postulated model is true and
subsequently, many samples of a specific and constant size are drawn from this population.
Each sample is fitted to the postulated model, and parameters are estimated and recorded.
Like in a real sampling process, the parameter estimates of each sample will vary around the
specified true parameter value. Some of the parameter estimates in some samples will be

1If the RMSEA of the generic model in the MacCallum et al. approach is set to 0, and the RMSEA of the alternative model is derived
from the non-centrality parameter yielded from the Satorra and Saris approach, both methods will give identical answers.
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significant, while other estimates in other samples will not. Given enough replications (at
least several hundred - higher numbers are more desirable, because they give more stable
estimates and precise confidence intervals) the empirical rate of statistical significance
averaged across all replications is the power estimate. For example, imagine that a parameter
in a given SEM has the value of 0.5 in the population, and 1000 samples of size n=200 are
drawn from this population. Now imagine further that in 800 of the 1000 samples this
parameter is deemed statistically significant. The empirical power to reject the hypothesis
that this coefficient is equal to zero given a sample size of 200 is equal to 800 / 1000 or
simply 80%. The Monte Carlo approach is intuitive, because it mimics the sampling process
that occurs during data collection, but repeats it many more times. The repeated draws of
samples of specific size from a defined population yield a probability statement about how
often one would expect to find a significant result.

The Monte Carlo approach has other advantages as well. First, like Satorra and Saris (1985)
it is possible to estimate the power of a test for each individual parameter of the model and
make specific decisions about sample size based on these considerations. This includes the
mediated effect (product term ab), which is impossible to unambiguously define in the other
approaches. Second, the Monte Carlo approach can account for specific data characteristics,
e.g., missing data on some variables, non-normality on other variables, model
misspecifications, or incorrect dichotomization of continuous variables can be modeled into
the population. Also, the Monte Carlo approach may produce more accurate results for
power than other methods when the sample size under consideration is small. A drawback of
the Monte Carlo approach is that it is computationally more intensive, and since an easy
transformation of non-centrality parameters is not available, power for different sample sizes
has to be estimated separately.

Power Estimation using the Monte Carlo method
In this section, several examples of how to estimate power for complex mediational models
are described. Syntax and steps for power estimation are described for each example. The
software program of choice in this article is Mplus, but the Monte Carlo approach can also
be conducted in other programs that have simulation capabilities, e.g. SAS, LISREL, or
EQS.

In all following examples X, the independent variable, is considered to be dichotomous and
randomly assigned to participants. Furthermore, a balanced distribution is assumed. This
mimics a situation of a randomly assigned intervention with two possible treatments. All
other variables, including the mediator variable, M, and the outcome variable, Y, are
generated to be continuous variables. For simplicity all continuous variables are generated to
have a mean of 0 and a variance of 1.

To express effect sizes in the mediation model we chose Cohen’s guidelines (1988) for R2,
the amount of explained variance in the outcome. Cohen (1988) defined a small, medium,
and large effect on the R2 metric as .02, .13, and .26. For the a path, relating the
dichotomous variable X to the continuous mediator M unstandardized path coefficients of .
28, .72, and 1.02, were used to represent small, medium, and large effect sizes. These path
coefficients yield the precise amount of explained variance that was defined as small,
medium, and large. For the b path relating the mediator M to the outcome Y the values .14, .
36, and .51 as the size for the path coefficient were chosen. The residual variances of the
dependent variables were fixed so that the total variance of all variables was 1.0. The exact
covariance algebra that was used to determine the residual variance is presented in Appendix
A. The direct path, c’, relating X to Y while controlling for the mediator, does not influence
the size of the mediated effect (ab), so this path was kept constant at a value of .28, which
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expresses a small effect size in terms of R2. In applied settings, researchers should try to
obtain estimates of parameters based on previous research or theory and should try to avoid
the small, medium, and large categorization (see Lenth, 2001) when more information is
available.

Statistical Significance of the mediated effect
In the following Monte Carlo simulations the significance of the mediated effect for each
sample is automatically assessed by Mplus. Mplus computes a test statistic by dividing the
mediated effect (product term of ab) by a standard error developed by Sobel (1982). This
standard error is defined as:

(5)

where SEa and SEb are the standard errors of the effects a and b, respectively. The resulting
test statistic is compared to a critical value from a normal distribution (1.96 is the critical
value for a two-tailed significance test with α=.05).

Comparing the test statistic to a normal distribution assumes that the distribution of the
mediated effect is in fact normally distributed. However, the distribution of the product term
ab can only under few circumstances be approximated by a normal distribution. For many
values of a and b the distribution of the product is different from a normal distribution.
Using normal theory standard errors will therefore produce confidence intervals that do not
cover the actual 95% of plausible values. MacKinnon, Lockwood, and Williams (2004) and
Shrout and Bolger (2002) suggest employing the methods of bias corrected bootstrap to test
the significance of the mediated effect. Mplus can provide bias corrected bootstrap standard
errors, but unfortunately not in conjunction with Monte Carlo simulations. Another approach
to assess significance of the mediated effect has been proposed by MacKinnon, Fritz,
Williams, and Lockwood (2007). They suggest computing critical values based on
numerical integration of the actual distribution of the product and show that 95% confidence
limits based on critical values derived from the distribution of the product are able to capture
the true 95% of values of the distribution better than confidence intervals based on normal
theory standard errors. MacKinnon, Fritz, Williams, and Lockwood (2007) provide a stand-
alone software (PRODCLIN) and macros for common statistical packages that compute the
critical values and confidence intervals based on a numerical integration algorithm
developed originally by Meeker and Escobar (1994). It is possible to post-process results of
a Monte Carlo simulation in Mplus with a SAS macro (see Appendix B) that computes a
95% confidence interval of the mediated effect.

Example 1: Single Mediator Model with dichotomous X
The first example that we consider is the same single mediator model for which Fritz and
MacKinnon, 2007, provided power tables. However, here X is a dichotomous variable, such
as assignment to either a treatment or control group. For this first example, a more detailed
explanation of how to set up the Mplus syntax is provided. For all subsequent models
example code is simply appended. The syntax for the first example is provided in Appendix
C.

Using the MONTECARLO command in Mplus invokes the simulation mode in which
samples are drawn repeatedly from a population. The NAMES command lists all variables
in the population. Note that these do not refer to any real existing datafile and are only used
to define variables in the population that is being created. The CUTPOINT option creates a
dichotomous variable X that defines treatment assignment. Dichotomization at the value of 0
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on the X variables is requested. The NOBS command is an important aspect in this
simulation. This defines the size of sample that is repeatedly drawn from the population and
essentially defines for which sample size power is estimated. In an applied setting, it is
recommended to begin a power analysis with the maximum number of participants that the
researcher believes can be realistically achieved and then adjust this number in subsequent
runs to approximate power of .80 for the desired parameter estimate. The NREPS command
defines the number of iterations of the simulation study. Generally speaking the more
replications are being conducted, the more precise results are going to be; however the
returns are diminishing with increased number of replications. Depending on model
complexity, several hundred replications might give relatively precise estimates, but given
modern computing power most of these simulations of simple models will be finished in few
minutes, even for thousands of replications. In the provided examples the number of
replications was set to 10,000.

The MODEL POPULATION command fixes all parameter estimates of the model to values
that are believed to be true in the population, e.g. based on pilot studies. In Mplus, the
variable means are fixed by putting square brackets around parameter estimates as in
“[x@0]”, variances are fixed without the square brackets as in “x@0.25”. Note that this
fixes the total variance of independent variables, but fixes the residual variance of dependent
variables. Some covariance algebra (as presented in Appendix A) is usually necessary to
determine proper values for the residual variance. It is usually desirable to have a total
variance of 1.0 to easily translate unstandardized path coefficients into meaningful effect
sizes. Path coefficients that define relationships between variables are defined using the ON
statement, as in “m on x@0.28” which defines a path coefficient from X to M with the
value of .28. The MODEL command along with all path coefficients in the model estimates
means and variances of dependent variables and paths that were defined in the population.
The * symbol defines the start value and should be equal to the true parameter value to
ensure fast convergence of the mode. Finally, the MODEL INDIRECT command estimates
the direct and the indirect (i.e. mediated effect) from X to Y. This example is set up that the
program will provide power estimates for each path in the model and the mediated effect
given the path coefficients defined in the MODEL POPULATION command. In this
example we use an overall sample size of n=275, as evidenced in the NOBS statement.
Furthermore, both the a and b path are set to be of small magnitude, as defined by the
amount of explained variance in the outcome variables M and Y. The Monte Carlo
simulation will cycle 10000 times, as defined in the NREPS statement.

Running this syntax yields power estimates for each path. These are presented in the output
under MODEL RESULTS in the column labeled “% Sig Coeff”. The value denotes the
proportion across the 10,000 replications that the path coefficient reached significance at
the .05 level. This is the empirical power estimate. Table 1 partially reproduces the
information from Mplus using the same notation as used in the output file.

Running the model from Appendix C yields power for the direct path from treatment
assignment X to the mediator M (the a path) of .67, which indicates insufficient power. The
path from the mediator to the outcome variable (the b path) has power of .66 and is therefore
also underpowered. The mediated effect (ab) is underpowered with power equal to .21. In
this situation the researchers would need to increase the sample size if the main interest was
to have .80 power to detect the mediated effect. For the single mediator model with a
dichotomous treatment variable X, required sample sizes to achieve .80 power to detect the
mediated effect are presented in Table 2. This particular example requires a total sample size
of at least 640 to have .80 power to detect significant mediation.2
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To highlight the difference of the Monte Carlo approach and the Satorra and Saris method to
detect power for the mediated effect, power was calculated for one condition (medium a
path and small b path) for several sample sizes. In the Satorra and Saris approach the only
way to estimate power of the mediated effect is to set either the a path or the b path to zero.
By setting one of those paths to zero it is ensured that the product term is zero as well.
However, the assessment of power then pertains to the individual paths and not the product
term. Hence this analysis is not informative if power for the mediated effect is desired. As
can be seen in Table 2, the Satorra and Saris method, overstates power to detect the
mediated effect when either setting the a or the b path to zero. Both of these individual paths
are larger in value than the product of the two paths and therefore have larger power
estimates.

Example 2a. Three-Path Mediation Model
It is not uncommon that the mediated relationship is assumed to be a part of a larger
sequence or process in which several variables cause each other to cause a final outcome of
interest. The following example considers the simplest case of meditational chains by adding
a second intermediary variable between the outcome and the mediator (see Figure 3).

The mediated effect can now be expressed as the product of the three paths relating the
treatment to the first mediator, the first mediator to the second mediator, and the second
mediator to the outcome (Taylor, MacKinnon, & Tein, 2008). The product term of the three
paths can in many circumstances be very small making it harder to detect a true mediated
relation. Appendix D describes how to set up the three path mediation model and examine
power for the mediated effect. Even though the model setup changes, the general logic of
conducting the power analysis that was explained in Example 1 remains the same. In this
example the a path is defined to be of medium magnitude (R2 =.13, unstandardized path
coefficient =0.721). The paths b1 and b2 are also defined to be of medium magnitude (R2 =.
13, unstandardized path coefficient =0.39). Given a sample size of 90 yields power for the a
path to be 0.96. Both the b1 and b2 path are also adequately powered with power of .95. The
mediated effect (ab1b2) on the other hand has only power of .53. It is interesting to note that
although all individual paths have very high power, the mediated effect can still fail to be
adequately powered.

Example 2b. Mediation Models with Two Mediating Variables
Often researchers are interested in more than just one focal mediating variable, as seen in
Example 2a. Several variables might be considered as potential mediators in a more
complex model (e.g. Hansen, 1999; Hansen & Graham, 1991) in which multiple pathways
from the treatment to the outcome exist. Note that the difference to the previous example is
that here the second mediator is hypothesized to be caused by only the treatment and not the
other mediator. In this particular example, two mediating variables are considered that are
both caused by the treatment and are both causing the outcome. In general, these multiple
mediators can have positive or negative relations to the treatment assignment or the outcome
(MacKinnnon, 2008). In the example presented here, both mediators have positive relations
(see Figure 4). Syntax on how to set up this model is provided in Appendix E. In the
example the a1 path, relating the treatment assignment to the first mediator, was set at a
small value of 0.283. The b1 path was also set at a small value of 0.14, therefore the
mediated effect a1b1 was estimated to be 0.04. On the other hand, the a2 path was set to a

2The total sample size can be an uneven number because the Monte Carlo sampling only achieves perfect balance on the treatment
assignment variable in expectation. That means that within any given sample small imbalances on treatment assignments between the
two groups can occur, which can result in uneven numbers for total sample size. In practical settings, the estimated total sample size
can be increased by 1, if an odd number occurs.
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medium value of 0.721, and the b2 path was set to a medium value of 0.36, therefore the
mediated effect a2b2 was 0.26. The Monte Carlo power analysis was run for a sample size of
110. The simulation yields power estimates to detect either mediated effect, but also the total
mediated effect, which is simply the sum of the two product terms a1b1 and a2b2. In this
example, power to detect the mediated effect a1b1 was very low at .10, whereas power to
detect the mediated effect a2b2 was extremely high at .99. The power to detect the total
mediated effect was also .99. This example shows that different mediated pathways in one
model can have quite different power estimates.

Example 3. Mediation and Moderation with Latent Variables
In this example two additional concepts are considered: the use of latent variables and
moderated mediation with categorical variables (see Figure 5). For this example, more
details about setting up Mplus syntax are provided because some lesser known features of
the software are used.

In Appendix F syntax is provided for a model in which the mediator is a latent variable that
is composed of three manifest variables. The estimation of the mediated effect is however
still identical to previous examples (product term of a and b path). In addition, a moderated
mediation effect is examined (Baron & Kenny, 1986; Kraemer, Wilson, Fairburn, & Agras,
2002; MacKinnon, Weber, & Pentz, 1989), in which the moderator variable is categorical.
Moderated mediation can be present in different ways. The path relating the treatment to the
mediator (a path) can differ across groups of the categorical moderator variable, the path
relating the mediator and the outcome (b path) can differ between the groups, or both paths
can differ. In addition, it is possible to test whether the mediated effect (ab product term) is
significantly different across groups. The provided syntax estimates whether moderation
exists for the a or b path, but also whether the mediated effect is significantly different
across the groups defined by the categorical moderator and provides thus the most thorough
examination of moderated mediation. In particular the syntax demonstrates how to set up
two groups and define parameters for each. In this example it is assumed that only the b path
differs across the groups and that the a path and the c’ path are identical to each other. Note
that parameters are defined for each group using separate MODEL POPULATION
statements and that paths in the groups are labeled using parentheses at the end of the
command line. The labels are needed to define new quantities that are needed to investigate
moderation effects. The actual power to detect moderated mediation can be examined using
the MODEL CONSTRAINT statement. In a first step, new variables that define the
mediated effect in each group and differences in the a path, b path, and the product term ab,
are initialized. Start values behind the * symbol should be given to ensure convergence of
the simulation. In a second step, these new variables are mathematically defined as either
product terms or differences between paths. For example, the difference in the mediated
effect, labeled “diffmed”, is defined as the difference of the quantities “med1” and “med2”,
which in turn were defined earlier as product terms of the a and b path in each group. The
labels that were assigned earlier in parentheses have to be used to clearly define each
quantity. Of special interest is how often the difference terms reach significance across all
iterations of the simulation. This quantity can then (similar to previous examples) be used as
an empirical power estimate to detect moderated mediation. In the example at hand, the first
group is defined to have the following parameters: the a path is assumed to be 0.721, and the
b path is assumed to be of size 0.36. The latent factor is identified by setting the loading of
the first item to be 1.0; the other two loadings are set at 0.8. The total variance of the factor
is set to be 1.0. The second group only differs on the b path which is now assumed to be of
size 0.14. Furthermore, the sample size for the first group is 400, whereas the sample size
for the second group is 200. This mimics a situation in which one group might be
underrepresented in the overall population. The power to detect a mediated effect in the first
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group is very high at .99, whereas power to detect the mediated effect in the second group is
only .37. Power (or actually Type I error rate, because the population a path was equal in the
two groups) to detect differences in the a path is .054, which is very close to the expected
Type I error rate of .05. Power to detect differences in the b path is .61. Finally, power to
detect a significant difference between the two mediated effects is .53. If the main purpose
of the study was to examine differences in the mediated effect, the study would be
underpowered.

Example 4. Mediation in Longitudinal Designs – Latent Growth Curve Models
The last example considers mediation in a longitudinal design. Although longitudinal
mediation can be expressed in several models (e.g. autoregressive models, Gollob &
Reichardt, 1991; Cole & Maxwell, 2003), this example considers in particular the latent
growth curve model (Cheong, MacKinnon, & Khoo, 2003; Muthén & Curran, 1997). Briefly
explained, a latent growth curve model is characterized by the estimation of latent factors
that characterize average initial status of a variable and average growth over time. The
functional form of growth can be modeled in complex ways, but is in most circumstances
assumed to be linear. The latent growth curve example at hand assumes the presence of one
binary treatment indicator, and three waves of measurement of both the mediator and the
outcome. The measurement waves are modeled with a latent intercept and a latent slope as
depicted in Figure 6. The mediation effect is defined by the path relating the treatment
assignment to the latent growth of the mediator and in turn to the latent growth of the
outcome. This type of model is sometimes referred to as a parallel process model of
mediation (Cheong, MacKinnon, & Khoo, 2003). Syntax on how to set this model up in
Mplus is provided in Appendix G.

Defining reasonable parameter values for a power analysis is more difficult for latent growth
curve models. Feingold (2009) describes how to use Cohen’s d metric in the context of
latent growth curve models. Hertzog, von Oerten, Ghisletta, and Lindenberger (2008) also
give an overview of conducting power analyses in latent growth curve models. They also
provide information on implied covariance of the observed variables as a function of the
latent growth parameters, which can be helpful in defining effect sizes.

In the example presented here, three waves of measurement of the mediator and the outcome
variable are considered. The first measurement is a baseline measure that is measured at the
same time of treatment assignment. Treatment assignment is denoted by X and is assumed to
be random and balanced. The average initial status of the control group for both the
mediator and outcome (the latent intercepts Im and Iy) are set to be 0, while the average
growth of the control group is set to be 0.1 (the latent growth factors Sm and Sy). This
implies that the control group will have model implied means on the mediator of 0, 0.1, and
0.2, at wave 1, 2, and 3 respectively. As simplifying assumptions the covariance between
latent intercepts and slopes is set to be 0, and the error variance of the observed mediators
and outcomes is set to be equal across waves of measurements. Also, the variance of the
latent intercept factors are set to be 1.0, and the variance of the latent slope factors are set to
a value of 0.1, which is realistic for many substantive contexts. The residual variances of the
observed variable M1 and Y1 are set to 0.25. This implies an average reliability of the
variables at baseline of .80, because the total model implied variance of M1 (which is equal
to the variance of Im and the residual variance of M) will be 1.25. To simplify the model, all
residual variances will be constrained to be equal.

The initial difference on the mediator variable between the control and the treatment group
at the onset of the study is set to be 0, as would be expected in a randomized trial. This
initial difference is represented by path a1 in the model. Also, the initial difference between
the two groups on the outcome variable Y is set to be 0. This is represented by path c’1.
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The a2 path is the difference in growth trajectories on the mediator between the control and
treatment group. In this example it is set at a value of .4. This implies that the treatment
group will have model implied means of 0 at time 1, 0.5 at time 2, and 1.0 at time 3. The
same difference of 0.4 in growth trajectories (represented by path coefficient c’2) will be
used for the outcome variable Y.

The three structural paths of the model b1, b2, and b3, represent the relation between the
latent intercept of the mediator to the latent intercept of the outcome variable (b1), the
relation between the latent intercept of the mediator to the latent slope of the outcome (b2),
and the relation between the latent slope of the mediator to the latent slope of the outcome
(b3). The mediated effect that is usually of greatest interest is the indirect effect of the
treatment assignment to the latent growth of the outcome via the latent growth of the
mediator (path a2b3). This effect examines whether the independent variable X affects the
growth of the mediator, which in turn affects the growth of the outcome variable.

In this example path b1 is set to small value of .14, the path b2 is set to .05, and the path
relating the two growth factors, b3, is set to .4.

This results in model implied means that are displayed in Table 4.

The power of the mediated effect a2b3 with a sample size of 750, as in this example, is
estimated to be .97, indicating sufficient power to detect the mediated effect.

Summary
The purpose of this paper was to introduce the flexible Monte Carlo approach to estimate
power with particular focus on mediational models. As outlined above, the Monte Carlo
approach has many desirable features, most notably the ease at which the power estimation
is conducted and the flexibility with which many different models and data situations can be
accommodated. In this paper Mplus was used throughout, but it is also possible to use other
software packages with simulation capabilities.

The special focus on mediation analysis was chosen because of the current interest in the
method and the lack of available resources on how to calculate power for these complex and
interesting models. The paper described power estimation for the single mediator model,
mediation with multiple mediators, mediation models with latent variables and moderated
mediation, and mediation in latent growth curve models. Additional models could have been
considered, e.g. mediation in autoregressive models. We do however hope that the presented
examples strike a balance between conciseness and pedagogical value. Ultimately, we hope
that this paper contributes to the more widespread use of power analysis, even in models that
are as complex as the ones we considered.
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Appendix A
Covariance Algebra to determine effect sizes in Mplus

The three variances in the simple mediation model can be expressed as (see MacKinnon,
2008; Chapter 4.10):
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where Var is a variance of a variable, a, b, and c’, are unstandardized path coefficients, Cov
is a covariance, and Var(e) is a residual or unexplained variance term.

The variance of the binary independent variable X is .25 in the population, because
variances of binary variables are defined as, where p and q are proportions of possible
values of the binary variable. In the case of an even split pq = .52 = .25.

The variance of the dependent variable M is a function of the relationship of X to M and the
residual variance term, and the variance of the dependent variable Y is a function of the
relationship of X to Y, M to Y, and the covariance between X and M.

To achieve a desired R2 each formula above can be solved by substituting known values and
solving for the remaining unknowns. For example if the desired R2 effect size for the
relationship between X and M (the a path) is set to be .13 (medium effect size), we can set
the total variance of M to be 1.0 and the residual variance to be (1− R2), or simply .87.In a
next step we can set the variance of X to be .25 and then solve for a, the unstandardized path
coefficient. This yields a = .721, which is the value for the unstandardized path coefficient in
Mplus that will result in an R2 effect size of .13. Note that the residual variance in Mplus
needs to be fixed to .87, so that the overall variance of M is exactly 1.0.

Similarly, we can solve for the path coefficients and residual variance of Y. Assuming it is
of interest to achieve an R2 effect size of .13 for the relationship of M to Y (b path), and an
R2 effect size of .02, for the relationship between X and Y (c’ path), the following values
can be substituted. Note that the covariance between X and M is defined through the
previous equation. In the case of a binary independent variable the unstandardized path
coefficient a can be transformed into a covariance using the following formula:

This covariance can be substituted along other known values into the following equation.

To uniquely solve the equation above, additional information has to be entered. Based on the
example, it is known that the unique explained variance of the c’ path is .02, and .13 for the
b path. Therefore these two additional equations can be set up.
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Solving for both c’ and b yields:

This finally allows solving for the residual variance of Y, by substituting known values of
the path coefficients.

Appendix B
SAS Syntax to perform Monte Carlo simulation with PRODCLIN asymmetric confidence
intervals

ods html close;
options nomprint noxwait;
data data1;
/*Change file address to match the location of the results from Mplus*/;
infile "C:\results.dat"
/* Change number and order of variables in dataset
/* according to Mplus technical output 1
/* In this example only quantities of interest get unique labels
/* Other quantities in the Mplus output file
/* are simply labeled p1-p7 and se1-se7*/;
input rep p1-p2 a b cprime p6-p7
se1-se2 sea seb secprime se6-se7
chi1 chidf chip ll0 ll1 df aic bic cbic rmsea srmr;
rho = 0;
alpha = .05;
drop p1-p2 p6-p7 se1-se2 se6-se7
chi1 chidf chip ll0 ll1 df aic bic cbic rmsea srmr;
da=a/sea;
db=b/seb;
sedadb=sqrt(da*da+db*db+1);
dadb=da*db;
ab=a*b;
sobelse=sqrt(a*a*seb*seb+b*b*sea*sea);
run;
data temp;
format rep 8.0 lcrit 16.8 ucrit 16.8;
run;
%macro prodclinmc(i);
%do i = 1 %to &i;
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data _null_;
set data1;
if rep = &i;
*Change file address to match the location of the file prodclin.exe;
file "C:\prodclin\raw.txt";
put a @; put sea @; put b @; put seb @; put rho @; put alpha @;
run;
*Change file address to match the location of the file prodclin.exe;
X cd C:\prodclin;
*Change file address to match the location of the file prodclin.exe;
X call "C:\prodclin\prodclin.exe";
data data2;
*Change file address to match the location of the file prodclin.exe;
infile "C:\prodclin\critval.txt";
input lcrit ucrit;
rep = &i;
run;
proc append base=temp data=data2 force;
run;
%end;
data results;
merge data1 temp;
by rep;
low=(lcrit-dadb)/(sedadb);
high=(ucrit-dadb)/(sedadb);
prodlow=ab+low*sobelSE;
produp=ab+high*sobelSE;
if lcrit=99999 then prodlow=99999;
if ucrit=99999 then produp=99999;
if produp < 0 then power = 1;
if prodlow > 0 then power = 1;
if produp = . then power = .;
if prodlow = . then power = .;
run;
%mend;
/*Change the value of i to match the number or replications*/;
%prodclinmc(i=1000);
run;
proc means data=results;
var power;
run;

Appendix C
Single mediator model

TITLE: MONTE CARLO POWER EXAMPLE 1 - MEDIATION PATH MODEL

MONTECARLO:
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names are x m y; !Define variable names;
cutpoints = x (0); !Define cutpoint to generate binary treatment;
nobs = 275; !Power is estimated for this sample size;
nreps = 10000; !Number of replications;
seed = 2222; !Seed value for random number generator;
ANALYSIS: TYPE=meanstructure;
MODEL POPULATION:
[x @ 0]; !mean of x set to 0;
x @ .25; !total variance of x set to .25;
[m -y @ 0]; !mean of m and y set to 0;
m @ .98; !residual variance of m set to .98;
y @ .954; !residual variance of y set to .954;
m on x @ .283; !a path;
y on m @ .141 x @ .283; !b path, c’ path;
MODEL: !MODEL statement repeats all paths;
[m -y * 0]; !and mean and variances;
m @ .98; !of endogenous (dependent) variables;
y @ .954;
m on x * .283;
y on m * .141 x * .283;
MODEL INDIRECT: !MODEL INDIRECT statement to obtain mediated effect;
y IND x; !Start and endpoint of mediation model defined here;

Appendix D
Three path mediation

TITLE: MONTE CARLO POWER EXAMPLE 2a – THREE PATH MEDIATION

MONTECARLO:
names are x m1 m2 y;
cutpoints = x(0);
nobs = 90;
nreps = 10000;
seed = 2222;
ANALYSIS: TYPE=meanstructure;
MODEL POPULATION:
[x @ 0]; !mean of x set to 0;
x @ .25; !variance of x set to .25;
[m1 -y @ 0];
m1 @ .87; !residual variance of m1 set to .87;
m2 @ .868; !residual variance of m2 set to .868;
y @ .844; !residual variance of y set to .844;
m1 on x @ .721; !a path;
m2 on m1 @ .36; !b1 path;
y on m2 @ .36 x @ .283; !b2 path, c’ path;
MODEL:
m1 * .87;
m2 * .868;
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y * .844
m1 on x * .721;
m2 on m1 * .36;
y on m2 * .36 x * .283;
MODEL INDIRECT:
y IND x;
OUTPUT:

Appendix E
Mediation model with two mediators

TITLE: MONTE CARLO POWER EXAMPLE 2b - MEDIATION MODEL WITH TWO
MEDIATORS

MONTECARLO:
names are x m1 m2 y;
cutpoints = x(0);
nobs = 180;
nreps = 10000;
seed = 2222;
ANALYSIS: TYPE=meanstructure;
MODEL POPULATION:
[x @ 0];
x @ .25;
[m1 -y @ 0];
m1 @ .98;
m2 @ .87;
y @ .78;
m1 on x @ .238; !a1 path;
m2 on x @ .721; !a2 path;
y on m1 @ .14 m2 @ .36 x @ .283; !b1 path, b2 path, c’ path;
MODEL:
[m1 -y * 0];
m1 * .98;
m2 * .87;
y * .78;
m1 on x * .238;
m2 on x * .721;
y on m1 * .14 m2 * .36 x * .283;
MODEL INDIRECT:
y IND x;
OUTPUT:

Appendix F
Mediation and moderation with latent variables

TITLE: MONTE CARLO POWER EXAMPLE 3 - LATENT MULTIGROUP;
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MONTECARLO:
names are x
m1 m2 m3 y;
cutpoints = x (0) | x (0);
ngroups = 2;
nobs = 400 200; !Sample sizes for each group;
nreps = 10000;
seed = 2222;
ANALYSIS: TYPE = MEANSTRUCTURE;
MODEL POPULATION:
[x @ 0];
x @ .25;
[y @ 0];
y @ .81;
[m1 -m3 @ 0];
m1 - m3 @ .36;
m by m1 @1.0 m2 @.80 m3 @.80;
m @ .87;
[m @ 0];
m on x @ .721; !a1 path;
y on m @ .36 x @.283; !b1 path, c’1 path;
MODEL POPULATION-G1:
MODEL POPULATION-G2:
y @ .95;
y on m @ .14 x @ .283; !b2 path, c’2 path;
MODEL:
m * .87;
[m @ 0];
m by m1@1 m2*.8 m3*.8;
m on x * .721;
y on m * .36 x * .283;
MODEL G1:
m @ 1;
[m @ 0];
m by m1 - m3 * .80;
m on x * .721 (a1);
y on m * .36 (b1) x * .283;
MODEL G2:
m @ 1;
[m @ 0];
m by m1 - m3 * .80;
m on x * .721 (a2);
y on m * .14 (b2) x * .283;
MODEL INDIRECT:
y IND x;
MODEL CONSTRAINT:
NEW(med1*.26 med2*.10 diffa*0 diffb*.22 diffmed*.16); !New parameters and 
start values;
med1 = a1 * b1; !Mediated effect for group 1;
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med2 = a2 * b2; !Mediated effect for group 2;
diffa = a1 - a2; !Difference in a paths;
diffb = b1 - b2; !Difference in b paths;
diffmed = med1 - med2; !Difference in mediated effects;
OUTPUT:

Appendix G
Longitudinal mediation using latent growth curves

TITLE: MONTE CARLO POWER EXAMPLE 5 - LGC;

MONTECARLO:
names are x
m1 m2 m3
y1 y2 y3;
cutpoints = x (0);
!The number of observations is the
!sample size that we want power to
!be estimated for!
nobs = 750;
nreps = 10000;
seed = 2222;
MODEL POPULATION:
[x @ 0];
x @ .25;
im sm | m1@0 m2@1 m3@2; !Definition of latent growth curve for mediator;
[im@0 sm@.1]; !Variance of latent factors;
im@1; sm@.1; !Means of latent factors;
iy sy | y1@0 y2@1 y3@2; !Definition of latent growth curve for outcome;
[iy@0 sy@.1]; !Variance of latent factors;
iy@1; sy@.1; !Means of latent factors;
im with sm @ 0; !Covariance between latent factors;
iy with sy @ 0; !Covariance between latent factors;
im on x @ 0; !a1 path;
sm on x @ .4; !a2 path;
iy on im @ .14 x @ 0; !b1 path, c’1 path;
sy on im @ .05 sm @ .5 x @ .4; !b2 path, b3 path, c’2 path;
[m1 - y3 @ 0]; !Means of observed variables;
m1 @ .25; m2 @ .25; m3 @ .25; !Residual variances of observed variables;
y1 @ .25; y2 @ .25; y3 @ .25; !Residual variances of observed variables;
MODEL:
im sm | m1@0 m2@1 m3@2;
iy sy | y1@0 y2@1 y3@2;
im with sm * 0;
iy with sy * 0;
im on x * 0;
sm on x * .4;
iy on im * .14 x * 0;
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sy on im * .05 sm * .5 x * .4;
MODEL INDIRECT:
sy IND x;
OUTPUT:
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Figure 1.
A single mediator model.
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Figure 2.
Central and non-central χ2distributions with area representing power shaded gray.
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Figure 3.
A three-path mediation model.
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Figure 4.
A mediation model with two mediators.
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Figure 5.
Mediation with latent variable and multiple groups.
Note. Labels for residual terms for indicator variables M1-M3 are omitted in the graph.
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Figure 6.
Mediation in longitudinal designs – Latent growth curve models.
Note. Labels of residual terms for latent variables are omitted in the graph.
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Table 1
Partially reproduced output from Mplus, highlighting the power estimate of the mediated
effect.

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

ESTIMATES % Sig

Population Average Std. Dev. Coeff

Effects from X to Y

Total .323 .3219 .1179 .774

Total Indirect .040 .0403 .0250 .209

Specific Indirect

Y M X .040 .0403 .0250 .209

Direct

Y X .283 .2816 .1177 .661
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Table 2

Required sample size to detect a mediated effect with power of .80 in a single mediator model with
dichotomous treatment assignment

b path

a path small (.14) medium (.39) large (.59)

small (.2) 640 404 394

medium (.5) 450 92 66

large (.8) 512 76 42

Note. c’ path is held constant at .28, because it does not influence the power of the mediated effect (ab)
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Table 3

Comparison of estimated power of the mediated effect between the Monte Carlo approach and the Satorra and
Saris approach using constraints on either the a or the b path.

Method

Sample size Monte Carlo S&S – a path S&S – b path

10 .02 .20 .07

100 .17 .94 .29

250 .52 .99 .60

500 .84 >.99 .87

1000 .99 >.99 .99

Note. S&S stands for Satorra & Saris method. The a path in this example is held constant at .721, the b path is held constant at .14, and the c’ path
is held constant at .283
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Table 4

Model implied means of outcome variables.

Time 1 Time 2 Time 3

Mediator (M) Control group 0 .1 .2

Treatment group 0 .5 1.0

Outcome (Y) Control group 0 .15 .3

Treatment group 0 .75 1.5
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