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Abstract
The generalized linear mixed model (GLIMMIX) provides a powerful technique to model
correlated outcomes with different types of distributions. The model can now be easily
implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization
methods of penalized quasilikelihood (PQL) or marginal quasi-likelihood (MQL) provide
relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these
linearization methods, we derived formulas for power and sample size calculations for
longitudinal designs with attrition over time. We found that the power and sample size estimates
depend on the within-subject correlation and the size of random effects. In this article, we present
tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A
simulation study was used to compare the results. We also provide a Web link to the SAS macro
that we developed to compute power and sample sizes for correlated binary outcomes.
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1. Introduction
The increasing use of longitudinal study designs in applied clinical research has been
accompanied by an increasing demand for power calculations and sample size
determinations during the study planning stage. For each study, the power estimates should
be based on the proposed model for the analysis of primary outcomes. The most popular
statistical models for longitudinal data with repeated measures are marginal models, such as
generalized estimating equation (GEE) models, and mixed effects models in which subjects
are treated as random effects.

For GEE models, Liu and Liang [1] developed an approximate method based on the
generalized score test with an asymptotically noncentral chi-square distribution of the test
statistic under the alternative hypothesis. Shih [2] and Pan [3] discussed alternative
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approaches for sample size calculations based on the z-test and a robust variance estimator.
Pan [3] also derived the formulas for different structures for the working correlation matrix.
To calculate sample sizes, Rochon [4] developed a computer program (GEESIZE) that
accounts for unequal allocation, staggered entry, and loss to follow-up.

For linear mixed models with normal outcomes, Snijders and Bosker [5] provided an
approximate method to estimate the standard errors of regression coefficients. These
standard errors can be used for power calculations for explanatory variables (e.g., group
effects) in study designs with repeated measures for each subject. Hedeker and his
colleagues [6] provided formulas for comparisons of two groups across the study time points
in a two-group repeated-measures design with attritions over time based on asymptotical z-
tests. They further expanded these formulas to accommodate unbalanced design and
comparisons at specific time points during the study, and they used the Web-based program
RMASS [7] to implement their algorithms. However, RMASS does not handle mixed
models with non-Gaussian outcomes. For these models, the alternative approach is to use
Monte Carlo simulation [8]. The main advantage of this approach is that it allows
researchers to compute power for a relatively complex study for which no exact methods are
available. The disadvantages are that the results usually cannot be generalized to other study
designs and that the simulation experiments can be time consuming.

Recently, the generalized linear mixed model (GLIMMIX) has become a popular procedure
in SAS version 9.1 (SAS Institute, Cary, North Carolina). This model can handle different
types of outcomes, such as binary, Poisson, and log normal outcomes. In addition,
GLIMMIX has a more lenient assumption than GEE models regarding mechanisms to
handle attrition and missing data. In most clinical longitudinal studies, subjects can drop out
for various reasons. The missing data can be categorized as missing completely at random
(MCAR), missing at random (MAR), or missing not at random (MNAR). GLIMMIX
assumes that the missing data are MAR, which means that they may depend on the observed
values but not on the unobserved values. In contrast, GEE models assume that the missing
data are MCAR, which requires that they not depend on either observed or unobserved
values. In the formulas for sample size and statistical power calculations for longitudinal
designs that we describe here, we allowed for subject attrition under the MAR assumption.

All methods for power and sample size calculations for models with correlated data require
assumptions about the within-subject correlation structures. The common choices for these
structures are independent, compound symmetry (CS), first-order autocorrelation (AR(1)),
and unstructured (UN). Unlike a GEE method, which has the attractive property of using a
robust variance estimator to determine regression coefficients, the GLIMMIX model relies
on the correct specification for the within-subject correlation structure for its power
estimation.

In the work reported here, we derived the formulas with AR(1) and CS correlation
structures. We focused on the power calculation for the GLIMMIX model with correlated
binary outcomes and used an approach similar to that of Pan [3]. We considered the
situation in which treatment is given at the subject level and continued over time and in
which repeated measures from the same subject are taken across a period of time. We
calculated the power for a two-group comparison involving a treatment group and a control
group. We implemented the methods in a SAS program.

2. Statistical Framework
2.1. GLIMMIX model with binary outcomes

The general form of the GLIMMIX model with a link function g can be written as
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(1)

or as

(2)

where Yij denotes the outcome for subject i at time j, where Xi denotes the design matrix for
fixed effects, and where Zi denotes the design matrix for random effects.

We assume that the random effects γi,, which are also called G-side random effects, are
distributed as iid N(0, G). We also assume that β is the vector of regression coefficients for
fixed effects. In particular, for binary outcomes Yij, we assume that μi = prob(Yi) = 1|γi =

E(Yij|γi). The conditional variance estimates are  where Ai is a
diagonal matrix containing the variance function μi(1 − μi) and where the R matrix (R-side
error structure) is an assumed covariance error structure such as CS or AR(1). For subject i
with ni observations, the within-subject CS covariance structure is defined as

(3)

and the AR(1) covariance structure is defined as

(4)

For both structures, the correlation coefficient ρ is the only parameter. The correlation
between the two binary outcomes yi, yj is defined as

(5)

where the marginal rates pi = Prob(yi = 1), pj = Prob(yj = 1) and pij = Prob(yi = 1, yj = 1).

Most of the solutions for generalized mixed models rely on some form of likelihood
function. The marginal likelihood for GLIMMIX with the scale parameter ϕ can be obtained
by integrating out the random effects γi through the conditional distribution f(γi|G). The
likelihood contribution for subject i is a function of ϕ, regression coefficients β, and random
effects distribution G:

(6)

and the total likelihood [9] of N subjects is
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(7)

Note that for binary outcomes with logit link function, ϕ is equal to 1. The difficulty in
maximizing the above function to obtain the maximum likelihood estimate is that there are
N integrals over the q-dimensional random effects γi. The integrals can only be solved
analytically in a few models, such as linear mixed models with normally distributed
responses. Otherwise, different techniques of numerical approximation are required.

The two linearization methods implemented in the SAS PROC GLIMMIX procedure are the
penalized quasi-likelihood (PQL) method and the marginal quasi-likelihood (MQL) method
[9, 10].

The PQL is based on the Taylor expansion of Yij around current estimates of fixed effects β̂
and random effects  The expansion around both fixed and random effects in equation (1)
yields:

(8)

The first term on the right side equals the current predictor for the conditional mean

 Rewriting everything in vector notation and letting  we have

(9)

where Δ̃ is actually the diagonal matrix of derivatives of the conditional mean μi evaluated
at the expansion locus of β̂ and  Rearranging the above terms, we obtain

(10)

and

(11)

Equation (10) can be viewed as a linear mixed model with the new continuous pseudo-

observation  fixed effects β, random effects γ, and error term  Given starting
values for β and G, the estimates for these unknown parameters are obtained by solving this
approximate linear mixed model. Then the pseudodata are updated with these estimates, and
the procedure is repeated iteratively until convergence is reached.

The MQL is similar to the PQL except that the Taylor expansion of Yij is around β̂ and that
γi is equal to 0. Rodriguez and Goldman [11] found that the point estimates can be biased
for binary outcomes for both PQL and MQL, but the variance estimates are acceptable.

2.2. Sample size and power calculations
Both sample size and power estimates for any types of mixed models depend on the variance
estimates of the fixed effect
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(12)

where Vi is the unconditional variance of Yi. This variance consists of two components: the
G-side random effects and the R-side errors. The variance is formulated as

(13)

This can be rewritten as

(14)

by putting the first term into the sandwich-like error structure of  so that G
becomes transformed G*. We can further simplify equation (14) by extracting a combined

variance parameter  so the transformed R* matrix contains only the correlation parameters
ρ*. The result is

(15)

Note that the component of ρ* in the R* matrix is not equal to the original within-subject
correlation coefficient in the R matrix. Instead, ρ* depends on both the G matrix and the R
matrix. It is easy to see that ρ* becomes larger as the size of the random effects and the size
of the fixed effect coefficient β̂ increase.

The variance estimator of the fixed effects can thus be formulated as

(16)

For a mixed model with binary outcomes, all the formulas above are based on the
conditional mean μi instead of the marginal average probability of event p= E(Yij). The
conditional mean and the marginal average probability are not equal [12]:

(17)

However, at the planning stage of a study, we can assume that μi is an approximation of
E(Yij).

In the example we present here, we assume the treatment group to be the fixed effect and
each subject within the group to be the random effect. The purpose is to test if the binary
responses of the treatment group are better than those of the control group. The design
matrices for fixed and random effects for subject i are:

Control group: Xi = [1ni 0ni], Z = 1ni;

Treatment group: Xi = [1ni 1ni], Z = 1ni.

The null hypothesis is H0: β = 0, and the alternative hypothesis is Ha: β = b > 0. The test for
a hypothesis such as this is a Wald-type test based on asymptotically normal distributions as
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in the marginal model ([2], [3]). Thus, for given sample size N, the power 1 − Δ can be
obtained by

(18)

and the required sample size N for a given power 1 − Δ is

(19)

We denoted π as the sample allocation ratio and denoted p0 and p1 as the marginal average
rates for control and treatment groups and then applied the same derivation procedure used
by Shih [2] and Pan [3] to rewrite the variance estimator (16) as a function of π, p0, p1, R*

and :

(20)

where

(21)

When VAR(β̂) becomes available, we can plug it into equation (18) or (19) to obtain the
estimated power or sample size.

In the special case in which the R matrix has a CS covariance structure with  as the
components in R* and with σ0 and σ1 as the combined variance parameter mentioned above
for the control and treatment groups, the variance estimation formula is

(22)

But if the R matrix has an AR(1) covariance structure, the formula becomes

(23)

In both cases, N0 and N1 is the sample size in control and treatment group.

2.3. Longitudinal designs with attrition
All of the formulas described above assume that the sample size is constant across time. In
practice, however, this assumption rarely holds true in longitudinal studies.

The “completers only” approach to the problem uses the minimum expected sample size at
any time point in a study. But this conservative approach can lead to an underestimated
power or an inflated sample size.
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A better approach is to modify the formulas to accommodate expected attrition over time.
To modify the formulas, we can begin by denoting N0k and N1k as the number of subjects
who have k observations (k = 1‥, n) in the control group and the treatment group,
respectively. If the assumed covariance structure for R* is CS, then the estimated variance
will be

(24)

If the covariance structure is AR(1), then the estimated variance will be

(25)

2.4. Examples of calculations
Based on the above formulas, we developed an SAS program to compute the power and
sample size for correlated binary outcomes. The program can be downloaded from our Web
site at http://www.pitt.edu/~qidst1/abstract.htm.

For purposes of illustration, we present a hypothetical example in which 200 subjects are
divided into two groups (a treatment group and a control group) and followed for 1 year.
The binary responses are taken every 3 months after baseline. The assumed marginal rate of
outcome is 0.1 for the treatment group and 0.2 for the control group. Each subject is
considered to be a random effect. Based on the results of a pilot study, we estimate the
variance of the random effect G to be 1 and the within-subject correlation ρ to be 0.7 for the
total sample. We expect the overall attrition rate to be 20% for the total sample and the
dropouts to be evenly distributed throughout the year. Thus, the number of subjects at 3, 6,
9, and 12 months will be 190, 180, 170, and 160. We assume all dropouts follow missing at
random mechanism.

For comparison, we ran a simulation program similar to Moineddin [13] with CS within
subject correlation structure to confirm the results. For the purpose of comparing of
simulation and our formula, we assume the sample size is 200 and without any drop outs.
Among 500 sets of randomly generated longitudinal data as described above, SAS
GLIMMIX procedure converged on 480 of them with the p values of 358 estimated
treatment effects to be less than 0.05. The power estimation of 74.6% is close to 71.8%
computed from the formula we derived if we do not count those 20 sets of data which did
not converge. The actual simulated power is somewhere between 71.6% and 75.6%, as these
two boundaries are set by counting these 20 results to be all non-significant or all
significant. Unfortunately, unlike CS, the AR(1) within subject correlation can not be
written as the ratio of the within subject and total variance, so it is very difficult to
implement power estimation through simulation for longitudinal binary data with auto-
correlated within subject correlation structure.

In the situation where the drop out rate was 20% over 12 months, the program showed that
in order to achieve 80% power, we need to recruit 308 (with CS correlation structure) and
263 (with AR(1) correlation structure) patients using “completers only” approach. With the
same power, the required number of patients is 262 with CS structure or 226 with the AR (1)
structure if we can use the partial data of those 20% drop outs. It is clear that more subjects
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are recruited than necessary by applying the conservative “completers only” approach in the
sample size estimation.

Table 1 shows that the estimated power for a mixed effects model depends on assumptions
about the variance of random effects and within-subject correlations. If the variance of
random effects increase but the within-subject correlations remain the same, the estimated
power increases. If the random effects remain the same but the within-subject correlations
increase, the estimated power decreases. These trends are similar to mixed model with
normal outcomes. Notice that the treatment effect coefficient beta is also a function of the
random variance G, so the power change can also be seen as the results of effect size
change. This is different from marginal models like GEE, in which the effect size is
determined only by the marginal event rate of each group.

Table 2 shows that the estimated sample size required is affected by the number of time
points, the expected marginal probabilities of outcome, and the within-subject structure and
correlations. Overall, larger sample sizes are required for smaller numbers of repeated
measures to obtain the same level of power. Therefore, to achieve the most cost-effective
design, the researcher needs to find the optimal sample size and number of repeated
measures for each subject.

3. Discussion and Summary
The GLIMMIX model provides a powerful technique to model correlated outcomes with
different types of distributions, and this model can now be easily implemented with SAS
PROC GLIMMIX version 9.1. For binary outcomes, linearization methods of PQL or MQL
provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on
these linearization methods, we derived formulas for power and sample size calculations for
longitudinal designs with attrition over time.

The power can also be computed through computer simulation programs. But such approach
is limited for GLIMMIX model. First, simulation is difficult for AR(1) and other
complicated covariance structure other than CS since they can not be easily written as the
ratio of random variance and total variance. The other problem is that the convergence rate
of GLIMMIX models can be very low for data with medium to small sample sizes or small
number of repeated measures. Such problem makes accurate power estimation to be difficult
for most longitudinal studies as discussed by Moineddin [12]. The convergence rate is
slightly better for SAS NLMIXED procedure using numerical integration instead of PQL,
but NLMIXED lacks the flexibility for different within subject covariance structures.

Because GLIMMIX is a subject-specific model, it actually estimates each subject’s unique
parameters of random effects in addition to estimating the fixed effect as a “common
factor.” Power calculations need to be based on subject-specific information. Usually,
however, it is not possible to obtain this information in the form of the conditional mean μi
= E(Yij|γi) for each subject during the study design stage. If no pilot data for a study are
available, we can use the marginal rates p=E(Yij) as an approximation. But if pilot data are
available, we can instead to use the average of the estimated conditional means of all the
subjects from the pilot study to reduce the possible bias caused by this approximation.
However, our simulations show that the approximation gives results fairly close to the
simulated one.

In summary, the sample size and power calculations for GLIMMIX are affected by prior
information about random effects, within-subject correlations, and other values often
difficult to obtain without pilot data. Statisticians should consult with clinicians to make
reasonable estimates of this information or should base their assumptions on any preliminary
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data that are available. They may then wish to use our SAS program (http://www.pitt.edu/
~qidst1/abstract.htm) to compute their power and sample sizes for correlated binary
outcomes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported in part by the Intervention Research Center and Advanced Center for Intervention and
Services Research for Late Life Mood Disorders (P30 MH71944).

References
1. Liu G, Liang KY. Sample size calculations for studies with correlated observations. Biometrics.

1997; 53:937–947. [PubMed: 9290224]

2. Shih WJ. Sample size and power calculations for periodontal and other studies with clustered
samples using the method of generalized estimating equations. Biometrical Journal. 1997; 39:899–
908.

3. Pan W. Sample size and power calculations with correlated binary data. Controlled Clinical Trials.
2001; 22:211–227. [PubMed: 11384786]

4. Rochon J. Application of GEE procedures for sample size calculations in repeated measures.
Statistics in Medicine. 1998; 17:1643–1658. [PubMed: 9699236]

5. Snijders TA, Bosker RJ. Standard errors and sample sizes for two-level research. Journal of
Educational Statistics. 1993; 18:237–259.

6. Hedeker D, Gibbons R, Waternaux C. Sample size estimation for longitudinal designs with attrition:
comparing time-related contrasts between two groups. Journal of Educational and Behavioral
Statistics. 1999; 24:70–93.

7. RMASS. Center for Health Statistics, University of Illinois at Chicago; Available at: http://
www.uic.edu/labs/biostat/projects.html. [Accessed August 16, 2007]

8. Gastanaga VM, McLaren CE, Delfino RJ. Power calculations for generalized linear models in
observational longitudinal studies: a simulation approach in SAS. Computer Methods and Programs
in Biomedicine. 2004; 84:27–33. [PubMed: 16982112]

9. Wolfinger R, O’Connell M. Generalized linear mixed models: a pseudo-likelihood approach.
Journal of Statistical Computation and Simulation. 1993; 4:233–243.

10. SAS. GLIMMIX Procedure Documentation. Cary, North Carolina: SAS Institute Inc.; 2006 Jun.

11. Rodriguez G, Goldman N. An assessment of estimation for multilevel models with binary
responses. Journal of the Royal Statistical Society A. 1995; 158:73–89.

12. Molenberghs, G.; Verbeke, G. Models for Discrete Longitudinal Data. New York: Springer-
Verlag; 2005.

13. Moineddin R, Matheson F, Glazier R. A simulation study of sample size for multilevel logistic
regression models. BMC Medical Research Methodology. 2007:7–34. [PubMed: 17291355]

Dang et al. Page 9

Comput Methods Programs Biomed. Author manuscript; available in PMC 2013 August 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.pitt.edu/~qidst1/abstract.htm
http://www.pitt.edu/~qidst1/abstract.htm
http://www.uic.edu/labs/biostat/projects.html
http://www.uic.edu/labs/biostat/projects.html


N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Dang et al. Page 10

Table 1

Power estimates based on the fixed effect, random effects, and withinsubject correlationa

Fixed effect (β) Random effects (G side) Within-subject correlation (ρ) Power

0.982 0.1 0.6 74.0%

1.022 0.5 0.6 76.3%

1.138 1 0.6 83.5%

1.514 2 0.6 96.7%

1.989 3 0.6 99.9%

1.138 1 0.3 94.9%

1.138 1 0.4 91.4%

1.138 1 0.5 87.6%

1.138 1 0.7 83.5%

1.138 1 0.8 79.5%

1.138 1 0.9 72.0%

a
Estimates are for a two-group longitudinal study with 100 subjects in the treatment group and 100 subjects in the control group and with 4

repeated measures for each subject. We assume CS within subject covariance structure and α = 0.05.
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