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ABSTRACT

Methylation of the CpG-rich region (CpG island)
overlapping a gene’s promoter is a generally
accepted mechanism for silencing expression.
While recent technological advances have enabled
measurement of DNA methylation and expression
changes genome-wide, only modest correlations
between differential methylation at gene promoters
and expression have been found. We hypothesize
that stronger associations are not observed
because existing analysis methods oversimplify their
representation of the data and do not capture the di-
versity of existing methylation patterns. Recently,
other patterns such as CpG island shore methylation
and long partially hypomethylated domains have also
been linked with gene silencing. Here, we detail a new
approach for discovering differential methylation
patterns associated with expression change using
genome-wide high-resolution methylation data: we
represent differential methylation as an interpolated
curve, or signature, and then identify groups of genes
with similarly shaped signatures and corresponding
expression changes. Our technique uncovers a
diverse set of patterns that are conserved across em-
bryonic stem cell and cancer data sets. Overall, we
find strong associations between these methylation
patterns and expression. We further show that an
extension of our method also outperforms other
approaches by generating a longer list of genes
with higher quality associations between differential
methylation and expression.

INTRODUCTION

DNA methylation is an important factor in transcrip-
tional regulation, playing a role in genomic imprinting,
X-inactivation, retrotransposon silencing and the control

of tissue-specific genes during differentiation (1). DNA
methylation patterns are frequently altered in tumors
(2), and there is great interest in understanding how
changes to these patterns contribute to human disease
(3). Even so, how alterations to DNA methylation affect
gene transcription remains poorly characterized. Over
60% of genes have a CpG-rich region, termed a CpG
island, overlapping their promoter (4). Classically, it is
thought that hypermethylation of promoter-associated
CpG islands silences transcription. However, it was
recently shown that cancer- and tissue-specific methyla-
tion variation in adjacent regions, termed CpG island
shores, is also associated with gene expression change
(5). Additionally, genes are more likely to be repressed
when they are located in partially methylated domains
(6) or long hypomethylated domains (7,8) in cancer.

Techniques such as whole-genome bisulfite sequencing
(WGBS) (9) and Methyl-MAPS (10) have recently been
developed to map methylation at single-base resolution
genome-wide. Methods to interpret this data, however,
are lacking. Current computational techniques are
mostly concerned with the visualization of genome-level
correlations between DNA methylation and other epigen-
etic marks, or with the identification of regions that are
differentially marked between samples [recently reviewed
in (11)]. These tools have elucidated the genomic organ-
ization of these marks, but they do not sufficiently address
how changes at individual loci associate with and poten-
tially affect function.

The most common approach for characterizing methy-
lation changes between two samples uses a sliding window
to identify differentially methylated regions (DMRs) (7,9).
A gene with a hypermethylated DMR near its promoter is
assumed to exhibit a decrease in expression, while a gene
near a hypomethylated DMR should exhibit an increase in
expression. In practice, the Pearson correlation coefficient
between the methylation level of the DMR and the expres-
sion of its associated gene is around �0.3 (11,12). It has
been assumed that better anticorrelation is precluded
owing to noise from experimental error, mixed cellular
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populations, copy number variations, chromatin modifiers
or other regulation events. Another explanation, however,
is that contemporary analysis methods are not
sophisticated enough to recognize relationships involving
more complex methylation patterns. Existing approaches
summarize their representation of methylation change in
the promoter region to simplify analysis, but this sacrifices
potentially important spatial information contained in the
locations of the constituent sites.

To discover DNA methylation changes that associate
with gene expression changes, we propose a new method
that uses the entire differential methylation profile in the
vicinity of a gene’s promoter (Figure 1). We represent the
differential methylation for a fixed area around each
gene’s transcription start site (TSS) as a continuous
curve, or signature, capturing the shape of the methylation
changes. We then apply a curve similarity metric, the
discrete Fréchet distance, to compare differential methy-
lation signatures for all genes. Using an unsupervised clus-
tering technique, we arrange the signatures according to
their shapes and identify which clusters of genes exhibit
statistically significant changes in expression. Generalized
patterns of differential methylation can be extrapolated
from the resulting clusters. Because the approach is un-
supervised, no assumptions need to be made about the
direction of a correlation between methylation and expres-
sion. Although designed for pattern discovery, the
method is easily extended to identify a list of genes poten-
tially regulated by methylation. These gene lists are of
markedly greater length and have higher quality associ-
ations between differential methylation and expression
than those generated by existing methods. A current
implementation of the approach can be found on the
project website at http://epigenomics.wustl.edu/WIMSi/.

MATERIALS AND METHODS

Methylation signatures

Using WGBS or Methyl-MAPS data (single-base reso-
lution) to compare methylation patterns between different
genes’ promoter regions is complicated by the variability
in the locations of their CpGs. To enable comparisons
between genes, we standardize the representation of dif-
ferential methylation data for each gene by creating a
methylation signature across a fixed-width region
centered at the TSS (Figure 1). In a single sample, the
methylation level at each probed CpG is represented as
a continuous value between 0 and 1, denoting fully
unmethylated and methylated, respectively. To compare
methylation between two samples, we subtract these
values at each site to produce a differential methylation
score that ranges from �1 to 1, denoting complete
hypomethylation and hypermethylation, respectively.

We create a gene’s methylation signature on a fixed-
width target region by interpolating the differential methy-
lation scores using piecewise cubic Hermite interpolation
(Figure 1B and C) across all CpG sites within the region
and between one and five CpG sites flanking the region on
either side. Because methylation is highly correlated over
short distances (Supplementary Figure S1) (13),

interpolation provides a suitable estimate for differential
methylation in areas with missing data. Such missing data
points can occur owing to insufficient coverage or experi-
mental limitations (e.g. data collected only at specific re-
striction sites). Interpolated values always lie between �1
and 1. Regions with fewer than five CpG sites with suffi-
cient coverage and regions with fewer than one flanking
site per side are discarded. We also discard regions con-
taining no CpG sites with absolute differential methyla-
tion >0.2. Lastly, we apply Gaussian smoothing on the
curves (s=50bp) to help moderate noise due to experi-
mental artifacts such as missing or inaccurate measure-
ments. One advantage of using a combination of
interpolation and smoothing is that it improves perform-
ance of the method for low coverage data. Previously it
was shown that statistical smoothing was an effective
method to analyze low coverage WGBS data (14). The
resulting methylation signatures for each gene are
bounded between �1 and 1 on a fixed region relative to
the TSS.

Determining clusters of methylation signatures with
significant expression changes

We compare methylation signatures between genes using
the discrete Fréchet distance, also known as the coupling
distance (15,16). The Fréchet distance is informally known
as the dog–man distance because it represents the
minimum length of leash necessary for a person traversing
one curve to walk a dog along another, assuming neither
party is allowed to walk backwards. The Fréchet metric is
advantageous because it is efficiently computable, while
still taking into account the entire course of the curves.
In particular, it appeals to an intuitive notion of similarity
between methylation signatures in that two curves with
similar shape will have a low distance, even if one curve
is shifted slightly from the other relative to the TSS
(Supplementary Figure S2). Because Fréchet distance is
calculated in Euclidean space, a scaling parameter must
specify the relationship between the x-axes of the curves,
in bp, and the y-axes, in differential methylation level.
Intuitively, this parameter controls how far peaks in the
y-direction are allowed to slide across the x-axis and still
be identified as similar between two genes.
Formally, a methylation signature, or curve,

can be described as a continuous mapping
f : 0,1½ � ! 0,nb½ � � �1,1½ � where nb is the fixed length of
the region in base pairs. For two curves A and B, the
Fréchet distance is defined as follows:

�Frechet A,Bð Þ ¼ inf
�,�

max
t

d A � tð Þð Þ,B � tð Þð Þð Þ

where t� 0,1½ �, d x,yð Þ is the Euclidean distance between x
and y, and � tð Þ and � tð Þ are continuous, monotonically
increasing functions from [0,1] to [0,1] such that
� 0ð Þ ¼ � 0ð Þ ¼ 0 and � 1ð Þ ¼ � 1ð Þ ¼ 1. For any two differ-
ential methylation signatures, we calculate similarity
using the coupling distance, which can be computed on
polygonal curves in quadratic time using a dynamic
programming algorithm (16). Each continuous
interpolated curve is converted into a polygonal curve
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by averaging every 10 bp, yielding ceil nb=10ð Þ vertices for
the nb bases in the target region. For sparsely sampled
areas, this fixed resolution greatly limits the discretization
error between our discrete Fréchet distance and the con-
tinuous version because this error is bounded by the
maximum edge length for each pair of curves (17).
Averaging every 10 bp allows the algorithm to run faster
than sampling every 2 bp. Because the averaging interval is
considerably smaller than the width of the Gaussian
smoothing kernel, it has little effect on the resulting dis-
tances. We compared the results of clustering for several
experiments using 10 bp averaging and dinucleotide
sampling, and found no differences in the type and
number of patterns found for the HMEC-HCC1954
data set. By default, scaling between the x- and y-axes
was set such that 2500 bp along the x-direction was
equivalent to one unit of differential methylation in the
y-direction. We tested a large number of values for this
ratio. Manual inspection of resulting clusterings showed
that the final set of patterns discovered was not sub-
stantially altered despite moderate changes to the scaling
ratio.
Methylation signatures are arranged using unsupervised

complete-linkage agglomerative hierarchical clustering
based solely on the discrete Fréchet distance between

curve pairs. After clustering, we introduce the differential
expression data to identify clusters of genes with similar
expression differences. Expression data can be obtained
through any method, including RNA-Seq and expression
array analysis. To focus on genes for which differential
methylation and expression could be related, we consider
only genes with greater than 2-fold expression change.

We identify clusters from the dendrogram where methy-
lation is significantly associated with expression as
follows. For each cluster, we evaluate the likelihood that
the observed group of expression values is atypical
compared with the distribution of expression values over
the entire training set [a dendrogram on ns signatures
contains exactly (ns-1) clusters]. We determine significance
using a two-sample Kolmogorov–Smirnov test between
the set of differential expression values in each cluster
and the entire population of expression values. The false
discovery rate is controlled at 0.05 using the Benjamini–
Hochberg procedure. This estimate of significance is con-
servative because one sample is a subset of the other.

After all statistically significant clusters are identified,
we select a set of nonoverlapping clusters using an iterative
algorithm to define the trade-off between grouping similar
patterns together versus breaking them into distinct
clusters. We seek a balance between the selection of
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Figure 1. Method overview and example methylation signatures. (A) Overview of the approach for associating spatially similar DNA methylation
changes with corresponding changes in transcription. (B, C) Example methylation signatures from HMEC-HCC1954 WGBS data for the tumor
suppressor gene CDH4 and the LPCAT3 gene. Conversion of methylation data to signatures allows direct comparison of the data between genes
with different distributions of CpG sites relative to their TSSs. Top panels show methylation (blue is unmethylated and red is methylated) and RNA-
Seq expression data on the UCSC genome browser. Bottom panels show interpolated and smoothed methylation signatures (black curve) that are
used to calculate the discrete Fréchet distance. Blue tick marks show locations of all CpG sites. Black dots mark experimentally measured differences
in methylation between the two samples.
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larger clusters that embody more general patterns and the
conformity between differential expression values, called
purity. The purity of a set of genes is defined as the
fraction of genes that have expression change in the
same direction as the majority. The full process is
described in the Supplementary Methods. We used a
minimum purity of 0.85 unless otherwise stated.

Generating a gene list

To produce a list of genes with associated differential
methylation and expression, we ran the discovery method
on a set of overlapping 5kb regions centered at a fixed set
of locations around the TSS (Figure 6A). The scaling factor
between the x- and y-dimensions, minimum cluster purity
and all interpolation parameters were the same as previ-
ously described. We used 22 regions, spanning an area
from [�25kb, 25kb] relative to the TSS. The area
[�10kb, 10kb] relative to the TSS was covered more
densely because this was where the majority of relevant
differential methylation features were observed by the
pattern discovery tool. The leftmost boundaries (in kb,
relative to the TSS) were: �25, �20, �15, �10, �9, �8,
�7, �6, �5, �4, �3, �2, �1, 0, 1, 2, 3, 4, 5, 10, 15 and 20.
For each region, we recorded the set of genes identified as
positives (i.e. changing in the same direction as the majority
of their cluster). Genes that are identified for at least m
regions are added to the final list. Unless otherwise
stated, an m of two regions was used.

RESULTS

Pattern discovery in high-resolution methylation data

We evaluated our technique using three primary and nine
additional comparisons (17 total data sets) with high-reso-
lution methylation and RNA-Seq expression data
(Supplementary Table S1). The first primary data set was
WGBS of nontumorigenic human mammary epithelial cells
(HMEC) and breast cancer cells (HCC1954) (6) containing
methylation data for 84.7% of genomic CpGs with a
coverage level of at least 10 in each sample
(Supplementary Table S1, GEO: GSE29127). We focused
many of the analyses in this article on this HMEC-
HCC1954 data set because it has high coverage and
contains examples of all the methylation patterns we dis-
covered (Supplementary Data 1). To examine how the
method performed on a lower coverage data set, we
examined WGBS data for H1 embryonic stem (ES) cells
and IMR90 fetal lung fibroblasts (9) (GEO: GSE16256).
While the genomic coverage level of this data was high,
the data was sparsely sampled at promoters: <40% of
CpGs had coverage of at least 10 (Supplementary Figure
S3). By including all CpGs with coverage as low as a single
read, the data covered 93.5% of genomic CpGs. However,
methylation scores are expected to be less accurate in
regions with lower sampling. WGBS data was processed
and methylation scores computed as in (6). Analysis was
limited to only CpG methylation (complete results are in
Supplementary Data 2). Lastly, to validate our findings
using data from an alternative experimental method, we
generated Methyl-MAPS data from MCF7 and T47D

breast cancer cells. Methyl-MAPS uses methylation-sensi-
tive and -dependent restriction enzyme digests followed by
high-throughput sequencing to identify methylation levels
at individual CpGs (10). Libraries were constructed,
sequenced and analyzed as in (10) (see Supplementary
Methods for further details). We limited our analysis to
sites interrogated by both digests, which included 24.9%
of genomic CpGs with coverage of at least five to ensure
an adequate number of CpGs with data around each
promoter. Expression data for each sample came from
poly(A) selected RNA-Seq experiments (see
Supplementary Methods for further details). All Methyl-
MAPS and RNA-Seq data are available from GEO, acces-
sion GSE45337. Complete results are in Supplementary
Data 3.
In addition to these three primary comparisons, we

applied our method to WGBS and RNA-Seq data
comparing H9 ES cells (18,19) to IMR90 cells, H1 cells
to four H1-derived differentiated cell types, female
adipose-derived stem cells (ADS) to ADS-derived adipo-
cytes and ADS-derived induced pluripotent stem cells
(ADS-iPSCs) (19) and primary mouse ES cells to
isolated sperm and oocytes (20).
We selected an initial region for the discovery of differ-

ential methylation patterns that associate with expression
changes based on two criteria. First, average CpG density
increases roughly 2 kb upstream and downstream of the
TSS, suggesting that sites in this region may have regula-
tory importance (21). Second, increased variability of dif-
ferential methylation in CpG island shores, defined as the
regions up to 2 kb away from a CpG island, has been
linked to differential expression (5). To search for
patterns across this entire area, we chose a conservative
initial region of 10 kb centered on the TSS. Using a cluster
purity threshold of 0.85, we identified 27 clusters that were
significantly correlated with differential expression, con-
taining 519 genes, in the HMEC-HCC1954 data set
(Figure 2; complete clustering results are in
Supplementary Data 1). A cartoon depiction of each of
the patterns observed is shown in Figure 3. Applying our
method to the H1-IMR90 and MCF7-T47D Methyl-
MAPS data sets showed that our method could still
identify clusters corresponding to each of the patterns dis-
covered in the higher quality HMEC-HCC1954 data set
even with low promoter coverage or substantially reduced
sampling (Supplementary Data 2 and 3). It is likely that
interpolation and Gaussian smoothing are helpful for
analyzing low coverage data. Limiting HMEC-HCC1954
data to only sites probed by Methyl-MAPS showed the
data reduction had no impact on the ability to detect each
of the identified patterns. As a negative control, we
randomly scrambled the expression values for all genes
in each data set; any cluster identified as significant was
a false positive. For 1000 random permutations, our tech-
nique identified a false-positive cluster in 1.7–2.3% of the
experiments (Supplementary Table S2).

Patterns overlapping the TSS

From the resulting sets of significant clusters, we sought to
characterize the common features of the methylation
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signatures that may be responsible for the observed rela-
tionships with expression change. As expected, many
clusters contained patterns with a region of strong hyper-
or hypomethylation spanning the TSS that negatively
correlated with expression change (Figure 2B). Further in-
spection of HMEC-HCC1954 data revealed several distinct
patterns overlapping the TSS. After rerunning our method
using methylation signatures based on a 30 kb region
centered at the TSS, three distinct patterns emerged
(Figure 3A): a hypermethylated region at the TSS sur-
rounded by long hypomethylated domains (TSS1; Figure
4A), a hypermethylated region at the TSS set in a region
with invariant methylation levels (TSS2; Figure 2B) and a
pattern of long hypomethylated domains, but with no
change in methylation at the TSS (LONG0; Figure 4F).
The rarest pattern, LONG0, was also observed in the H9-
IMR90 (Supplementary Figure S7) and H1-IMR90
(Supplementary Data 2) comparisons. Hypomethylated
domains associated with these patterns (TSS1, LONG0)
extend up to several Mb in both directions (Figure 4C).
In HMEC-HCC1954 data, we found a hypomethylated
region at the TSS set in a hypermethylated region (TSS1i;
Figure 4B). While not all patterns were observed in every
comparison we analyzed, the overall set of patterns was
common across all data sets. For instance, MCF7-T47D
and H1-IMR90 data sets show an inverted TSS2 pattern
(TSS2i; Supplementary Data 2 and 3). IMR90 fibroblasts
exhibit a TSS1 pattern relative to H1 stem cells
(Supplementary Data 2), although the hypomethylated
domains in fibroblasts are much smaller (Figure 4E). It
has been suggested that the observed positive correlation
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between gene-bodymethylation and expression may be due
to similar domains (8). Inspection of individual genes with
the LONG0 pattern revealed that promoters were
hypomethylated in both samples, leading us to speculate
that long hypomethylated domains could contribute to
gene silencing, possibly through the recruitment of
factors that lead to the formation of repressive chromatin
(6). Clusters representing the inverse patterns—a
hypomethylated region at the TSS set in either long
hypermethylated or invariant regions—were also
observed (TSS1i, TSS2i; Figure 4B).

Patterns proximal to the TSS

In addition to patterns with differential methylation across
the TSS, we identified multiple clusters in all data sets
characterized by a change in methylation downstream of
the TSS (Figure 2C, Figure 5A and B). Analysis of all genes
in clusters associated with this pattern indicated that it pre-
dominantly occurs within 3kb of the TSS (Figure 5C). This
30 pattern was observed in several distinct clusters due to
variations in other parts of the differential methylation
curves (see examples in Figure 5A and B). The TSS-
proximal patterns found by our discovery method are in
agreement with the variation in methylation found at CpG
island shores. Interestingly though, we find no significant
association between the proximal methylation patterns and
whether promoters are classified as CpG-rich or -poor
(Supplementary Figure S10). This may suggest that these
proximal methylation changes are not confined to island

shores, or it may be due to the fact that the patterns we
discover are anchored to the TSS.
Although some clusters with 30 patterns also displayed

methylation change upstream of the TSS, no independent
relationship was observed between a 50 pattern and differ-
ential expression (Figure 5A and B). Differential methyla-
tion downstream of the TSS was consistently linked with
expression change, regardless of upstream hyper- or
hypomethylation. To further probe whether distinct cor-
relative patterns occur upstream of the TSS, we ran our
method using signatures defined on the region from �5 kb
to the TSS. The majority of identified clusters were
characterized by changes in methylation at the TSS.
Genes in clusters with methylation changes 50 of the TSS
often had correlative 30 changes as well. We found no
clusters in any of the data sets that supported a convincing
association between 50 changes and expression. Examining
5 kb regions shifted downstream of the TSS discovered
more patterns than those upstream of the TSS, consistent
with the existence of the 30 pattern (Figure 5D) and
absence of a 50 pattern. From the cumulative evidence,
we speculate that CpG island shore-like regions
upstream of the TSS may not be independently associated
with expression changes. Furthermore, while we observed
that differential methylation patterns across the TSS were
generally associated with gene silencing, 30 methylation
patterns correlated more often with downregulation than
complete silencing (Supplementary Figure S12). 30

hypermethylation events have previously been shown to
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domain (TSS1i). The entire cluster is in Supplementary Figure S8. (C) Average differential methylation and CpG density for genes from clusters
identified as exhibiting three TSS patterns (TSS1, TSS1i and TSS2). Example signatures for each of the three patterns are shown in parts (A), (B) and
Figure 2B. (D) Alu elements and RefSeq genes are depleted in the regions around genes with the TSS1 pattern. No enrichment or depletion of
other repeats was found (Supplementary Figure S9). (E) The TSS1 pattern is also found in the H1-IMR90 comparison (Supplementary Data 2).
(F) Example subcluster showing the LONG0 pattern from the HMEC-HCC1954 comparison. The entire cluster is in Supplementary Figure S6.
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affect expression (22), which supports the idea that the 30

changes we observe could be potentially functional.

Genomic features associated with particular DNA
methylation patterns

Gene ontology and expression signature analysis (23) of
the genes found to have correlated differential methylation
and expression showed that there was enrichment for
cancer-related genes in HMEC-HCC1954 data, while
there was enrichment for genes associated with differenti-
ation in H1-IMR90 data. Long hypomethylated and par-
tially methylated domains in cancer cells were previously
observed to have distinct sequence contexts (6,7). We find
that genes with the TSS1 pattern are associated with a
depletion of CpG density, Alu elements and gene density
relative to all gene promoters (Figure 4C and D). These
depletions are observed in regions ranging from 10 kb up
to 0.5Mb from the TSS. In summary, genes exhibiting the
TSS1 pattern have the same distinct sequence properties as
genes found in long hypomethylated domains (7).
There has been significant interest in addressing whether

specific sequences direct or inhibit methylation at

particular promoters or CpG islands (5,24–26). One pos-
sibility is that different sequences may direct different
methylation patterns. A preliminary search for motifs
associated with each discovered pattern did not find a sig-
nificant enrichment for any novel or known motifs
associated with one pattern more than another. In
addition, we find no significant association between each
of the different observed methylation patterns and
whether promoters are classified as CpG-rich or CpG-
poor (Supplementary Figure S10).

Quantifying the sensitivity of pattern discovery

Because the true patterns of differential methylation that
correlate with expression change are unknown, an obvious
question is whether we have detected all correlative methy-
lation patterns in the data set. To address this issue and
quantify the method’s ability to recover genes from known
correlative patterns, we created a model to simulate dif-
ferential methylation signatures and expression values. A
complete description of the methods for simulated data is
in the Supplemental Methods.
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region. Entire clusters for both parts are displayed in Supplementary Figure S11. (A) Subcluster exhibiting genes with a decrease in methylation on
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Simulated genes with a predefined correlation between
methylation and expression were added into two kinds of
background data sets: randomly generated simulated
genes with no correlation with expression (Supplementary
Figure S13–S15) and real data. Using wholly simulated
data we explored the types of patterns our method could
discover. We successfully detected a variety of introduced
patterns including peaks of differential methylation with
fixed widths and locations relative to the TSS
(Supplementary Figure S16), peaks with varying location
(Supplementary Figure S17) and peaks with different vari-
ances in height (Supplementary Figure S18). More
complex patterns were more easily detected, presumably
because highly constrained curves are more likely to have
similar Fréchet distances.

We also explored the method’s ability to discover new
patterns in a background of real methylation data. We
introduced three simulated patterns (Supplementary
Figure S19) into HMEC-HCC1954 WGBS data. We
varied the number of genes added, and measured both
the ability to discover the patterns and the number of
genes correctly identified (Supplementary Figure S20).
We found that the patterns were easily discoverable
when at least 50–100 simulated genes were introduced,
depending on the particular simulated pattern.
Performance was impacted when one of the simulated
patterns was too similar to the existing patterns
(Supplementary Figure S21). Furthermore, we found
that the fraction of simulated genes required to reliably
detect a pattern decreased as the number of genes in the
data set increased (Supplementary Figure S22). This
suggests that one could detect rare patterns by simply
concatenating multiple data sets.

Enumerating genes with correlative methylation signatures

Generating a list of genes for which expression and methy-
lation changes are potentially linked is a primary interest
of any genome-wide methylation profiling experiment.
The method described above is tuned to discover
patterns, not to create a gene list. Individual genes
within good clusters will sometimes be false positives,
and other genes will be excluded because their clusters
do not meet the high purity threshold. To produce a
better gene list, we executed our method on a set of
overlapping 5 kb regions centered at a fixed set of loca-
tions around the TSS (Figure 6A). Comparison of gene
lists from H1-IMR90 replicate WGBS data shows good
concordance between replicates. To determine the extent
to which genes are incorrectly included owing to the
creation of errant clusters, we randomly scrambled the
expression values in the HMEC-HCC1954 dendrogram.
For 1000 such experiments using default clustering par-
ameters, only seven experiments returned any false-posi-
tive genes: six reported a single false positive and a seventh
returned two. We also tested the ability of the gene list
method to recover introduced simulated genes (see
‘Quantifying the sensitivity of pattern discovery’ section
above). For several simulated patterns, we found that the
resultant gene lists included nearly all simulated genes
when 50–100 were present (Supplementary Figure S20).

Comparison to other approaches

We compared the quality of the gene lists produced by our
approach to lists constructed by two commonly used
methods. For the DMR approach, regions of differential
methylation are defined between two samples using a
sliding window. DMRs are coupled to a particular gene
using a cutoff for the distance between the DMR and the
gene’s TSS (7,9). For the promoter-based approach, a fixed
window around each gene’s TSS defines the gene’s
promoter. If methylation changes substantially within
this window, the gene is labeled as differentially methylated
(10,27). We optimized DMR- and promoter-based
approaches for each data set using 69 360 and 6174 param-
eter choices, respectively (Supplementary Figure S23 and
Supplementary Table S3), while using a single common set
of parameters for our approach across all data sets.
Judging the quality of the gene lists is difficult because

there is no experimental gold standard data set for which
the relationship between methylation at specific CpG sites
and expression is well known for all genes. A correlation
coefficient has often been used to quantify the association
between methylation and expression. When applied to a list
of genes for which methylation is predicted to associate
with expression change, however, the correlation coefficient
only judges one part of the method’s performance. For
example, by varying its parameters, the DMR method
can produce short gene lists with strong correlations or
long lists with weak correlations. To compare methods,
we directly examine the trade-off between the total
number of differentially expressed genes identified as poten-
tially correlated versus the fraction of identified genes that
are actually correlated in the predicted direction (Figure 6).
This trade-off is somewhat analogous to comparing the rate
of total positives to the rate of true positives, with the true-
negative and false-negative rates being unknown. On the
basis of these criteria, our approach clearly outperforms
DMR- and promoter-based methods. For example,
consider the HMEC-HCC1954 data (Figure 6B). When
the DMR method is examined at a level where it correctly
associates the direction of expression change 92% of the
time, it returns only 26 genes (0.7% of all differentially
expressed genes). Our approach produces a list of 461
genes (13%) at a correct association rate of 95%. With
less restrictive criteria, the DMR method gives a list of
717 genes (20%) at a correct association rate of 71%.
Our technique gives a list of roughly the same size (761
genes) at a correct association rate of 93%.
Table 1 presents results from each of the different data

sets we analyzed and includes data from primary cells and
cell lines. All analyses were performed using the default
parameters. These results imply that prior approaches
have underestimated the strength of the relationship
between differential methylation and expression. With a
better model of the underlying patterns of methylation
change, it is clear that methylation and expression data
are highly associated.

Gene lists for low coverage data sets

We next sought to examine how our approach performed
with suboptimal data. Our technique returned similar

Nucleic Acids Research, 2013, Vol. 41, No. 14 6823



0 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

0

Our Method
DMR
Promoter, All CpGs
Promoter, Sig. CpGs

Fraction of Differentially Expressed Genes Called Positive

F
ra

ct
io

n 
of

 P
os

iti
ve

 G
en

es
 

P
re

di
ct

ed
 C

or
re

ct
ly

HMEC-HCC1954
WGBS

H1-IMR90
WGBS

MCF7-T47D
Methyl-MAPS

Random Guess

DCB

TSS

Compute Methylation
Signatures for Each Gene

Divide Signatures Using
Multiple Overlapping
Regions

Gene 
List

(1)

(2)

Cluster Signatures for 
Each Gene Within Each 
Region; Identify 
Significant Clusters

(3)

(4)
Select Genes Occurring 
in More Than m Regions

A

0

-1

1

M
et

hy
l. 

D
iff

.

Figure 6. Gene lists generated by our method are of markedly greater length and quality than those generated by alternative methods. (A) Schematic
of our process for generating gene lists. (B–D) Comparison of gene lists generated using our approach with those from optimized DMR and
promoter-based methods for (B) HMEC-HCC1954 WGBS, (C) IMR90-H1 WGBS and (D) MCF7-T47D Methyl-MAPS data. The plot shows the
trade-off between the number of genes identified as being associated with differential expression based on their methylation (x-axis) and the quality of
the associations (y-axis), which is the fraction of identified genes for which the direction of expression change matches the expected direction based
on methylation. Points up and to the right indicate better performance; 50% quality is equivalent to random guessing. Only optimal parameter
choices with an inverse correlation between methylation and expression are shown for DMR- and promoter-based approaches (see Supplementary
Figure S23 for further information about this optimization). Promoter-based approaches were optimized across both all CpG sites (All Sites) and all
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increased stringency.

Table 1. Summary of the numbers of genes identified by the gene list tool for each comparison

Sample Comparison Differentially
expressed
genes

CpGs with methylation
difference> 0.3

Genes with correct
association

Genes with
incorrect
association

Fraction of genes
with correct
association

HMEC - HCC1954 3584 6 979 726 1150 118 91%
H1 - IMR90 2571 7 210 721 608 68 90%
MCF7 - T47D 3740 1 973 564 664 57 92%
ADS - ADS-Adipose 2937 332 489 138 15 90%
ADS - ADS-iPSC 3803 5 917 387 1124 93 92%
H1 - H1-Mesenchymal 3714 2 170 686 559 40 93%
H1 - H1-Neural Progenitor 2546 829 297 79 3 96%
H1 - H1-BMP4 4103 737 003 65 3 96%
H1 - H1-Mesendoderm 2353 765 051 59 5 92%
H9-IMR90 5875 7 669 782 605 58 91%
oocyte - ES cell (mouse) 4727 1 204 883 334 25 93%
sperm - ES cell (mouse) 4580 4 364 748 1027 104 91%
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results for the low coverage IMR90-H1 comparison,
which has no minimum coverage cutoff, while DMR-
and promoter-based methods struggled (Figure 6C). We
also ran experiments on the HMEC-HCC1954 sample pair
to test the method’s performance on downsampled data.
First, we removed raw sequence reads at random, finding
that WGBS data obtained with an average coverage as
low as seven resulted in little loss in our method’s ability
to identify genes (Supplementary Figure S24A). We also
removed methylation scores at random from the mapped
data, and found that 94.5% of genes were still detected
when 50% of the CpGs were removed (Supplementary
Figure S24B). Additionally, our method outperforms the
optimized DMR- and promoter-based methods for the
MCF7–T47D sample pair collected using Methyl-
MAPS, which contained 37.4% of the CpG sites from
the 10 kb region centered at the TSS. These results
suggest that our method is robust in the context of
missing or low coverage data.

DISCUSSION

A summary of the patterns discovered in the data sets
analyzed is presented in Figure 3. One primary advance
of our approach is in its use of spatial information. Several
of the patterns we found demonstrate the need for using
spatial information about specific CpG sites when trying
to connect differential methylation to expression change.
For instance, the LONG0 pattern is positively correlated
with expression, while the 30-hypomethylation pattern,
commonly seen in conjunction with a 50-hypomethylation
event (PROX2i), is negatively correlated. Given methyla-
tion marks from one of these two cases, it is clear that the
spatial information about specific CpG locations is neces-
sary to successfully determine the direction of expression
change. This may help explain an observation made
during an analysis of 82 methylation data sets from
human tissues and cell lines using reduced representation
bisulfite sequencing (12). The authors observed that
methylation changes in CpG island sites greater than
2 kb downstream were sometimes positively correlated
with expression and sometimes negatively correlated.
Based on our findings, one explanation for their observa-
tion is that they are observing a mixture of genes with
LONG0 and 30 patterns.

We also find that despite variation throughout the
vicinity of a gene’s promoter, expression change is often
well correlated with only the methylation changes in a
confined area relative to the TSS. This point is well sup-
ported by the many examples of the 30-proximal pattern,
which is seen with a variety of methylation activity
upstream including hypermethylation, hypomethylation
or little activity (Figure 3B). DMR-based methods are
generally tuned to find wider regions than what we
observe in our 30-proximal clusters, to better identify
genes with classical differential methylation at a CpG
island promoter (e.g. TSS2 and TSS2i). While these
methods can be tuned to locate narrower DMRs, this
would result in more cases where contradictory DMRs
exist near the TSS (e.g. one hypermethylated DMR and

one hypomethylated DMR, such as PROX3 in Figure 3B).
In these cases, there is no obvious way to decide which
DMR may be influencing transcription without
introducing pre-learned spatial information. As another
example, the DMR approach has difficulty discriminating
between the LONG0 pattern that is associated with a
decrease in expression and the PROX1i and PROX2i
patterns that are associated with an increase in expression.
When set to find long regions downstream of the TSS,
DMRs can be identified with positive correlation
between expression and methylation. When set to find
short regions, DMRs can be identified with negative cor-
relations. However, no single set of DMR parameters can
easily simultaneously capture each differential methyla-
tion pattern and its correlation with expression. These
examples also underscore a fundamental limitation of
the DMR method: it cannot be used to discover new
patterns, but can only search for a limited set of relation-
ships that are already known to exist.
Spatial information has proven useful to the analysis of

other epigenetic data sets as well. Recently, a model con-
sidering the spatial locations of chromatin marks was used
to train a support vector machine to predict chromatin
signals at transcription factor binding sites (28). The
authors divided each fixed region into 50 bp bins, each
of which was used as a feature in a vector for classifica-
tion. The success of this approach demonstrates the po-
tential of spatial models to better capture the nature of the
epigenetic data than is possible with a simple window-
based approach. However, for analyzing DNA methyla-
tion, it is important to account for the relationship
between such bins rather than treating them as independ-
ent features. For instance, in Figure 2C, the topmost and
bottommost example curves have a similar—but slightly
shifted—30-proximal decrease in methylation and are both
upregulated. If we used predefined nonoverlapping bins
here, they would either be so narrow that the top peak
and bottom peak lie in different bins, or so wide that the
salient feature of the curve is diminished. Because our
shape-similarity approach tolerates some movement of
peaks in the x-direction, features such as these are natur-
ally associated with one another.
Finally, our findings have implications for how DNA

methylation should be assayed to preserve all potentially
useful information. Using downsampled WGBS data and
Methyl-MAPS data we demonstrated that we can discover
the full set of patterns from Figure 3 without needing
values at all CpG sites, as long as they are removed in a
relatively unbiased manner (Supplementary Figure S24,
Supplementary Data 3). However, information from
some sites may be more informative than others. Many
experimental methods attempt to assess a gene’s methyla-
tion state by restricting analysis to only CpG-rich regions,
or to only a handful of CpG sites in and around the
promoter. It is unclear whether such techniques measure
methylation at the correct sites to discriminate the full
spectrum of methylation patterns that correlate with tran-
scriptional changes. As additional single-base resolution
genome-wide DNA methylation data sets become avail-
able, we can explore which subsets of individual CpGs
most inform promoter methylation patterns and thus
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need to be experimentally measured to accurately assess
changes in a gene’s methylation state.

CONCLUSIONS

Our findings suggest that characterizing gene promoters
simply as ‘methylated’ or ‘unmethylated’ is insufficient. By
considering the entire set of methylation changes near the
promoter, we found and described a variety of methyla-
tion patterns that correlate with expression change. The
power of our method is its ability to discover and separate
distinct patterns without any prior knowledge about
existing relationships, which cannot be accomplished
with contemporary approaches. This allows us to use the
full potential of unbiased genome-wide profiling of DNA
methylation to reveal previously unknown information
about methylation’s functional role. Although we
applied our method on regions of various widths around
the TSS, all correlative patterns except those associated
with the long hypomethylated domains were found
within 5 kb of the TSS (Figure 5D). Interestingly, all
patterns found in the cancer cell data sets were also
found in the ES and iPSC cell data sets. While 50

upstream patterns are observed, these appear to occur
due to correlations with the 30 downstream patterns. By
appropriately capturing the diverse set of methylation
patterns that exist, we observe a high level of association
between changes in a gene’s methylation state and changes
in its expression.
A strength of the technique described here is its poten-

tial for expansion to examine more general epigenetic
modifications. We have confined our analysis to data
from genome-wide single-base resolution methods such
as WGBS or Methyl-MAPS. However, similar approaches
could be used to analyze the relationships between ex-
pression and other epigenetic patterns, such as
5-hydroxymethylcytosine, non-CpG methylation, and
histone modifications. All expression data used in this
study came from single-end short read RNA-Seq experi-
ments. If long-read paired-end RNA-Seq data were
available, it could easily be used with our method
to understand alternate-promoter and isoform-specific
methylation patterns. Considering the explosion of experi-
ments aiming to profile epigenetic landscapes, this method
represents a valuable tool for exploring the relationships
between changes in epigenetic patterns and transcription
both in normal cellular function and in human disease.
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distance. Tech. Report CS-TR-2008-0010. University of Texas at
San Antonio, San Antonio, TX.

17. Aronov,B., Har-Peled,S., Knauer,C., Wang,Y. and Wenk,C.
(2006) In: Proceedings of the 14th conference on Annual European
Symposium - Volume 14. Springer-Verlag, Zurich, Switzerland,
pp. 52–63.

18. Rada-Iglesias,A., Bajpai,R., Swigut,T., Brugmann,S.A.,
Flynn,R.A. and Wysocka,J. (2011) A unique chromatin signature
uncovers early developmental enhancers in humans. Nature, 470,
279–283.

19. Lister,R., Pelizzola,M., Kida,Y.S., Hawkins,R.D., Nery,J.R.,
Hon,G., Antosiewicz-Bourget,J., O’Malley,R., Castanon,R.,
Klugman,S. et al. (2011) Hotspots of aberrant epigenomic
reprogramming in human induced pluripotent stem cells. Nature,
471, 68–73.

20. Kobayashi,H., Sakurai,T., Imai,M., Takahashi,N., Fukuda,A.,
Yayoi,O., Sato,S., Nakabayashi,K., Hata,K., Sotomaru,Y. et al.
(2012) Contribution of intragenic DNA methylation in mouse
gametic DNA methylomes to establish oocyte-specific heritable
marks. PLoS Genet., 8, e1002440.

21. Majewski,J. and Ott,J. (2002) Distribution and characterization of
regulatory elements in the human genome. Genome Res., 12,
1827–1836.

22. Appanah,R., Dickerson,D.R., Goyal,P., Groudine,M. and
Lorincz,M.C. (2007) An unmethylated 3’ promoter-proximal
region is required for efficient transcription initiation. PLoS
Genet., 3, e27.

23. Culhane,A.C., Schroder,M.S., Sultana,R., Picard,S.C.,
Martinelli,E.N., Kelly,C., Haibe-Kains,B., Kapushesky,M.,

St Pierre,A.A., Flahive,W. et al. (2012) GeneSigDB: a manually
curated database and resource for analysis of gene expression
signatures. Nucleic Acids Res., 40, D1060–D1066.

24. Das,R., Dimitrova,N., Xuan,Z., Rollins,R.A., Haghighi,F.,
Edwards,J.R., Ju,J., Bestor,T.H. and Zhang,M.Q. (2006)
Computational prediction of methylation status in
human genomic sequences. Proc. Natl Acad. Sci. USA, 103,
10713–10716.

25. Bock,C., Paulsen,M., Tierling,S., Mikeska,T., Lengauer,T. and
Walter,J. (2006) CpG island methylation in human lymphocytes is
highly correlated with DNA sequence, repeats, and predicted
DNA structure. PLoS Genet., 2, e26.

26. Feltus,F.A., Lee,E.K., Costello,J.F., Plass,C. and Vertino,P.M.
(2003) Predicting aberrant CpG island methylation. Proc. Natl
Acad. Sci. USA, 100, 12253–12258.

27. Meissner,A., Mikkelsen,T.S., Gu,H., Wernig,M., Hanna,J.,
Sivachenko,A., Zhang,X., Bernstein,B.E., Nusbaum,C., Jaffe,D.B.
et al. (2008) Genome-scale DNA methylation maps of pluripotent
and differentiated cells. Nature, 454, 766–770.

28. Arvey,A., Agius,P., Noble,W.S. and Leslie,C. (2012) Sequence
and chromatin determinants of cell-type-specific transcription
factor binding. Genome Res., 22, 1723–1734.

29. Rollins,R.A., Haghighi,F., Edwards,J.R., Das,R., Zhang,M.Q.,
Ju,J. and Bestor,T.H. (2006) Large-scale structure of genomic
methylation patterns. Genome Res., 16, 157–163.

30. Trapnell,C., Pachter,L. and Salzberg,S.L. (2009) TopHat:
discovering splice junctions with RNA-Seq. Bioinformatics, 25,
1105–1111.

31. Robinson,M.D., McCarthy,D.J. and Smyth,G.K. (2010) edgeR: a
Bioconductor package for differential expression analysis of
digital gene expression data. Bioinformatics, 26, 139–140.

32. Robinson,M.D. and Oshlack,A. (2010) A scaling normalization
method for differential expression analysis of RNA-seq data.
Genome Biol., 11, R25.

Nucleic Acids Research, 2013, Vol. 41, No. 14 6827


