
©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com	 Cell Cycle	 2061

Cell Cycle 12:13, 2061–2072; July 1, 2013; © 2013 Landes Bioscience

 Report Report

*Correspondence to: Ryan J. Taft; Email: r.taft@uq.edu.au
Submitted: 05/21/13; Accepted: 05/22/13
http://dx.doi.org/10.4161/cc.25134

Background

Until relatively recently, it was widely accepted that at least 95% 
of the mammalian genome was non-functional or evolutionarily 
redundant. Historically, this notion appears to stem largely from 
two unexpected findings of the 1960s and 1970s: (1) that the 
majority of most complex metazoan genomes are composed of 
repetitive elements of diverse origin; and (2) that unlike pro-
karyotic genomes, eukaryotic genomes contain large amounts of 
DNA between protein-coding exons (i.e., introns) and between 
protein-coding genes themselves (i.e., intergenic gene deserts) rel-
egating protein-coding sequences to ~3% of the genome. Despite 
work from the first half of the 20th century from McClintock and 
others that showed that repetitive elements could act as control 
elements, which were specifically activated at particular devel-
opmental time points,1,2 and early suggestions that introns and 
intergenic spaces could in-principle house suites of regulatory ele-
ments,3 relatively little research focused on non-genic elements.

Intriguingly, there is renewed and increasing support for the 
view that non-protein-coding regions may be of particular evolu-
tionary importance. Indeed, one of the primary conclusions of the 
ENCODE project is that, at varying levels of significance, a large 
proportion of the human genome is functional.4-8 Additionally, 
extending on McClintock’s work, it is now clear that the trans-
poson-derived and other repetitive elements that make up nearly 
50% of the mammalian genome have been co-opted into func-
tional roles in a variety of cellular and developmental contexts. 

It is now clear that animal genomes are predominantly non-protein-coding, and that these sequences encode a wide 
array of RNA transcripts and other regulatory elements that are fundamental to the development of complex life. We have 
previously argued that the proportion of an animal genome that is non-protein-coding DNA (ncDNA) correlates well with 
its apparent biological complexity. Here we extend on that work and, using data from a total of 1,627 prokaryotic and 153 
eukaryotic complete and annotated genomes, show that the proportion of ncDNA per haploid genome is significantly 
positively correlated with a previously published proxy of biological complexity, the number of distinct cell types. This is 
in contrast to the amount of the genome that encodes proteins, which we show is essentially unchanged across Metazoa. 
Furthermore, using a total of 179 RNA-seq data sets from nematode (47), fruit fly (72), zebrafish (20) and human (42), we 
show, consistent with other recent reports, that the vast majority of ncDNA in animals is transcribed. This includes more 
than 60 human loci previously considered “gene deserts,” many of which are expressed tissue-specifically and associated 
with previously reported GWAS SNPs. These results suggest that ncDNA, and the ncRNAs encoded within it, may be 
intimately involved in the evolution, maintenance and development of complex life.
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For example, they are expressed in a variety of different tissues 
and conditions,9 are transcribed tissue-specifically10 and can 
serve as alternative upstream promoters that show specific and 
regulated deposition of particular epigenetic mark.10,11 They can 
also be site-specifically methylated9 and can function as bind-
ing sites of CTCF, a protein known as the “master weaver” of 
the genome, that frequently serves an epigenetic boundary ele-
ment.12,13 Indeed, a B1 SINE element subtype, B1-X35S, which 
is present in more than 14,000 copies in the mouse genome, 
mediates epigenetic insulation by binding of the transcription 
factors dioxin receptor (AHR) and SLUG (SNAI2).13 Repetitive 
elements are also associated with the biology of reproduction,14 
have been causally associated with the evolution of pregnancy in 
placental mammals15 and show high levels exaptation by exoniza-
tion in all mammals.16

It is also now clear that the metazoan genome produces a wide 
array of RNA species, most of which are derived from the tracts of 
intergenic and intronic DNA that have no protein-coding capac-
ity. Even for well-described protein-coding genes, it is now well-
accepted that that any given locus produces a complex array of 
overlapping transcripts with different splicing patterns, including 
antisense transcripts, many of which are further processed and 
capped,17 variously described as an interlaced architecture,18 and 
islands of protein-coding information in sea of cis- and trans-act-
ing regulatory RNA information.19 Transcription in eukaryotes, 
including complex animals, moreover, extends far beyond tradi-
tional protein-coding genes, mostly as long non-protein-coding 
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150 multicellular organisms. Consistent with our previous work, 
our analysis is focused on haploid genome composition, thus 
removing the confounding factor of ploidy or the contaminat-
ing DNA of prey, which are likely to be the primary cause of 
the large genome sizes attributed to lungfish and amoeba, respec-
tively (reviewed in ref. 34). To attempt to further remove any 
ambiguity associated with the phrase “biological complexity,” 
the analysis described below uses a previously published metric 
for organismal complexity,35 which is itself based on a number 
of previous studies that concluded complexity is best approxi-
mated by the number of different cell types.36-39 We also perform 
an RNA-seq meta-analysis across four multicellular organisms 
and find, consistent with expectation, that the majority of the 
non-protein-coding regions of these genomes are transcribed. 
Taken together, these data suggest that there is a close relation-
ship between the expansion of ncDNA in higher organisms and 
organismal complexity.

Results

Protein-coding gene sets show little variation over long evolu-
tionary time frames. One of the biggest surprises to come from 
the recent genome-sequencing projects is the apparent lack of 
correlation between the number of protein-coding genes and 
biological complexity, which is sometimes referred to as the 
G-value paradox.40 To investigate this relationship, we collected 
genome annotation data from 1,627 prokaryotic species and 
153 multicellular organisms (see “Materials and Methods” and 
Table 1; Table S1), and then partnered this with a recently pub-
lished metric of 73 organisms that uses the number of distinct 
cell types as a proxy for organismal complexity35 (Table S1). 

RNAs, including the well-described lincRNAs,20-22 polyadenyl-
ated long non-coding RNAs, which are frequently oriented 
bidirectional to coding genes,23 and a host of nuclear-specific tran-
scripts with an unknown function.18 Furthermore, a recent study 
that combined tiling arrays with high-throughput RNA sequenc-
ing revealed extensive previously undetected transcription around 
the p53 and HOX genes and throughout unannotated intergenic 
regions.24 These long ncRNAs are further complemented by an 
ever-increasing catalog of small RNAs, including microRNAs 
and other PIWI- and Argonaute-assocaited RNAs,25,26 small 
RNAs derived from transcription start sites (e.g., tiRNAs)27,28 
and splice sites (spliRNAs)27 as well as species derived from struc-
tural or housekeeping RNAs (e.g., snoRNA-derived RNAs and 
tRNA-derived RNAs).29-32

We have previously argued that, in contrast to gene number, 
the proportion of genomic DNA that is non-protein-coding 
(ncDNA) shows a strong correlation with apparent biological 
complexity.33,34 In light of the increasing evidence that non-pro-
tein-coding sequences encode functional elements (e.g., repeat 
elements co-opted into regulatory roles or ncRNAs), this rela-
tionship warrants further investigation. Here, we extend our 
previous analysis to more than 1,500 prokaryotic species and 

Table 1. Gene number across fungi, protists and Metazoa

Taxa (number of species) Minimum Median Mean Maximum

Unicellular fungi (15) 1,996 6,516 6,489 13,286

Multicelluar fungi (45) 5,120 10,980 11,414 20,548

Protists (23) 3,396 8,920 12,418 39,642

Invertebrates (26) 10,685 19,870 20,773 33,925

Vertebrates (24) 13,756 19,924 21,398 38,612

Figure 1. Protein-coding sequence (CDS) across taxa and a subset of metazoan species. (A) Total protein-coding sequence (CDS) across major taxa. 
(B) CDS across well-annotated metazoan species. Note that among metazoan there is little divergence in the amount of total amount of genomic 
sequence devoted to generating protein-coding genes.
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system and a proneural basic helix loop helix (bHLH) gene that 
resembles the conserved molecular mechanisms of primary neu-
rogenesis in bilaterians.52,53

Gene number and homology, however, may belie a complexity 
contained with the protein-coding repertoire of a genome that is 
only evident when examined at the level of encoded amino acids. 
It has been recently argued that examining the total number of 
amino acids encoded by all transcript isoforms shows a positive 
correlation with biological complexity.35 This analysis, however, 
yields a poor correlation (R2 = 0.1333) and is biased by the rela-
tive depth of the annotated proteome for a given species. For 
example, in this previous work, human was assessed to have a 
proteome more than 106 amino acids larger than mouse, which, 
given that these species have nearly an identical number of cell 
types (see ref. 35; Table S1), is likely to reflect differences in depth 
of polling, not biology. For example, the EMBL-EBI Proteomics 
Identification Database (PRIDE)54 reports 4,457 experimental 
entries for Homo sapiens, but only 773 for Mus musculus.

To attempt to	  accurately assess how much of the genome 
is protein-coding, we directly examined the number of non-
redundant bases that are ever engaged in a coding sequence 
(CDS), which will capture the genomic regions associated with 
all annotated splice isoforms, across 1,627, prokaryotic and 153 
eukaryotic complete and annotated genomes (see “Materials and 
Methods”; Table S1). Investigation of 10 prior mouse and 12 
human genome builds revealed that the number of annotated 
coding bases has changed relatively little in recent years (Fig. S1), 
suggesting that this metric is likely to be both robust and repre-
sentative of the biology of the system. Consistent with gene num-
ber annotations, we observe increases in Mb of coding sequence 
between prokaryotes and eukaryotes, but no subsequent correla-
tion with organismal complexity among multicellular eukaryotes 
(Fig. 1A). We observed that within the Metazoa there is generally 
little variation in the overall amount of the genome devoted to 
CDS, and that there is no relationship between Mb of CDS and 
biological complexity (Fig. 1B).

Biological complexity and the nc/tg ratio. We have pre-
viously shown that there is a correlation between biological 
complexity and the amount of the genome that is non-protein-
coding,33,34 calculated by taking all genomic bases that are only 
ever non-protein-coding and dividing by total halploid genome 

Consistent with previous reports, we find that gene number and 
biological complexity in multicellular animals are not correlated. 
For example, the fruit fly Drosophila melanogaster, which has at 
least 64 distinct cell types (Table S1), has 16,000 protein-coding 
genes,41 while the considerably less complex Caenorhabditis ele-
gans has only 28 distinct cell types35 (Table S1). Indeed, within 
the eukaryotic lineage, the species with highest number of anno-
tated genes are unicellular amoeba and protists: Paramecium 
tetraurelia has nearly 40,000 protein-coding genes,42 and 
Trypanosoma cruzi and Tetrahymena thermophila are predicted 
to have 22,57043 and 27,000,44 respectively (Table S1). In mul-
ticellular animals, most have ~20,000 genes including the fish 
Takifugu rubripes,45 chicken (Gallus gallus),46 mouse (Mus muscu-
lus),47 gorilla (Gorilla gorilla)48 and humans47,49 (Table S1). A sys-
tematic examination of the number of genes across multicellular 
animals revealed that there is no significant difference in gene 
number between vertebrates, which have a minimum 100 dis-
tinct cell types, and invertebrates, with ~50 cell types (Table 1; 
Table S1, two-tailed p = 0.756, Mann-Whitney U test), consis-
tent with the hypothesis that gene number does not scale with 
organismal complexity.

Next, we investigated levels of homology between animal 
protein-coding gene sets to assess if the relative constancy in 
gene number was indicative of similarly equivalent proteomes. 
We systematically queried the literature and Homologene,50 and 
found that for eight representative metazoan species, the major-
ity of genes were homologous (Table 2). For example, 63% and 
85.7% of Amphimedon queenslandica (basal marine sponge) and 
Mus musculus (common mouse) genes have identifiable ortho-
logs (Table 2), indicating that the core protein-coding com-
ponentry of complex animals may have been present since the 
dawn of multicellularity and, despite lineage-specific expansions 
of particular gene families and innovations, has not changed 
appreciably despite the development of more complex body 
plans. This is consistent with the universal genome hypothesis, 
which posits that an ancestral and basal genome that encodes 
all major developmental programs essential for various phyla of 
Metazoa emerged in a unicellular or a primitive multicellular 
organism shortly before the Cambrian period.51 Interestingly, 
A. queenslandica expresses not only members of the Wnt and 
TGF-β signaling pathway, but also the Notch-Delta signaling 

Table 2. Gene homology in Metazoa

Species Number of protein-coding genes Number of protein-coding genes with homologs (%) Source

A. queenslandica 30,060 18,693 (62.2) ref. 53

D. pulex 30,907 19,641 (63.5) ref. 74

C. elegans 20,132 8,678 (43.1) *

T. urticae 18,414 11,805 (64.1) ref. 75

D. melanogaster 13,827 9,282 (67.1) *

D. rerio 26,690 21,084 (79.0) *

T. guttata 18,581 14,527 (78.2) ref. 76

M. musculus 25,388 21,766 (85.7) *

*Values obtained from HomoloGene Release 65.50
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unicellular and multicellular fungi have average nc/tg ratios of 
0.399 and 0.585 (two-tailed p = 6.7e−08, Mann-Whitney U 
test); invertebrates and vertebrates have average values of 0.873 
and 0.976 (two-tailed, p = 1.5e−10, Mann-Whitney U test); 
and mammals show the highest the average nc/tg ratio of 0.989, 
which is significantly higher than the vertebrate average (one-
tailed, p = 7.6e−07, Mann-Whitney U test).

To further refine the association of nc/tg ratio values and 
organismal complexity, we investigated the 73 species with a pre-
viously defined number of cell types.35 Examining these species 
revealed a positive correlation between the nc/tg ratio and organ-
ismal complexity (Fig. 2B, Spearman correlation coefficient r = 
0.952, p value < 0.0001). We found that the distribution of val-
ues was well described by a modified Hill’s equation56 (which is 
itself a modified logistic function, see “Discussion”), in the form 
y = Kxn/(1 + Kxn) where K = 0.15219 ± 0.02272 with a p value 
< 0.0001 and n = 0.99888 ± 0.06943 with a p value < 0.0001 
(Fig. 2B). This distribution is consistent with patterns observed 
in complex information systems theory, in which the amount of 

size (nc/ tg).34 Here, we extended our prior work to the 1,627 
prokaryotic and 153 eukaryotic genomes described above and 
found a clear correlation between the nc/tg ratio and increasing 
complex taxonomic groups (p < 2.2e−1.6, Kruskal-Wallis test, 
Fig. 2A). The range of nc/tg values is considerable, with the aver-
ages for archaea and bacteria being nearly identical (two-tailed 
p = 0.359, Mann-Whitney U test) at 0.130 and 0.136, respec-
tively, and extending to ~0.98 in the Metazoa. The average value 
for each taxa is minimally influenced by data points outside the 
first or third quartiles. For example, there are less than 50 bac-
terial species, of the more than 1,500 surveyed, with nc/tg val-
ues greater than the maximum of the third quartile, 0.25, and 
the majority of these are species in evolutionary transition. This 
includes Mycobacterium leprae, which has an nc/tg value of 0.50, 
which is driven by the loss of functional protein-coding genes due 
to its endosymbiotic lifestyle.55

In contrast to gene number or bases of coding sequence, we 
observed statistically significant nc/tg ratio differences within 
and between multicellular taxonomic groups. For example 

Figure 2. Non-protein-coding DNA content across taxa and its association with organismal complexity. (A) The proportion of non-protin-coding DNA 
per total haploid genome (nc/tg ratio) across taxa. (B) The nc/tg ratio values as a function of the distinct number of cell types, a proxy of biological 
complexity. The best fit curve, modified Hill’s equation, which itself is a logistic function, is given in blue text.

Table 3. RNA-seq coverage in four metazoan species

Species
Genome 
size (Mb)

CDS (Mb, % of 
genome)

RNA-seq data 
sets queried

Total RNA-seq (Gb, fold 
genome coverage)

Exonic coverage 
(Mb, % of genome)*

Transcriptomic coverage 
(% of genome)§

C. elegans 100.28 25.40 (25.33) 47 67.05 (668) 45.38 (45.25) 80.40 (80.17)

D. melanogaster 162.37 22.78 (14.03) 72 103.92 (640) 49.61 (30.56) 98.75 (60.82)

D. rerio 1409.77 42.19 (2.99) 20 154.47 (109) 142.21 (10.09) 894.72 (63.47)

H. sapiens 2897.32 36.53 (1.26) 42 353.69 (122) 798.31 (27.554) 1631.10 (56.29)

2034.94 (70.24)1

2253.78 (77.78)2

*Exonic coverage is limited to regions defined as such in de-novo transcriptome builds derived from the Tophat-Cufflinks pipeline,59 as described in 
the “Materials and Methods.” §Transciptomic coverage includes both processed exons and the introns that join them. For H. sapiens, two additional 
coverage values are given.(1) RNA-seq coverage of all mapped tags that fall into a cluster of at least 16 mapped reads, and (2) all mapped tags across all 
data sets.
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associated and embedded within ncDNA may facilitate increased 
organismal complexity.

The extent of genomic transcription in four animals. We have 
previously postulated that one of the primary roles of ncDNA may 
be to produce regulatory RNAs, many of which may act in both 
cis- and trans- to modulate epigenetic states and control protein-
coding gene expression.19,34,57,58 To assess if animal genomes are 
indeed all widely transcribed, we performed a meta-analysis of 
RNA-Seq data sets from four organisms: Caenorhabditis elegans 
(47 data sets), Drosophila melanogaster (72data sets), Danio reiro 
(20 data sets) and Homo sapiens (42 data sets, Table 3; Table S2). 
By combining data sets from multiple sources, we were able to 
achieve high levels of coverage. For example, the total sequenc-
ing depth of the C. elegans RNA-seq data was equivalent to 668-
fold genomic coverage (Table 3). The majority of the data sets 
examined were polyA+ enriched, i.e., they represented RNA 
sequencing data from polyadenylated and canonical mRNAs, 
and were therefore amenable to de novo transcript assembly using 
the Tophat-Cufflinks pipeline.59 Each data set was individually 

encoded information approaches an asymptote defined by the 
maximum allowable entropy (see “Discussion”).

To investigate the relationship between both coding and non-
protein-coding sequence and organismal complexity simultane-
ously, we examined their contributions to the total genome size 
of species with defined cell numbers (Fig. 3). The data show that 
increasing genome size in prokaryotes is associated with a cor-
responding, and nearly exponential, increase in protein-coding 
bases, which extends to basal multicellular eukaryotes, but then 
asymptotes for all complex multicellular animals (Fig. 3, red data 
points). This is consistent with the data reported above, showing 
that both gene number and the amount of CDS is relatively static 
across multicellular animal genomes. In contrast, the amount of 
the genome that is non-protein-coding grows exponentially in 
correlation with biological complexity (Fig. 3, blue data points). 
Intriguingly, the intersection of the coding and non-protein-
coding series occurs at data points associated with simple mul-
ticellular organisms, i.e., between the data points for S. pombe 
and Dictyostelium, which supports the hypothesis that elements 

Figure 3. The relationship between biological complexity and genome composition. In this plot, the 73 organisms with a previously defined number 
of distinct cell types (e.g., relative biological complexity, see Table S1; ref. 35) are shown as pairs of data points, with one depicting total protein-cod-
ing sequence bases (red) and one total non-protein-coding bases (blue) which cumulatively give the total genome size (x-axis). Non-protein-coding 
sequence increases exponentially with the number of distinct cell types, while protein-coding sequence is asymptotic. Note that the intersection of 
the protein-coding and non-protein-coding data sets occurs among simple multicellular organisms.
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and Supplemental Material). Indeed, excluding all spliced tags, 
the uniquely mapped and clustered 16-tDSN data alone covered 
more than 32% of the human genome.

To investigate if the DSN libraries might shed further light 
on regions that have gone previously unannotated, we identi-
fied 178 gene deserts using published metrics (see “Materials and 
Methods”) and intersected them with clustered reads from all 
42 RNA-seq libraries. We found that 63 of these regions were 
expressed, i.e., they had at least 1,000 RNA-seq tags in at least one 
library, with the 16-tDSN data set showing the most widespread 
and robust expression (Fig. 5). Intriguingly, and consistent with 
the data presented above indicating that a substantial portion of 
mammalian transcription is cell type- or condition-dependent, 
we also found cell line- and tissue-specific expression of particu-
lar gene deserts, including regions preferentially expressed in 
brain and testes (Fig. 5). To evaluate if this transcription might 
be biologically meaningful, we intersected all expressed gene des-
erts with the curated NHGRI GWAS SNP data61 and found that 
42 overlapped with GWAS SNPs associated with phenotypes 
spanning from brain structure to prostate cancer (Table S4). 
For example, we found robust expression on a chromosome 17 
gene desert in brain, liver and the 16-tDSN library showing two 
distinct and tissue specific clusters neighboring SNPs associated 
with thyrotoxic hypokalemic periodic paralysis, pediatric eosino-
philic esophagitis, QT interval, sudden cardiac arrest and for-
mal thought disorder in schizophrenia (Fig. S2A and Table S4). 
Likewise, we identified a region on chromosome 8 that is highly 
expressed in two independent brain data sets, shows continuous 
transcription of > 300 kb in the 16-DSN library and is associ-
ated with a GWAS SNP connected to schizophrenia (Fig. S2B 
and Table S4). These results indicate that previously enigmatic 
“intergenic” GWAS SNPs may be associated with RNA tran-
scripts that have gone previously undetected and unannotated, 
many of which may act in trans.62

Discussion

Here we have shown that: (1) the number of protein-coding 
genes and bases does not scale with biological complexity and 
is in fact relatively static across all multicellular animal lineages; 
(2) that there is a strong and statistically significant correlation 
between the proportion of the genome that is non-protein-coding 
and organismal complexity; and (3) that a meta-analysis of more 
than 170 RNA-seq data sets has revealed, consistent with other 
studies,4-8 that the vast majority of multicellular animal genomes 
are transcribed. Taken together, these findings suggest that non-
protein-coding sequences house a set of information-rich instruc-
tions, many of which are likely to be regulatory in nature and 

mapped with Tophat and assembled into de novo transcripts with 
Cufflinks and then merged (see “Materials and Methods”; assem-
bled transcriptomes are available for visualization). This revealed 
that even though our analysis was limited to polyA+ transcripts, 
at least 80% of the C. elegans and ~60% of the Drosophila, D. 
rerio and H. sapiens genomes were transcribed, the vast majority 
of which is non-protein coding.

To gain additional insight into the extent of transcription in 
animals, we focused our subsequent analysis on H. sapiens due 
to the fact that it is one of the most ncDNA-dense genomes and 
has data available from 16 primary tissues and polyA-enriched 
expression normalized data sets (Table S2). The Tophat-
Cufflinks pipeline has difficulty assembling transcripts that do 
not fit the standard statistical models consistent with traditional 
mRNAs. We therefore expanded our analysis and examined the 
overall coverage all of all mapped tags, and those falling into clus-
ters of greater than 2, 4, 8 and 16 overlapping reads (Table S2). 
This revealed that if the uniquely mapped RNA-seq reads from 
all 42 data sets are considered (including those that are spliced), 
as much as 77% of the human genome is transcribed, which is 
only reduced to 70.24% if the analysis is restricted to clusters 
with at least 16 overlapping reads and Tophat-mapped spliced 
tags (Table 3 and Fig. 4). As little as 2.3% of this transcription is 
shared across all data sets, indicating that there is vast repertoire 
of tissue- and cell-specific transcription (Fig. 4B), and therefore 
that the extent of transcription we have presented here is likely a 
minimum value. Indeed, comparison of the MCF-7 and HepG2 
ENCODE data sets revealed that ~147 Mb of transcribed bases 
(5.09% of the genome) were detected uniquely in polyA- pre-
pared libraries.

We found that three of the 42 data sets, those generated by 
Illumina Research and Development (Table S2; available through 
the EBI’s ArrayExpress), were responsible for the majority of novel 
transcription in our meta-analysis. These data sets were generated 
as part of the Illumina Body Map 2 (IBM2) initiative and are 
derived from RNA from a mix of 16 tissues. They differ, however, 
in their preparation. While one was prepared using a traditional 
polyA selection (abbreviated for this work as 16-mRNA), two 
were prepared from mRNA and total RNA from 16 tissues that 
was then normalized using a duplex-specific nuclease (16-mDSN 
and 16-tDSN, respectively), a protocol that takes advantage of 
renaturation kinetics to preferentially degrade highly expressed 
transcripts and thereby facilitate sequencing of lowly expressed 
RNAs.60 When we examined expression across all chromosomes 
in 1 Mb bins, we found that these data sets consistently displayed 
the highest levels of transcriptional coverage, with the 16-tDSN 
library frequently showing expression in regions that were either 
not detected elsewhere or restricted to brain and testes (Fig. 4A 

Figure 4 (See opposite page). Investigation of the extent of transcription in the human genome across 42 RNA-seq data sets. In the top (A) heatmap 
of RNA-seq expression is shown across chromosome 22 in 1 megabase bins, with the intensity displayed as a spectrum from log10(0) (blue) to log10(6) 
(red). The bottom panel shows total genomic coverage of each RNA-seq data set, which is derived from the tag clusters with at least 17 independent 
and overlapping reads plus Tophat mapped junctions with an anchor of at least 20 bases. Bar colors in the bottom panel are indicative of regions 
of the genome that are covered in all data sets (black, ~2.3%), those that are present in all members of a data set group (blue, i.e., the data sets were 
derived from the source), the proportion shared with another data set not in the data group (organge), and the proportion of genomic coverage that is 
unique to a particular data set (red). Note that in both the top and bottom panels the IBM2 16 tissue mixed data sets show the greatest extent and rela-
tive intensity of RNA-seq expression. Please see Supplemental Material for heatmaps of all 42 data sets across all human chromosomes.
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Figure 4. For figure legend, see page 2066.
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function (Fig. 2B). These functions are used to describe a wide 
range of phenomena, including artificial neural networks, chemi-
cal reaction models and tumor growth and can also be employed 
to assess the entropic, and therefore information, content of a 
given system.63 If we assume that: (1) any given genome is a store 
of transactable information; (2) that genomes from multiple 
species that are dispersed across a spectrum (as in Fig. 2B) are 
representative of a semi-continuous distribution of complex infor-
mation systems; and (3) that in animals, protein-coding genes 
are a storehouse of largely unchangeable effector molecules that 
are regulated by a suite of increasingly complex set of instructions 
embedded within non-protein-coding DNA sequences then, like 
many complex systems, the asymptote approached by our line of 

transacted as RNA species, which have facilitated the emergence 
of biological complexity.19,57,58 Indeed, work on marine sponge 
and other basal metazoan species has shown, consistent with the 
universal genome hypothesis,51 that the protein-coding repertoire 
has changed little since the dawn of multicellularity,52,53 suggest-
ing that there is a substantial problem of “missing information” 
that can be resolved if non-protein-coding sequences are as infor-
mation rich as the work here suggests.

We note that the line of best fit for the data describing the 
correlation between biological complexity and the nc/tg ratio 
is a derivation of a Hill’s equation,56 i.e., a standard biochemi-
cal metric by which to assess the saturation of binding sites in a 
given protein, y = Kxn/(1+Kxn), which is itself a modified logistic 

Figure 5. Heatmap of transcription across gene deserts. The relative expression of each of the 63 gene deserts with at least 1,000 RNA-seq read counts 
(from a single library) is shown for each of the 42 human RNA-seq data sets surveyed. Read intensity is scaled in log10 from 0 (blue) to greater than 5 
(red). The IBM2 16 tissue mix total RNA DSN (16-tDSN) library reveals high levels of transcription across the vast majority of gene deserts.
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eukaroyote genomes were only counted once, regardless of the 
number of putative or known protein-coding isoforms they may 
be associated with, each annotation set was “collapsed down.” To 
accomplish this in fungi, protists, viridiplantae and the majority 
of Metazoa we merged the overlapping CDS regions as annotated 
in the appropriate gtf or gff annotation file. For those organisms 
with complete annotation sets in the UCSC Genome Browser 
(C. elegans = ce6, D. melanogaster = dm3, D. rerio = danRer7 
and H. sapiens = hg19), their corresponding gene annotation 
track (sgdGene, sangerGene, flyBaseGene, Ensemble ensGene, 
UCSC knownGene) was collapsed using the UCSC backend 
tool featureBits. In one case the CDS annotations were manually 
curated to remove a high degree of putative false positives before 
the merge step, the gene annotations Branchiostoma floridae were 
parsed to remove all duplicates, and then only those with a gene 
ontology annotation were further analyzed.

RNA-seq analyses. We selected four well-studied model organ-
isms for detailed transcriptomic analysis, roundworm (C.  ele-
gans), fruit fly (D. melanogaster), zebrafish (D. rerio) and man (H. 
sapiens). To ensure that we were able to catalog as completely as 
possible the full complexity of each species’ transcriptome, we col-
lected RNA-seq from all available sources (e.g., cell lines, tissues, 
development stages, replicates data sets; see Table S2). In most 
cases, the raw RNA-seq data were all downloaded from the SRA 
database72 (Table S2). For each data set, we calculated the total 
gigabaes of raw sequencing data by multiplying the length of each 
sequence read by the total number of reads in the data set.

Using the transcriptome analysis pipeline recently published 
by Trapnell et al. in Nature Protocols59 as the foundation of our 
RNA-seq investigation, we utilized the Tophat (version 1.4.1) 
and Cufflinks (version 1.3.0) programs with default parameters 
to assemble de-novo transcriptomes.59,67,68 The Cufflinks out-
put file gtf format was converted to BED format by in-house 
scripts, and a UCSC Genome Browser backend tool program, 
bedToExons, was used to fetch individual exons. The genomic 
coverage of RNA-seq transcripts was then calculated using the 
UCSC Genome Broswer backend program featureBits across 
the entire length of all transcripts (txStart-txStop) or across only 
“exons” (i.e., transcribed bases that result in a de-novo assembled 
transcript).

Human RNA-seq data sets were further interrogated to 
assess the extent of transcription in the human genome, under 
the assumption that the Tophat-Cufflinks pipeline would fail to 
assemble any transcripts that did not fit the standard/statistical 
models consistent with traditional mRNAs. This would be par-
ticularly true for data sets that specifically interrogated polyA-
transcripts (e.g., the IBM2 16 tissue mix total RNA treated with 
duplex specific nuclease). Therefore, for each human RNA-Seq 
data set the Tophat-generated BAM file was converted to BED 
format using the BEDtools69 program bamToBed, which was then 
clustered using the BEDtools program, mergeBed. Clutering was 
done strand specifically for those data sets for which were gener-
ated strand-specifically (e.g., the IBM2 16 tissue mix data sets). 
Clusters were then filtered to isolate those that contained > 2, > 4, 
> 8 and > 16 overlapping mapped tags. To capture the full extent 
of transcription, a final data set was generated that contained the 

best fit may represent the boundary between maximum informa-
tion content and complete disorder.64,65 Put more simply, an nc/ tg 
ratio of 1.0 would represent a genome replete with information 
but with no effector agents, while a genome with a nc/tg ratio of 
0.0 would be packed with effector molecules with little associ-
ated regulatory information. This model, in conjunction with the 
other results presented here, would suggest that the mammalian 
genome is nearly maximized with regulatory information bound 
within ncDNA.

Materials and Methods

Bioinformatics resources. All bioinformatic analyses were 
performed on either the Queensland Cyber Infrastructure 
Foundation’s High Performance Computing cluster (bar-
rine, www.qcif.edu.au/about-us), or on the Genomics Virtual 
Laboratory system (www.nectar.org.au/genomics-virtual-lab-
oratory-0). On each system we made use of the suite of back-
end tools available through a local mirror of the UCSC Genome 
Browswer,66 the Hanon Lab’s Fastx Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/), Tophat and Cufflinks59,67,68 (see more 
below), Bam Tools (http://sourceforge.net/projects/bamtools/), 
BedTools,69 FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) and a suite of in-house developed Perl, 
Python, Awk and Shell scripts. Additional details are available 
upon request.

Genome composition analysis. To ensure that the genomic 
composition analysis was robust, we restricted the analysis to 
well-annotated and assembled genomes. In total we interrogated 
111 archaea, 1,516 bacterial, 60 fungi, 23 protists, 20 viridiplan-
tae (i.e., green plants) and 50 metazoa genomes (for a complete 
catalog please see Table S1). The archaeal and bacterial genome 
annotation data sets were obtained from IMG (Version 3.5).70 
Fungi, protist and viridiplantae data were obtained from Ensemble 
(Release 12)71 and/or directly from the Joint Genome Institute’s 
website (http://genome.jgi.doe.gov/). Metazoan genome annota-
tions were obtained from three sources depending on the organ-
ism of interest: (1) directly from the from UCSC genome browser 
(v 243); (2) from the Ensemble genome browser (Release 12); or 
(3) directly from references detailing the genomic composition of 
a given species (see Table S1). For example, there is no compre-
hensive database for the marine sponge (i.e., it is not hosted by 
either Ensemble or UCSC), so the relevant genome information 
was taken from the literature (see “Results,” above).

In the vast majority of cases, protein-coding gene annota-
tions were obtained from the same sources as the genomic data, 
although the details of the annotations sets sometimes dif-
fered (see Table S1). For example, the coding sequences (CDS) 
of all archaeal and bacterial species were obtained from IMG; 
however, the CDSs of Saccharomyces cerevisiae, Caenorhabditis 
elegans, Drosophila melanogaster, Danio rerio, Mus musculus and 
Homo sapiens were obtained from the Saccharomyces Genome 
Database (SGDgene), the Sanger Center (sangerGene), Fly Base 
(flyBaseGene), Ensemble gene (ensGene) and UCSC known-
Gene databases, respectively, through the UCSC Genome 
Browser portal (see Table S1). To ensure that coding bases in 
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https://surf.genome.at.uq.edu.au/~uqgliu5/celegans/hub.txt
https://surf.genome.at.uq.edu.au/~uqgliu5/zebrafish/hub.txt
https://surf.genome.at.uq.edu.au/~uqgliu5/humanSuper/

hub.txt
This data can be viewed by visiting the public UCSC Genome 

Browser instance (http://genome.ucsc.edu/), and navigating to 
Track Hubs > My Hubs > pasting in the URL and clicking “Add 
Hub.” Please note that the human hub (e.g., “humanSuper”) also 
includes wiggle density tracks derived from the Tophat-mapped 
BAM files.
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most conservative clustering, i.e., > 16 overlapping reads, plus the 
addition of Tophat mapped spiced tags with anchors of > 20 bp. 
This data set was used for the majority of subsequent analyses 
unless otherwise noted. The genomic coverage of all clustered 
data sets (and their genomic overlap) was calculated using the 
UCSC backend program featureBits (see Table S2).

Using the most conservative clustering metric (i.e., > 16 tags 
per cluster) plus mapped spliced reads, heatmaps were generated 
across 1 Mb bins of all human chromosomes using the R-package 
pheatmap (see Supplemental Material). Expression intensity is 
shown as counts are depicted as log

10
(raw mapped reads) for each 

data set in each 1 Mb bin.
Gene deserts were defined as gene-free regions of > 500 kb, as 

originally described by Norbrega et al.73 To obtain the genomic 
coordinates of gene deserts we employed BEDtools subtractBed 
to filter out human genome (hg19) assembly gaps, and to identify 
regions without annotations in the latest Refseq and Ensemble 
gene sets. These regions were then intersected with RNA-seq 
clusters of > 16 tags from all 40 human RNA-seq data sets. Only 
those that had > 1,000 mapped RNA-seq tags were considered 
“expressed.” GWAS regions were obtained from the UCSC 
NHGRI GWAS track,61 and intersections were performed using 
UCSC backend tool overlapSelect.

Processed RNA-seq data availability. Processed and assem-
bled RNA-seq data are available through the Genomics Virtual 
Laboratory. Publicly available UCSC-viewable tracks for the C. 
elegans, D. melanogaster, D. rerio and H. sapiens Tophat-Cufflinks 
assembled transcripts of all mapped tags are available at the fol-
lowing URLs:

https://surf.genome.at.uq.edu.au/~uqgliu5/fruitfly/hub.txt
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