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ABSTRACT
Background: The daily energy imbalance gap associated with the
current population weight gain in the obesity epidemic is relatively
small. However, the substantially higher body weights of popula-
tions that have accumulated over several years are associated with
a substantially higher total energy expenditure (TEE) and total en-
ergy intake (TEI), or energy flux (EnFlux ¼ TEE ¼ TEI).
Objective: The objective was to develop an equation relating
EnFlux to body weight in adults for estimating the rise in EnFlux
associated with the obesity epidemic.
Design: Multicenter, cross-sectional data for TEE from doubly la-
beled water studies in 1399 adults aged 5.9 6 18.8 y (mean 6 SD)
were analyzed in linear regression models with natural log (ln) weight
as the dependent variable and ln EnFlux as the independent variable,
adjusted for height, age, and sex. These equations were compared with
those for children and applied to population trends in weight gain.
Results: ln EnFlux was positively related to ln weight (b ¼ 0.71;
95% CI: 0.66, 0.76; R2 ¼ 0.52), adjusted for height, age, and sex.
This slope was significantly steeper than that previously described
for children (b ¼ 0.45; 95% CI: 0.38, 0.51).
Conclusions: This relation suggests that substantial increases in
TEI have driven the increases in body weight over the past 3 dec-
ades. Adults have a higher proportional weight gain than children
for the same proportional increase in energy intake, mostly because
of a higher fat content of the weight being gained. The obesity epidemic
will not be reversed without large reductions in energy intake, increases
in physical activity, or both. Am J Clin Nutr 2009;89:1723–8.

INTRODUCTION

Understanding and quantifying the energy dynamics that ex-
plain the obesity epidemic are important for benchmarking the
significance of research findings (1), estimating the effect of
public health interventions (2, 3) and public communications
about the magnitude of the changes needed to reverse the epi-
demic (4). The term energy gap has been applied to different
aspects of energy balance dynamics related to obesity and un-
fortunately this has led to significant confusion about whether
the epidemic is caused by (and can be reversed by) small or
large differences in energy balance (5–10).

The different energy gap concepts are shown in Figure 1. The
average daily excess of total energy intake (TEI) over total

energy expenditure (TEE), which is needed to create weight gain
over a period of time is referred to here more specifically as the
energy imbalance gap. When applied to the average weight gain
of whole populations during the rise in the obesity epidemic, this
number is usually estimated to be quite small (eg, 125 kJ/d)
(5), although more recent models consider it to be significantly
larger (7). However, to maintain an ongoing energy imbalance
gap to drive the weight gain, TEI needs to keep rising because
TEE is also constantly rising toward a new equilibrium because
of increased body mass [composed of both fat mass (FM) and
fat-free mass (FFM)]. The increasing TEE is mainly due to the
effect that the increases in FFM have on increasing resting
metabolic rate (RMR) (6, 8), but also on the effect of increased
weight on the energy cost of physical activity (PA). Eventually,
both TEI and TEE (or more simply energy flux, EnFlux, because
TEI ’ TEE) are higher than before weight gain. We call the
difference in EnFlux between the 2 time points the energy flux
gap, and this number can be quite large when applied across the
decades of the obesity epidemic.

The equilibrium point for a population, where the mean TEE,
mean TEI, and mean body weight are all in a dynamic balance, is
referred to here as a settling point (6), and perturbations of TEI or
TEE can result in a shift in body weight toward a new settling
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point (11). Conceptualizing changes in mean weight between
2 states of equilibrium or settling points assumes that time A and
time B represent points of stable, dynamic equilibrium between
EnFlux and body weight. Even if these time points are in the
upswing of an obesity epidemic, on any one day the population
can be considered to be virtually at a settling point because the
energy imbalance gap is ,1% of total EnFlux.

The purpose of this analysis was to develop an equation re-
lating EnFlux to body weight in adults so that estimations of the
energy flux gap associated with the adult obesity epidemic can be
made and the dominance of TEE or TEI in driving the epidemic
can be deduced.

SUBJECTS AND METHODS

Participants

Data from studies that had measured TEE using standard
doubly labeled water techniques (12) in 1399 adults aged �18 y
were collected from 8 centers internationally—6 in the United
States (13–17), one in the Netherlands (18), and one in New
Zealand (19, 20). The inclusion of several centers meant that
there was a spread of ethnicities in the database and that the net
technical biases in measurements across centers would be
minimized. Body weight was the dependent variable of interest,
with TEE (or EnFlux) being the main independent variable of
interest and height, age, and sex as confounding variables. Ten
outliers were deleted (weight .150 kg, height .200 cm, TEE ,

4000 kJ/d, or TEE . 23,000 kJ/d). Written informed consent
was given by participants, and ethics approval was obtained by
each of the participating institutions. The data set used for the
previous similar study of 963 children aged 4–18 y (6) was
compared with the adult findings.

Statistical analysis

The assumptions used in the previous analysis for children (6)
were applied: first, that the TEE measured by doubly labeled water

over ’2 wk is equivalent to TEI (ie, EnFlux ¼ TEE ¼ TEI), and
second, that EnFlux and body weight are interdependent and can
be considered to be in a dynamic balance.

The distribution of body weight and EnFlux variables are
known to be skewed (6, 21); therefore, both were converted to
natural logarithms for analysis: ln weight in ln kg and ln EnFlux
in ln kJ/d. This reduced the skewness of the variables, reduced
the heteroscedasticity, and improved the linearity of the relation.
Pearson product-moment correlations were calculated for the
univariate analyses. For the multivariate analyses, height (cm),
age (y), and sex (males ¼ 0, females ¼ 1) were added as co-
variates. The inclusion of ethnicity and study center as dummy
variables greatly increased the complexity of the models and
only gave a small increase in the R2 value (,0.02), so these
variables were not further included in the analyses. Similarly,
the inclusion of more complex terms in the equation (such as ln
height, age2, or sex 3 ln EnFlux) did not meaningfully increase
the R2 value and reduce the 95% CI for ln EnFlux. The equa-
tions presented are thus the parsimonious ones that nevertheless
closely approximate the more complex equations. Statistical sig-
nificance was defined at the 0.05 level.

Hierarchical multiple regression models were used with ln
weight as the dependent variable. For the comparison between
adults and children, the 95% bands (encompassing 95% of each
population) were calculated with the effects of height, age, and
sex removed to show the distinctness of the 2 populations in their
relation between ln EnFlux and ln weight. All analyses used SPSS
statistical software (version 14.0 for Windows; SPSS Inc, Chi-
cago, IL).

RESULTS

The characteristics of the 1399 participants are shown in Table 1
and demonstrate the wide range in age (18–98 y), weight (34–
150 kg), and measured TEE (4.1–22.5 MJ/d) included in the
sample. The relation for the raw data between weight and TEE
(henceforth referred to as EnFlux) is shown in Figure 2, with

FIGURE 1. Schematic showing the energy balance characteristics of a population undergoing weight gain over a period of years. The energy imbalance gap
is defined as the small average daily imbalance between total energy intake (TEI) and total energy expenditure (TEE), whereas the energy flux gap, which is
the higher TEI and TEE (energy flux) associated with the higher weight, is relatively large.
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weight as the independent variable. Viewed in this way, heavier
people have a higher EnFlux, with the relation being significant
for men (b ¼ 93.0; 95% CI: 82.9, 103.1; P , 0.0001;
intercept ¼ 4723), women (b ¼ 72.3; 95% CI: 65.6, 79.0; P ,

0.0001; intercept ¼ 4873), and both sexes combined (b ¼ 94.0;
95% CI: 88.2, 99.8; P , 0.0001; intercept ¼ 3945). Reversing
the relation and log transforming the data gave the graph shown
in Figure 3 (b ¼ 0.64; 95% CI: 0.60, 0.68; P , 0.0001;
intercept ¼ 21.64). In this case, weight becomes the dependent
variable. The R2 value was 0.43 (P , 0.0001) for the univariate
relation in the log-transformed data and increased to 0.52 (P ,

0.0001) when the covariates of height, age, and sex were added
(Table 2). The equation from this multivariate analysis and
subsequent algebraic transformations are shown below.

Unstandardized coefficients derived from the regression
model:

ln Weight ¼ 0:712ðln EnFluxÞ1 0:005ðHeightÞ
1 0:004ðAgeÞ1 0:074ðSexÞ2 3:431 ð1Þ

Take the antilog of both sides of Equation 1:

Weight ¼EnFlux0:712 3 e0:005 Height

3 e0:004 Age 3 e0:074 Sex 3 e23:431 ð2Þ

Transform into a ratio from time1 to time2 for considering the
same population at different time points or population1 versus
population2 with the same sex ratio (sex and constant variables
cancel out):�

Weight2

Weight1

�
¼
�

EnFlux2

EnFlux1

�0:712

3

�
e0:005 Height2

e0:005 Height1

�

3

�
e0:004 Age2

e0:004 Age1

�
ð3Þ

If height and age are considered the same (eg, in comparing cross-
sectional data of 2 populations with comparable age and height
distributions), these variables also cancel out:

�
Weight2

Weight1

�
¼
�

EnFlux2

EnFlux1

�0:712

ð4Þ

When the relation in Equation 4 is plotted over the range
of 620% change in EnFlux (ie, EnFlux2 ¼ 0.8–1.2 3 EnFlux1),

the relation with the change in body weight is virtually linear
with a slope of 0.71 (Figure 4, dashed line).

The 0.71 (95% CI: 0.66, 0.76) slope of the relation between
EnFlux and body weight in adults was significantly different from
that previously published for children of 0.45 (95% CI: 0.38,
0.51) (6). The effects of height, age, and sex were then removed
for each of these populations separately, and the resultant scatter
plots for adults and in children are shown in Figure 5 along with
the regression lines and 95% prediction bands (containing 95%
of data points) for each population. There was barely any
overlap in the population groups, and the steeper adult gradient
means that for a given increase in EnFlux (eg, a 10% increase in
TEI), the proportional increase in weight for adults is greater
(7.1%) than that for children (4.5%). This is likely to reflect the
higher proportion of FFM to FM accumulated by children due to
growth effects and perhaps less of a reduction in PA with weight
gain compared with adults. Whereas height and age were in-
cluded in the models to derive the equation for children, they
probably did not account for all the effects of growth. To test
this, we analyzed the relation between EnFlux and FFM for those
participants who had available body-composition data (Table 3).

For adults, the b coefficient for ln EnFlux on ln FFM (de-
pendent variable) adjusted for height, age, and sex was 0.48
(95% CI: 0.44, 0.51), whereas for children it was 0.31 (95% CI:
0.28, 0.34). Although still significantly different, the coefficients
were much closer for FFM than for weight. Thus, a 10% increase
in TEI would be expected to increase weight and FFM in adults
by 7.1% and 4.8%, respectively, whereas in children it would be
expected to increase weight by 4.5% and FFM by 3.1%.

DISCUSSION

This study showed that EnFlux, TEE, and TEI are positively
related to body weight, which implies that a high TEI is the main
driver of higher body weights in modern populations. A cross-
sectional relation cannot usually be used to determine causality,
but, in this case, the constraints of the first law of thermodynamics
allowed us to infer that a high TEI must be the major driver of
higher body weight in modern populations. If obesity was pri-
marily determined by lower PA (including higher sedentariness),
one would expect that the consequent reductions in activity
energy expenditure would result in a lower TEE (EnFlux) being

TABLE 1

Characteristics of the study participants

Men Women All

No. of subjects 652 747 1399

Ethnicity (n)

White 528 559 1087

Black 71 101 172

Hispanic 13 20 33

Asian 13 15 28

Pacific Islander 18 42 60

Other/unspecified/unknown 9 10 19

Age (y) 49.3 6 18.0 (18–98)1 43.0 6 19.1 (18–97) 45.9 6 18.8 (18–98)

Weight (kg) 83.5 6 17.4 (46.5–149.7) 70.5 6 18.7 (33.8–144.5) 76.6 6 19.2 (33.8–149.7)

Height (cm) 176.5 6 7.2 (152.0–197.0) 163.7 6 6.9 (143.2–186.0) 169.6 6 9.5 (143.2–197.0)

Total energy expenditure (kJ/d) 12,489 6 2796 (5033–22,486) 9971 6 2200 (4126–18,104) 11,145 6 2793 (4126–22,486)

1 Mean 6 SD; range in parentheses (all such values).
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related to higher body weight (ie, a negative relation). The fact
that the observed relation was strongly positive implies that the
high EnFlux associated with a high body weight is because a high
TEI is the main driver of both factors.

The slope of the relation (0.71) implies that a 10% higher TEI
equates to a higher body weight of ’7%. Thus, an increase in TEI
of ’5.5% per decade would therefore have been needed to drive

the observed average weight gain of ’4% (’3 kg per decade) for
US adults since the early 1970s (22). Using dietary intake data
for adults in the 1970s (23) with a 20% allowance for under-
reporting (24) as a base, the energy flux gap for the 3 decades
from the start of the obesity epidemic in the United States in the
1970s would be ’1600 kJ/d. This is a substantial amount and
small behavioral changes (4) will clearly not be sufficient to
reverse the epidemic.

The generated equations can be extrapolated to provide further
predictions about population weight differences in relation to
behavioral differences in TEI or PA. The summary slope for
adults linking body weight and EnFlux is shown in Figure 4 as
the dotted line. Points A to E are all considered settling points or
equilibria for populations of comparable age, height, and sex
distributions, where weight is stable. For population B, which
has a TEI 10% higher than population A, the mean weight is
predicted to be 7% higher (assuming comparable PA). Using
absolute values, if the adult population in this study (Table 1)
had a 10% higher TEI (ie, 12,260 kJ/d instead of 11,145 kJ/d), the
mean weight would be predicted to be 5.4 kg higher, at 82.0 kg.
The TEE would, of course, also be 10% higher, largely because of
the higher RMR, which increases in parallel with the weight gain.
Conversely, if a population had a 10% lower TEI (10031 kJ/d)
at settling point C, the mean weight would be 5.4 kg lower, at
71.2 kg.

The other scenarios in Figure 4 relate to differences in PA. If
the energy cost of PA is consistently lower in one population (D)
than another (A), with no compensatory differences in TEI, it is
hypothesized that mean body weight for population D would be
at some point vertically above the settling point for population
A, with EnFlux remaining the same. In other words, at settling
point D, the lower energy expenditure from reduced PA would
have been exactly offset by the increase in RMR. Conversely,
a higher level of PA without compensatory differences in TEI
will place the settling point (E) vertically below population A;
the higher cost of PA would be offset by the lower RMR because
of the lower body weight. It is, therefore, concluded that a sig-
nificant amount of the vertical variability about the regression
lines in the scatter plots (Figures 2, 3, and 5) is due to differ-
ences in PA levels between individuals and the proportion of
their weight that is FFM, both of which influence TEE and thus
EnFlux.

It is hypothesized that combinations of behavioral differences
will result in other settling points in the areas bounded by the
‘‘pure’’ behavior lines (dotted line for TEI and vertical line for
PA). For example, a population with higher TEI plus lower PA
than population A would be within the upper shaded area and one

FIGURE 2. The relation between body weight and energy flux in adults
[energy flux ¼ total energy expenditure (TEE) measured by the doubly
labeled water technique], shown as the raw data with body weight as the
independent variable (Pearson’s correlation r ¼ 0.65, P , 0.0001; n ¼
1399).

FIGURE 3. The relation between body weight and energy flux (EnFlux)
in adults (EnFlux ¼ total energy expenditure measured by the doubly labeled
water technique), shown as natural log-transformed data with energy flux as
the independent variable (Pearson’s correlation r ¼ 0.65, P , 0.0001; n ¼
1399). Ln, natural log.

TABLE 2

The hierarchical multiple regression model with the dependent variable

being naturally log-transformed body weight (ln weight in ln kg)

Variable b (SE)1 t value P value 95% CI for b

ln Energy flux 0.712 (0.025) 28.68 ,0.0001 0.663, 0.760

Age (y) 0.004 (0.000) 15.14 ,0.0001 0.004, 0.005

Height (cm) 0.005 (0.001) 7.43 ,0.0001 0.004, 0.007

Sex2 0.074 (0.013) 5.52 ,0.0001 0.047, 0.100

Intercept 23.431 (0.234) 214.65 ,0.0001 23.890, 22.971

1 b coefficients are unstandardized.
2 Male ¼ 0, female ¼ 1.
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with a lower TEI plus higher PA would be in the lower shaded
area. The quantitative nature of this construct means that this
hypothesis is testable across populations.

It is important to note that, in physiologic terms, the energy
cost of weight gain is substantially greater than the energy cost of
weight loss (25, 26). Thus, Figure 4 may not be applicable to an
individual person who is increasing or decreasing weight be-
cause the slopes for weight gain and weight loss would be dif-
ferent. In addition, experimental studies, such as the classic
overfeeding and exercising studies by Bouchard et al (27, 28),
usually imposed large energy imbalances over a relatively short

periods of time so a new equilibrium may not be reached and the
physiologic responses to large imbalances may be prominent
(11, 29) and mask the true equilibrium status.

Whereas the main application of the constructs in Figure 4 is
to compare across populations, the equations could be used to
model population weight changes over long periods of time in
response to behavioral changes (2) and should be more accurate
than the simple, unbounded arithmetic that is sometimes used to
predict weight change from a change in energy balance (1, 3,
30). For example, Dolan et al (3) estimated that prompts to take
the stairs would increase the mean TEE by ’40 kJ/d (0.67 kJ/
ascent and descent of a step 3 60 new steps/weekday) in those
who responded to the prompts. For their hypothetical population
(mean weight: 61 kg), they used a simple arithmetic to calculate
that this would result in 300 g weight loss per year and, by in-
ference, because such calculations are unbounded, 3 kg weight
loss per decade. By our equations, 40 kJ/weekday or 30 kJ/d would
be 0.33% of TEE for a population with a mean weight of 61 kg
and EnFlux of 9 MJ/d. This would translate to a shift from
a population settling point of 61 kg to a new settling point only
140 g lighter (0.33% 3 0.71 ¼ 0.23%, 0.0023 3 61000 g), and
this weight loss would not continue ad infinitum without further
behavioral changes. This avoids the trap of extrapolating small
changes over long time periods to give unrealistic predictions of
weight change.

An important assumption for these analyses is the concept of
settling points, where TEI ¼ TEE at a stable weight. As depicted
in Figure 1, the energy imbalance gap is very small compared
with the total energy flux and is considered negligible (or at least
less than the reported precision of the doubly labeled water
technique of ’5–8%) for the 1–2 wk period when TEE was
measured. This a reasonable assumption, because the protocols
for doubly labeled water studies attempt to ensure weight
maintenance over the measuring period, and the energy cost of
linear growth is not an issue for adults as it is with children.

The differences between adults and children in the relation
between EnFlux and body weight are interesting; adults need
a greater proportional weight change to reach a new settling point
for a given proportional change in EnFlux. Most of the expla-
nation seems to lie in the greater proportion of lean mass to FM
put on by children as they gain weight Additional contributors
may be that weight gain reduces PA levels more in adults than it
does in children.

In conclusion, the strength and direction of the relation between
energy flux and body weight implicate substantial increases in
energy intake as the main driver for the increase in the adults’
weight observed over the recent decades and, conversely, large
decreases in energy intake and/or large increases in PA will be
needed to reverse the prevalence of obesity.

FIGURE 4. The relation between energy flux and body weight (derived
from Equation 4) is shown as the dotted line with a slope of 0.71. Compared
with a population at point A, the settling points for other similar populations
with a higher or lower energy intake (B and C, respectively) and lower or
higher physical activity levels (D and E, respectively) are shown. A population
with a combination of a higher energy intake and lower physical activity would
fall into the top right shaded area, whereas a population with both a lower
energy intake and a higher physical activity would fall into the lower left
shaded area. TEE, total energy expenditure; TEI, total energy intake.

FIGURE 5. The relation between energy flux (EnFlux) and body weight
in adults (n ¼ 1399) and children (n ¼ 963) with both variables expressed as
natural logs (Ln) with the effects of height, age, and sex removed. The lines
represent the regression lines (derived from linear regression models) for
each group with 95% prediction bands (containing 95% of each population).

TABLE 3

Characteristics of the adults and children with fat-free mass data

Adults (n ¼ 897;

43% male)

Children (n ¼ 963;

46% male)

Mean 6 SD Range Mean 6 SD Range

Age (y) 45.3 6 17.1 18.0–97.8 8.1 6 2.8 3.9–18

Weight (kg) 77.3 6 19.9 33.8–149.7 31.5 6 17.6 13.6–141.2

Fat-free mass (kg) 50.4 6 11.2 26.6–91.8 22.4 6 10.0 10.8–82.5

Fat (%) 33.0 6 10.5 1.5–82.0 26.4 6 8.4 4.4–56.7
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