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Abstract

Several investigations have observed positive associations between good nutritional status, as indicated by micronutri-

ents, and cognitive measures; however, these associations may not be causal. Genetic polymorphisms that affect

nutritional biomarkers may be useful for providing evidence for associations between micronutrients and cognitive

measures. As part of the Healthy Ageing across the Life Course (HALCyon) program, men and women aged between 44

and 90 y from 6 UK cohorts were genotyped for polymorphisms associated with circulating concentrations of iron

[rs4820268 transmembrane protease, serine 6 (TMPRSS6) and rs1800562 hemochromatosis (HFE)], vitamin B-12

[(rs492602 fucosyltransferase 2 (FUT2)], vitamin D ([rs2282679 group-specific component (GC)] and b-carotene

([rs6564851 beta-carotene 15,15’-monooxygenase 1 (BCMO1)]. Meta-analysis was used to pool within-study effects of

the associations between these polymorphisms and the following measures of cognitive capability: word recall, phonemic

fluency, semantic fluency, and search speed. Among the several statistical tests conducted, we found little evidence for

associations. We found the minor allele of rs1800562 was associated with poorer word recall scores [pooled b on Z-score

for carriers vs. noncarriers: 20.05 (95% CI: 20.09, 20.004); P = 0.03, n = 14,105] and poorer word recall scores for the

vitamin D–raising allele of rs2282679 [pooled b per T allele: 20.03 (95% CI: 20.05, 20.003); P = 0.03, n = 16,527].

However, there was no evidence for other associations. Our findings provide little evidence to support associations

between these genotypes and cognitive capability in older adults. Further investigations are required to elucidate whether

the previous positive associations from observational studies between circulating measures of these micronutrients and

cognitive performance are due to confounding and reverse causality. J. Nutr. 143: 606–612, 2013.

Introduction

Adequate nutrition is essential for good health throughout the life
course, and low-quality diets in later life have been associated with
adverse outcomes, such as increased risk of coronary heart disease
(1) and mortality (2,3). Measures of dietary intake of specific
micronutrients, along with their biomarkers, have also been
associated with indicators of health in observational epidemiologic
studies and there is evidence from many, although not all, studies
that micronutrients are important to cognitive outcomes (4,5).

Iron deficiency anemia is negatively associated with cognitive

performance in childhood (6), and positive associations between

cognitive measures and several other micronutrients have also

been observed in adults including circulating concentrations of

vitamin B-12 (7) and vitamin D (8,9) and intake (10) and

plasma concentrations of b-carotene (11).
The associations observed between nutrition and cognitive

measures may not, however, be causal in all cases. Animal
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studies have shown that a diet rich in antioxidants may delay
cognitive aging (12), studies in children with iron deficiency
anemia show iron supplementation may improve cognition (6),
and there is evidence for improvements in cognition from some,
although not all, intervention studies for nutrients in adults (13).
Whereas mixed evidence from intervention studies may be partly
due to inadequately short treatment lengths for the observation
of effects on cognitive measures, there are other possible
noncausal explanations for the associations observed between
nutrients and cognitive measures. For example, effects may be
due to the lifestyle factors that have been associated with the
intake of some nutrients (14) or due to cognitive impairment
leading to reduced nutrient intake (4). Genetic variants associ-
ated with biomarkers of nutrition may be useful in providing
evidence for associations with cognitive measures. Any associ-
ations would be less likely to be due to confounding (15) or
reverse causality (16). The assumptions for this hypothesis are
presented in Supplemental Fig. 1. Furthermore, genetic variants
implicated in the circulating concentrations of biomarkers of
nutrition may be additionally informative about the long-term
effects of lower concentrations.

We therefore investigated the associations between genetic
variants implicated in the concentrations of biomarkers of
nutrition, from genome-wide association studies (GWASs)15,
and measures of cognitive capability, the capacity to undertake
the mental tasks of daily living, in 20,528 participants aged

between 44 and 90 y as part of the Healthy Ageing across the
Life Course (HALCyon) (17) collaborative research program.
Although micronutrient biomarkers may not be direct measures
of dietary intake in generally well-nourished individuals, they
are important indicators of deficiency and storage.

Serum iron is ;23% heritable (18), and increased concentra-
tions have been associated with the A allele of the single nucleotide
polymorphism (SNP) rs4820268 in transmembrane protease, serine
6 (TMPRSS6) (19,20) and with the A allele of rs1800562 (C282Y)
in hemochromatosis (HFE) (21), the former being common in
many populations, whereas homozygosity of the latter is present in
<0.5% of individuals of European ancestry (22) and is found in
80% of individuals with hemochromatosis (23), an iron overload
syndrome. The G allele of rs492602 in fucosyltransferase 2 (FUT2)
has been associated with increased plasma vitamin B-12 (24). SNPs
that contribute to the estimated 28% heritability of concentrations
of 25-hydroxyvitamin D in individuals of European ancestry (25)
have also been identified, with the T allele of rs2282679 [group-
specific component (GC)] associated with higher concentrations
(26,27). The G allele of SNP rs6564851 near beta-carotene 15,15’-
monooxygenase 1 (BCMO1) has been associated with higher
b-carotene, an antioxidant precursor to vitamin A (28). We
hypothesized that these variants, identified from GWASs, would be
associated with measures of cognitive capability, such as verbal
memory and fluency, in our studies in middle-aged and older adults.

Materials and Methods

Study populations
The National Child Development Study (NCDS) has followed up all
individuals born in England, Scotland, and Wales during 1 wk in March

1958. In 2002–2004 a biomedical survey was conducted during home

visits by a research nurse. After informed consent, DNA was extracted
from 8017 participants aged 44–45 y; the sample with the immortalized

cell line culture (n = 7526) is used here. In 2008–2009, an eighth sweep

was carried out during which cognitive performance tests were

conducted (29). Further details of the study are available elsewhere (30).
The Medical Research Council National Survey of Health and Devel-

opment (NSHD) comprises participants sampled from all births in a

week in March 1946 and followed up since then. In 1999, at age 53 y,

men and women were visited by a research nurse and consent for DNA
extraction was given by ~2900 members of the cohort. Details of the

data collected and the several phases of the study are available on the

cohort�s website (31) and elsewhere (32).
TheWhitehall II study targeted all civil servants aged between 35 and

55y working in London in 1985–1988. In 2002–2004 (phase VII), the

genetics study was established and DNA was extracted from 6156

participants. Details of the study design and data collected have been
described elsewhere (33).

The Caerphilly Prospective Study (CaPS) recruited 2512 men aged

between 45 and 59 y in 1979–1983 from the town of Caerphilly, South

Wales, and its surrounding villages. Blood samples were collected at
baseline and at each of the 4 follow-ups (phase II: 1984–1988; phase III:

1989–1993; phase IV: 1993–1997; and phase V: 2002–2004.) Further

details are available on the cohort�s website (34).
The English Longitudinal Study of Ageing (ELSA) comprises men

and women aged$50 y who originally participated in the Health Survey

for England in 1998, 1999, or 2001. Fieldwork began in 2002–2003

(phase I) with biennial follow-ups, and in 2004–2005 (phase II) blood
samples were provided by 6231 participants. Details of the cohort have

been published elsewhere (35).

The Lothian Birth Cohort 1921 (LBC1921) participants were all

born in 1921, and most completed a cognitive ability assessment at age
11 y. In 1999–2001 (wave I), at age ~79 y, 550 participants living in and

around Edinburgh underwent a series of cognitive and physical tests.

Details of the recruitment into the study are available on its website (36)

and have been published previously (37,38).
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Informed consent was obtained from all participants. Ethical

approval was obtained from the South-east Multi-center Research

Ethics Committee, the North Thames Multi-center Research Ethics
Committee, the Joint University College London/University College

London Hospitals Committees on the Ethics of Human Research

(Committee Alpha), the Medical Research and Ethics Committee, and

the Lothian Research Ethics Committee.

Genotyping and quality control
Genotyping for all SNPs [rs4820268 (TMPRSS6, 22q12.3), rs1800562
(C282Y, HFE, 6p22.2), rs492602 (FUT2, 19q13.33), rs2282679 (GC,
4q13.3), and rs6564851 (near BCMO1, 16q23.2)] in CaPS and ELSA

were carried out by KBioscience (39) along with rs492602 in NCDS and

rs2282679 in NSHD. Genotype information for the remaining SNPs in
NSHD and all SNPs in Whitehall II came from the Illumina Metabochip

(40). Genotype information for all SNPs in LBC1921 came from the

Illumina Human 610-Quadv1 Chip (41), with rs492602 imputed by

using the HapMap phase II CEU data [National Center for Biotechnol-
ogy Information build 36 (UCSC hg18)] as the reference sample and

MACH software; imputation quality score was high (r2 = 0.99). The

remaining SNPs in NCDS came from 2 sources: Illumina HumanHap

550k v3 and Illumina 1.2M chips (42). Genotypic data quality was
reviewed by assessing departure from the Hardy-Weinberg equilibrium,

clustering quality (using KBioscience software SNPviewer on their data)

and call rates.

Phenotypes
Cognitive capability. A number of cognitive performance tests in the

different studies were used to assess cognitive capability. Different as-
sessments of verbal memory were conducted: in ELSA andNCDS, a list of

10 common words were used with participants asked to recall the list

immediately and again after a delay (the mean score was used in the

analysis); in NSHD, 15 words were used over 3 trials; in Whitehall II, 20
words were used. Responses in NSHD and Whitehall II were given in

writing. In Whitehall II, participants recalled in writing in 1 min as many

words as possible beginning with ‘‘S’’ to assess phonemic fluency, whereas

in LBC1921 the 3 letters ‘‘C,’’ ‘‘F,’’ and ‘‘L’’ were used with responses given
orally. Participants were asked to recall asmany animals as possible within

1 min to measure semantic fluency; responses were given orally in ELSA,

NCDS, CaPS, and NSHD and in writing in Whitehall II. To assess search
speed (43), 1-min letter searches among grids of letters were used: 600

letters in NSHD and 780 in ELSA and NCDS.

Anthropometric measurements. BMI (kg/m2) was calculated as
weight divided by height squared derived from measurements conducted

at clinics, during a clinical interview in the home, or from self-report.

Waist-hip ratio was defined as waist circumference (cm) divided by hip

circumference (cm).

Demographic characteristics. Demographic information was derived

from self-report. Where information on ethnicity was collected, partic-

ipants of non-European ancestry were excluded from analyses to avoid

confounding from population stratification (44). Levels of physical
activity were derived from questionnaires. Individuals were categorized

as ‘‘physically active’’ in this analysis if they engaged, at least once a

month, in at least moderate sport or activities in NCDS, NSHD, CaPS,

and LBC1921 or in vigorous sport or activities in ELSA andWhitehall II.
Participants� alcohol consumption was dichotomized here into ‘‘at least

weekly’’ and ‘‘less often’’ in all studies, except for NSHD, where ‘‘more

often than special occasions’’ and ‘‘less often’’ were used. Data on current
smoking status and socioeconomic position were also used.

Statistical methods
Within studies, linear and logistic regression analyses were conducted on
the continuous and dichotomous traits within the cohorts respectively,

adjusting for sex in all studies except for CaPS and for age in all studies

except for those that were age homogenous (i.e., NCDS, NSHD, and

LBC1921). Adjustments for anthropometric measures in the cognitive
capability models were made where appropriate. NCDS and NSHD

were used to additionally adjust the genotypic effects of rs4820268 for

glycated hemoglobin (Hb A1c), and of rs1800562 for Hb A1c and LDL
cholesterol in the cognitive capability models, due to evidence for

associations with these traits (45,46). Dominant models were used for

rs1800562 due to the low frequency of individuals homozygous for the

minor alleles (n = 92; 0.6%). Additive models for the other SNPs were
used with genotypes coded as 0, 1, and 2 for the number of biomarker-

raising alleles. Likelihood ratio tests were used to compare the fit of the

additive models compared with the full genotype model for the cognitive

capability traits. For continuous traits, the normality of the standardized
residuals was inspected with distributional diagnostic plots. For the

harmonization of continuous traits that were used to obtain pooled

estimates of the genotypic effects, Z-score units were calculated in each

study by subtracting the study mean and dividing by its SD. The overall
mean for Z-scores is 0 and the SD is 1. Two-step (47) meta-analyses

using a random-effects model were performed to obtain pooled

genotypic effects. The I2 measure was used to quantify heterogeneity
(48). Finally, the calculation of Z-scores, for continuous traits, and the

main analyses were repeated in men and women separately. Reporting of

the analyses met the appropriate items of recommended checklists

(49,50). A 2-tailed significance level of P < 0.05 was used as evidence of
statistical significance. Statistical analysis was performed in Stata 11.2

(StataCorp LP).

TABLE 1 Summary of sex, age, and nutrient biomarker–raising allele frequencies by cohort1

Cohort

Characteristic NCDS NSHD Whitehall II CaPS ELSA LBC1921 Total

Participants,2 n 7386 2649 3143 1224 5613 513 20,528

Male, % 50 50 77 100 46 41 56

Age,3 y 44 53 59 (50 to 73) 62 (52 to 71) 65 (52 to $90) 79 (77 to 80) 53 (44 to $90)

Biomarker-raising allele frequency

rs4820268 TMPRSS6, A 0.54 0.53 0.54 0.52 0.54 0.58 0.54

rs1800562 HFE, A 0.08 0.08 0.07 0.07 0.07 0.10 0.08

rs492602 FUT2, G 0.51 0.51 0.51 0.51 0.50 0.56 0.51

rs2282679 GC, T 0.71 0.72 0.71 0.72 0.71 0.71 0.71

rs6564851 BCMO1, G 0.53 0.55 0.54 0.54 0.53 0.57 0.54

1 BCMO1, beta-carotene 15,15’-monooxygenase 1; CaPS, Caerphilly Prospective Study; ELSA, English Longitudinal Study of Ageing; FUT2,

fucosyltransferase 2; GC, group-specific component; HFE, hemochromatosis; LBC1921, Lothian Birth Cohort 1921; NCDS, National Child

Development Study; NSHD, National Survey of Health and Development; TMPRSS6, transmembrane protease, serine 6.
2 Numbers of participants represent those with available data for $1 cognitive capability phenotype and $1 genotype.
3 Age is presented as median (range) and is age at the phase at which the majority of variables are taken, i.e., NCDS, Biomedical Survey

(2002); NSHD, 1999 Collection; Whitehall II, phase VII; CaPS, phase III; ELSA, phase II; LBC1921, phase I.
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Results

Cohort summaries and genotyping quality. Table 1 shows
that a total of 20,528 men and women aged between 44 and 90 y
had relevant genotypic and phenotypic data. Summary measures
of the anthropometric and demographic variables in the cohorts
are presented in Supplemental Table 1. Call rates were high,
exceeding 94% for all SNPs across the studies. The Hardy-
Weinberg equilibrium condition was met for all SNPs in both
sources of NCDS and in all other studies (P > 0.06).

Associations between genotype and phenotypes. Associ-
ations between the genotypes and measures of anthropometry
and demographic factors are presented in Supplemental Tables

2–4. There was some evidence that the A allele of rs4820268
(TMPRSS6) was associated with lower weight (P = 0.02) and
BMI (P = 0.01) (Supplemental Table 2). There was no evidence
for other genotypic associations for the anthropometric mea-
sures or for physical activity, smoking status, alcohol consump-
tion, or socioeconomic position (P > 0.07).

Summaries of the pooled genotypic associations with the
cognitive capability measures are presented in Table 2. A
negative association between the A allele of rs4820268
(TMPRSS6) and phonemic fluency was observed in LBC1921,
but not in Whitehall II, resulting in substantial heterogeneity (I2

= 83.1%, P = 0.02; Supplemental Fig. 2, Supplemental Table 5),
and there was no overall effect, after adjusting for age, sex,
height, and weight. There was some evidence that carriers of the
A allele of rs1800562 (HFE) had lower word recall scores after
adjusting for age and sex (P = 0.03), as well as for a trend
toward slower search speeds (P = 0.08; Supplemental Fig. 3,

Supplemental Table 6). We also observed trends toward asso-
ciations between the G allele of rs492602 (FUT2) and poorer
performance in semantic fluency (P = 0.06) and search speed (P =
0.05) (Supplemental Table 7 and Supplemental Fig. 4). Table 2
shows that there was some evidence that the T allele of
rs2282679 (GC) was associated with lower word recall scores
after adjusting for age and sex (P = 0.03), although no other
pooled associations were observed for this SNP. Differences
were observed for the genotypic effects of rs2282679 (GC) on
phonemic fluency between LBC1921 and Whitehall II (I2 =
80.6%, P = 0.02), with a negative effect of the T allele observed
only in LBC12921 (Supplemental Fig. 5, Supplemental Table 8).
A positive association between the G allele of rs6564851
(BCMO1) and word recall was observed only in NSHD, with
no overall effect from all 4 studies (heterogeneity: I2 = 70.5%, P =
0.02; Table 2, Supplemental Table 9, and Supplemental Fig. 6).

There was no evidence for other genotypic associations for
the measures of cognitive capability in the pooled analyses. In
only a relatively small number of tests did the full genotype
model represent a significantly better fit than the per allele model
(indicated in Supplemental Tables 7 and 8). Full genotypic
associations are presented in Supplemental Tables 5–9 and
Supplemental Figs. 2–6. There was no evidence for heterogeneity
between men and women for any of the genotypic associations
for any of the cognitive capability measures (P > 0.08; data not
shown), except for rs6564851 (BCMO1) where its effects on
search speed differed (P-heterogeneity = 0.045), although not
achieving significance in either sex (men, P = 0.05; women,
P = 0.41).

Additional adjustment for Hb A1c in the models of effects of
rs4820268 (TMPRSS6) in NCDS and NSHD did not affect the

TABLE 2 Summary of pooled associations between genotypes and cognitive capability1

Cognitive capability measure and genotype n b (95% CI) P I2(%); P-heterogeneity

Word recall

rs4820268 (TMPRSS6) 16,034 20.003 (20.024, 0.018) 0.75 1.7; 0.38

rs1800562 (HFE) 14,105 20.049 (20.095, -0.004) 0.033 0.0; 0.74

rs492602 (FUT2) 18,295 20.003 (20.023, 0.017) 0.75 0.0; 0.71

rs2282679 (GC) 16,527 20.026 (20.048, -0.003) 0.028 0.0; 0.73

rs6564851 (BCMO1) 16,458 0.021 (20.018, 0.060) 0.29 70.5; 0.017

Phonemic fluency

rs4820268 (TMPRSS6) 3622 20.078 (20.240, 0.085) 0.35 83.1; 0.0151

rs1800562 (HFE) 3638 0.046 (20.044, 0.136) 0.32 0.0; 0.57

rs492602 (FUT2) 3639 20.004 (20.048, 0.041) 0.88 0.0; 0.45

rs2282679 (GC) 3625 20.045 (20.205, 0.114) 0.58 80.6; 0.023

rs6564851 (BCMO1) 3638 20.042 (20.116, 0.033) 0.27 36.6; 0.21

Semantic fluency

rs4820268 (TMPRSS6) 17,311 0.002 (20.023, 0.026) 0.90 27.5; 0.24

rs1800562 (HFE) 15,392 20.007 (20.051, 0.036) 0.74 0.0; 0.66

rs492602 (FUT2) 19,599 20.018 (20.038, 0.001) 0.064 0.0; 0.94

rs2282679 (GC) 17,827 20.010 (20.046, 0.026) 0.59 56.3; 0.057

rs6564851 (BCMO1) 17,741 20.007 (20.032, 0.017) 0.57 27.7; 0.24

Search speed

rs4820268 (TMPRSS6) 12,821 0.019 (20.005, 0.042) 0.12 0.0; 0.73

rs1800562 (HFE) 10,910 20.049 (20.105, 0.006) 0.08 12.1; 0.32

rs492602 (FUT2) 15,039 20.026 (20.052, 0.000) 0.053 25.9; 0.26

rs2282679 (GC) 13,305 20.003 (20.029, 0.023) 0.84 0.0; 0.87

rs6564851 (BCMO1) 13,213 0.008 (20.015, 0.031) 0.50 0.0; 0.42

1 Coefficients are based on Z-scores. All coefficients were adjusted for age and sex; rs4820268 was additionally adjusted for height and

weight. rs4820268, per A allele; rs1800562, A/A + A/G vs. G/G; rs492602, per G allele; rs2282679, per T allele; rs6564851, per G allele.

BCMO1, beta-carotene 15,15’-monooxygenase 1 ; FUT2, fucosyltransferase 2; GC, group-specific component; HFE, hemochromatosis;

TMPRSS6, transmembrane protease, serine 6.
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null associations observed in those studies, nor did the adjust-
ment for LDL cholesterol and Hb A1c for rs1800562 (HFE)
attenuate the pooled negative association between the A allele
and word recall for the 2 studies [(n = 7042; pooled b for Z-score:
20.09 (95% CI: 20.16, 20.03); P = 0.005, I2 = 0.0%)], nor
markedly affect any of the other associations (data not shown).

Discussion

We investigated associations between SNPs robustly associated
with nutritional biomarkers from GWASs and measures of
cognitive capability in 20,528 adults aged between 44 and 90 y
from 6 UK cohorts. There was little evidence for important
associations, with some evidence that carriers of the serum-
raising and hemochromatosis-predisposing allele of rs1800562
(C282Y) in HFE performed poorer in word recall tests (P =
0.03). We also observed a negative association between the allele
of rs2282679 (GC) associated with higher vitamin D and word
recall (P = 0.03), as well as a trend toward poorer performance
in semantic fluency and search speed for the allele of rs492602
(FUT2), which is associated with higher vitamin B-12 (24). We
observed no associations between SNP rs4820268 (TMPRSS6),
associated with relatively lower effects on serum iron than
C282Y (51), or between the SNP associated with b-carotene,
rs6564851 (BCMO1), on any of our investigated cognitive
capability traits. Our findings therefore suggest that the geno-
types that affect these nutritional biomarkers have little, if any,
association with measures of cognitive capability, including
verbal fluency and memory in middle-aged and older adults.

Given the burden of cognitive decline in aging populations
(5), inferring causality between biomarkers of nutrition and
cognitive measures could have implications for public health
policy, and there have been several investigations into associa-
tions between dietary intake, or circulating measures, of micro-
nutrients on cognitive measures, with some positive associations
observed (4). However, these associations may be confounded
by lifestyle factors, be due to better cognition informing better
nutritional choices (4), or reflect temporary nutritional status
only. There have been fewer investigations using genetic markers
implicated in the circulating concentrations, which may help to
reduce these effects of confounding and reverse causality and
help to investigate the effects of long-term levels of exposure
(15,16). One smaller study in 818 men and women aged
between 50 and 70 y observed no association between C282Y
(HFE) and several cognitive measures (52), and a study in 358
men observed no association between genotypes of HFE and
performance in the Mini-Mental State Examination, but there
was some evidence that the genotypes did modify the effects of
lead burden on the change in scores (53). With the emergence
of robust genotypic associations identified from GWASs, we
were able to investigate the effects of circulating concentrations
of serum iron as well as additional markers on cognitive
capability. The overall null associations we found between the
investigated genotypes associated with nutritional biomarkers
and cognitive capability do not support a hypothesis of direct
causal effects.

There are, however, various hypothesized mechanisms
through which micronutrients may directly affect cognitive
capability. Animal studies have shown that iron deficiency leads
to an increase in iron uptake in the brain (54), and increased iron
content is often seen in the brains of patients with neurodegen-
erative diseases, including Alzheimer disease (55) and Parkinson
disease (56), and it has been suggested that iron deficiency may

be implicated in such diseases (57), although its role is not fully
understood. Low B vitamin status may also affect brain tissue
by impairing necessary homocysteine methylation (58). In addi-
tion, higher concentrations of plasma vitamin B-12 have been
associated with lower rates of brain volume loss in the
elderly (59). The brain�s susceptibility to free radical damage
makes antioxidants important actors in its defense from
oxidative stress (60) and as a result may also affect cognitive
capability.

It is therefore possible that these micronutrients may be able
to affect cognitive capability measures, and despite the large size
of our study it may still have been underpowered to provide
strong evidence for these effects. In addition to this, there are
other factors to be considered in the interpretation of results
from our investigation. Interpretation of a few of our findings
may be hindered by large heterogeneity that we observed and
further investigations may explain any possible sources. The
inverse association observed between the vitamin D–raising
allele and word recall from the pooled results was not seen for
any of the other cognitive measures and may therefore be
spurious, especially in light of the number of statistical tests
conducted. It is possible that the association we observed
between the serum iron–raising allele of rs1800562 (C282Y) in
HFE and poorer word recall is an indicator of any effect of a
predisposition to hemochromatosis, a syndrome often accom-
panied by fatigue and malaise (23), and not directly of serum
iron, because this association was not observed for the
rs4820268 (TMPRSS6) genotype. Residual confounding may
be reduced further by the inclusion of several genotypes for each
micronutrient (61), possibly providing stronger instruments for
investigating causality (16).

Although our study found no strong evidence for associations
between these genotypes and cognitive capability, attention
should still be given to improving and maintaining the overall
quality of diets of older people in order to reduce the risk of
morbidity and mortality associated with poor diets (1–3). In
addition, there is still a possible role of macronutrients in cog-
nitive performance (4). Maintenance of good nutritional status
in older adults is particularly important due to physiologic
factors and reduced dietary intake of nutrients that may occur in
later life, which contribute to the lower concentrations of
nutritional biomarkers observed in older age (4,62). However,
food sources may be preferable to pharmacologic supplements
because supplementation of synthetic antioxidants, such as
b-carotene, and minerals, such as iron, in generally well-
nourished individuals may lead to adverse outcomes, such as
increased mortality risk (63,64).
In conclusion, the results of this large multicohort study using
genetic variants of nutritional biomarkers require replication but
provide little evidence for associations with cognitive capability
in middle-aged and older adults.
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