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France, 19 Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom

Abstract

Genome-wide association studies (GWAS) yielded significant advances in defining the genetic architecture of complex traits
and disease. Still, a major hurdle of GWAS is narrowing down multiple genetic associations to a few causal variants for
functional studies. This becomes critical in multi-phenotype GWAS where detection and interpretability of complex SNP(s)-
trait(s) associations are complicated by complex Linkage Disequilibrium patterns between SNPs and correlation between
traits. Here we propose a computationally efficient algorithm (GUESS) to explore complex genetic-association models and
maximize genetic variant detection. We integrated our algorithm with a new Bayesian strategy for multi-phenotype analysis
to identify the specific contribution of each SNP to different trait combinations and study genetic regulation of lipid
metabolism in the Gutenberg Health Study (GHS). Despite the relatively small size of GHS (n = 3,175), when compared with
the largest published meta-GWAS (n.100,000), GUESS recovered most of the major associations and was better at refining
multi-trait associations than alternative methods. Amongst the new findings provided by GUESS, we revealed a strong
association of SORT1 with TG-APOB and LIPC with TG-HDL phenotypic groups, which were overlooked in the larger meta-
GWAS and not revealed by competing approaches, associations that we replicated in two independent cohorts. Moreover,
we demonstrated the increased power of GUESS over alternative multi-phenotype approaches, both Bayesian and non-
Bayesian, in a simulation study that mimics real-case scenarios. We showed that our parallel implementation based on
Graphics Processing Units outperforms alternative multi-phenotype methods. Beyond multivariate modelling of multi-
phenotypes, our Bayesian model employs a flexible hierarchical prior structure for genetic effects that adapts to any
correlation structure of the predictors and increases the power to identify associated variants. This provides a powerful tool
for the analysis of diverse genomic features, for instance including gene expression and exome sequencing data, where
complex dependencies are present in the predictor space.
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Introduction

This paper builds upon recent developments in Bayesian

Variable Selection (BVS) to propose a novel strategy for studying

the association between large sets of predictors (SNP, copy number

variants, exome sequencing variants, gene expression and protein

levels) and groups of correlated traits (i.e., outcomes). Such data

commonly arise in Genome-Wide Association Studies (GWAS),

where a large range of continuous phenotypes are recorded

together with hundreds of thousands genetic markers [1], [2] as

well as more widely in integrative genomics analyses. Our strategy

is formulated within the linear model, a framework suited to the

analysis of multiple continuous responses, and enhanced with a

powerful stochastic search engine that explores the vast set of

possible multivariate SNPs models, i.e. models involving different

linear combinations of subsets of covariates. We take advantage of

the existing Bayesian framework for multiple outcomes [3], [4], [5]

and employ a conjugate hierarchical prior setup for genetic effects

that adapts to any correlation structure among the predictors [6],

[7], integrating over model uncertainty. The resulting model and

associated novel GUESS (Graphical Unit Evolutionary Stochastic

Search) implementation, enables the search for sparse sets of

explanatory features at the genome-wide scale that are simulta-

neously associated with a set of continuous responses. We provide

synthetic measures of evidence both for multivariate predictive

models and for the marginal associations with each group of

phenotypes, through the computation of the Model Posterior

Probabilities (MPP), Marginal Posterior Probabilities of Inclusion

(MPPI) and Bayes Factors (BFs).

Our strategy exploits the advantages provided by two

approaches used in genetic association studies: firstly, the use of

BVS to go beyond ‘‘single SNP analyses’’ in GWAS [8]; secondly,

the joint modelling of multiple traits. This yields increased power

and enhanced interpretability of the genetic associations, provid-

ing new insights into the underlying regulatory mechanisms. To

the best of our knowledge, GUESS is the first integrated Bayesian

computational tool that is able to perform both fast and efficient

variable selection in large dimensional covariate space and

association analyses with multiple continuous phenotypes. In a

real case study of several blood lipid traits, we compared GUESS

with two recently proposed Bayesian alternatives, namely the

piMASS algorithm [8] and the Bayesian method that is included

in the SNPTEST software [9]. In a simulation study that mimics

real-case scenarios, we also compared GUESS with well-

established non-Bayesian multi-phenotype approaches, namely

Multivariate ANOVA [10], Multiple Group LASSO [11] and

Sparse PLS [12]. Alternative machine learning strategies for

GWAS [13] that require filtering the genetic markers in a pre-

processing step or use ‘‘evolutionary computation’’ to detect the

best combination of genetic markers that predict the variation of

the traits are not yet tailored to analyze multiple traits.

Advantages over alternative GWAS Bayesian methods
The recently proposed piMASS algorithm implements a BVS

strategy for genome-wide association analysis of single continuous

phenotypes with a novel prior specification for the variance of the

regression coefficients. The implementation of piMASS is based

on a single chain Monte Carlo Markov Chain (MCMC) algorithm

tuned to analyse a single response, with the aim of demonstrating

the feasibility of BVS in a model space with many predictors whilst

showing the benefits of considering multivariate SNPs models and

model uncertainty. However the specific proposal density used in

the MCMC and implemented in piMASS cannot be extended

easily in a multi-phenotype setup.

Our algorithm, GUESS, also considers BVS for such a large

model space through an Evolutionary Stochastic Search algorithm

[7], but differs from piMASS in three main aspects. Firstly, it is

adapted to analyse either single or multiple phenotypes. Secondly,

GUESS adopts sparsity-induced prior specification that helps the

search algorithm to focus on models that are well supported by the

data [8], allowing the user to specify natural quantities such as the

prior expectation and standard deviation of the number of

associated features. Lastly, GUESS uses an advanced stochastic

search MCMC algorithm that is specifically designed to deal with

the multi-modality of the model space [7], [14], [15], which

potentially can contain competing sets of explanatory variables.

The latter is particularly important in the genomic context, where

regression analyses typically involve large sets of correlated

covariates (e.g. SNPs, CNVs, transcripts). Advanced MCMC

strategies were also used in the search for partition models of high

dimensional associations, which arise in the multiple outcomes

mapping context [5], [16]. To make our BVS strategy feasible for

a large number of covariates, we exploit Graphics Processing Unit

(GPU) parallelization tools and accelerated linear algebra libraries

[17], which enable efficient evaluation of the marginal likelihood

of millions of alternative models during the search process. An R

package R2GUESS, which implements GUESS, can be down-

loaded from http://www.bgx.org.uk/software/guess.html and will

soon be available on CRAN.

The SNPTEST package incorporates a Bayesian measure of

association through the computation of a BF to quantify the

evidence for association between a single explanatory variable and

one or several continuous phenotypes. The benefits in terms of

interpretability of using BFs rather than frequentist p-values in

GWAS have been discussed in a number of papers [18], [19]. As

SNPTEST can analyse both single and multiple traits, we will be

able to compare directly the results provided by SNPTEST with

those obtained by GUESS in both cases. However, SNPTEST is

Graphical Unit Evolutionary Stochastic Search
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limited to the analysis of one SNP at a time and the prior structure

on the regression coefficients is less flexible than GUESS in which

the data-dependent level of shrinkage conforms better to different

variable selection scenarios.

Advantages over alternative GWAS non-Bayesian
methods

Penalized regression methods have been proposed to improve

Ordinary Least Squares, which often do poorly in both prediction

and interpretation, and is not applicable in the ‘‘large p, small n’’

framework. These techniques tend to shrink the regression

coefficients towards zero in order to select a sparse subset of

covariates and provide better prediction performance. Such

methods include, among others: LASSO [20], SCAD [21], Elastic

Net [22], Adaptive LASSO [23] and Fused LASSO [24].

Recently, the LASSO-type approach has been successfully

applied to GWAS [25]. However, the LASSO tends to over select

superfluous predictors and is not consistent for variable selection

[26]. Another limitation of the original LASSO algorithm is that it

cannot prioritize the most important SNPs to be selected within a

group of highly correlated SNPs [22]. Improvements have been

proposed such as the Smoothed Minimax Concave Penalty

method [27] which accounts for the natural ordering of the SNPs

and adaptively incorporates Linkage Disequilibrium (LD) infor-

mation between neighboring SNPs, providing a measure of

association through a resampling technique. However, such

improvements are not yet implemented in LASSO-type methods

for multiple phenotypes.

Building on well-established dimension reduction techniques,

Sparse PLS (SPLS) [12] seeks the best linear combination of SNPs

to predict a multivariate outcome of interest. The PLS approach

sequentially defines components that are constructed as a linear

combination of a set of predictors such that the variance explained

is maximized. To ensure sparsity, the number of components to

retain as well as the number of SNPs to select in each component

are constrained by a penalty function on the loadings coefficients.

While both penalized regression and SPLS approaches offer

solutions for multivariate GWAS, their use requires a preliminary

calibration of the penalty parameters which directly affects the

number of selected variables, the value of the regression

coefficients and therefore the statistical performances of the

models. Calibration procedures usually involve the minimization

of the mean square error of prediction through V-fold cross

validation. Based on the publicly available implementation of these

algorithms, such procedures become computationally expensive

when GWAS data are analyzed (see Material and Methods).

Moreover, none of the available implementations of the

aforementioned algorithms provide a measure of uncertainty of

the SNP(s)-trait(s) associations. While resampling techniques could

be employed [28], these would dramatically inflate the computa-

tional time. For further discussion and comprehensive compari-

sons of these methods, see the Power Comparison section.

Multi-phenotype analysis strategy
Beyond the methodological and computational advances of

GUESS, one novel aspect of our method is the analysis strategy for

groups of correlated phenotypes. This is illustrated in a study of a

group of traits linked to lipid metabolism from GHS, where five

lipid-related parameters Apolipoproteins A1 (APOA1) and B

(APOB), HDL-cholesterol (HDL) and LDL-cholesterol (LDL) and

Triglycerides (TG), are measured in 3,175 unrelated individuals

[29] (see Material and Methods). The largest GWAS meta-analysis

for blood lipids to date used standard single SNP analysis in a large

population sample of .100,000 individuals [2]. Despite the

relatively small sample size of the GHS, using our strategy, we

were able to confirm the major findings reported in the GWAS

meta-analysis [2] (referred to as meta-GWAS subsequently) as well

as show enhanced interpretability of the results.

As illustrated in Figure 1, our strategy compares SNP-trait

associations from different single and multiple phenotype combi-

nations, starting from a meaningful phenotypic group and going

down to single traits. We do not carry out a blind exploration of all

possible groupings of the five traits but instead exploit the

extensive biological knowledge on lipid metabolism to define two

interpretable ‘‘tree like’’ structures. The top of the trees consist of

two groups of multiple traits, TG-LDL-APOB and TG-HDL-

APOA1, reflecting two main lipid metabolism pathways: the LDL

(Figure 1A) and HDL pathway (Figure 1B). Considering apolipo-

protein levels jointly with the lipid contents of lipoproteins may

provide a more detailed insight into the lipid metabolism, the role

of APOB in LDL and APOA1 in HDL, and can help elucidate the

common (or specific) genetic regulation of these traits.

Our strategy is to run GUESS on the phenotypic groups at the

top of each tree and on all derived subsets of traits. To compare

the results between the different branches of the trees, we propose

a new measure for SNP-trait(s) association, the Ratio of Bayes

Factors (RBF) (see Material and Methods), to pinpoint the specific

contribution of each SNP to different combinations of traits. For

each SNP, by ranking the strength of association with phenotypic

groups, the log10(RBF) allows to identify the strongest SNP-trait(s)

associations and thus better characterise the biological function of

the SNP on the associated trait(s).

In this study, we propose an efficient algorithm that combines

the best features of genome-wide multi-SNP analysis with a fast

and efficient algorithmic implementation based on Complete

Unified Device Architecture (CUDA), which is extended to the

analysis of multiple traits. A distinctive benefit provided by

GUESS is the ability to perform a fully Bayesian analysis in an

ultra-high dimensional model space and to select the best set of

SNPs that predict the joint variation of several traits, which can

Author Summary

Nowadays, the availability of cheaper and accurate assays
to quantify multiple (endo)phenotypes in large population
cohorts allows multi-trait studies. However, these studies
are limited by the lack of flexible models integrated with
efficient computational tools for genome-wide multi SNPs-
traits analyses. To overcome this problem, we propose a
novel Bayesian analysis strategy and a new algorithmic
implementation which exploits parallel processing archi-
tecture for fully multivariate modeling of groups of
correlated phenotypes at the genome-wide scale. In
addition to increased power of our algorithm over
alternative Bayesian and well-established non-Bayesian
multi-phenotype methods, we provide an application to a
real case study of several blood lipid traits, and show how
our method recovered most of the major associations and
is better at refining multi-trait polygenic associations than
alternative methods. We reveal and replicate in indepen-
dent cohorts new associations with two phenotypic
groups that were not detected by competing multivariate
approaches and not noticed by a large meta-GWAS. We
also discuss the applicability of the proposed method to
large meta-analyses involving hundreds of thousands of
individuals and to diverse genomic datasets where
complex dependencies in the predictor space are present.
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provide direct insights into the polygenic regulation of multiple

phenotypes.

Results

Despite the relatively modest sample size of the GHS, we were

able to recover eight out of the nine top loci associated with

combinations of blood lipid phenotypes that were identified by a

large meta-GWAS of blood lipids in .100,000 individuals [2]:

SORT1 (rs629301), APOB (rs1469513), GCKR (rs780094), LPL

(rs336), APOA5 (rs964184), LIPC (rs261333), CETP (rs247617),

APOC1 (rs4420638). The only gene not detected by our approach

in any combination of phenotypes was LDLR. This is most likely

due to the lack of genotype data covering the 59UTR of the gene

where the genetic associations were previously detected (data not

shown).

Enhanced interpretability of multi-phenotype
associations

The multiple phenotypes approach allowed us to detect SNPs

involved in combinations of traits that would have been missed by

single trait analysis. For example, Figure 1C shows that rs629301,

previously associated with LDL by the meta-GWAS (and Total

Cholesterol (TC) as a second trait), is detected here only when

considering the joint phenotype TG-APOB or TG-LDL-APOB,

but surprisingly not when TG-LDL is analysed. Functional studies

have shown that the causal gene responsible for lipid variations at

this locus is SORT1 which encodes sortilin, an intra-cellular

receptor involved in the processing of APOB-containing particles

and modulating hepatic secretion of VLDL, the lipoproteins which

have the highest content of TG [30], [31]. Based on our

comparative measure of association, Ratio of Bayes Factors

(RBF), both TG-APOB and TG-LDL-APOB phenotypic groups

Figure 1. Schematic representation of the analysis of single and multiple phenotypes using GUESS. (A–B) Given a group of single traits
(APOA1, APOB, HDL, LDL and TG), we constructed two top-down trees (green and blue colour coded) made by biologically driven combinations of
phenotypes and centred on the pathways of LDL (A) and HDL (B). Each branch of the trees was regressed on the whole set of tagged SNPs (,273K
SNPs) using GUESS and adjusting for sex, age and body mass index. (C) Output from GUESS is used to derive the Best Models Visited (BMV), i.e. the
most supported multivariate models, and their Model Posterior Probability (MPP), i.e. the fraction of the model space explained by the BMV (MPP of
the top BMV and the cumulative MPP of the top five BMV are indicated in the first two columns, respectively). Based on an empirical FDR procedure,
we selected a parsimonious set of significant SNPs (indicated on the top of the table with the associated locus) that explains the variation of each
branch of the two trees. Merging this information with the list of SNPs in the top BMV allowed us to highlight a robust subset of significant SNPs that
repeatedly contribute to the top supported model (significant SNPs are depicted in black whereas significant SNPs that are also in the top BMV are
indicated in red). For each SNPs, comparison of the marginal strength of association across different combinations of traits is possible by a new
rescaled measure of marginal phenotype-SNP association, Ratio of Bayes Factors (RBF) (phenotype-SNP log10(RBF) is truncated at 20 to increase
readability). Based on Ensembl R66 annotation, each locus is classified as: (1) intronic, (2) 39UTR, (3) downstream, (4) previously associated and (5) a
tagSNP of a previously associated SNP. The name of the locus is also reported on the right of each branch of the two trees with the same colour code
used in the table: black if the locus is associated with the phenotypes with FDR,5%, red if the locus is also in the top BMV with FDR,5%.
doi:10.1371/journal.pgen.1003657.g001
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are equally associated with rs629301 by GUESS analysis (Table

S1). This suggests that, besides the contribution of LDL to detect

the genetic association with SORT1, our joint multi-trait analysis

(including APOB) enhances the identification of the causal variant

in this relatively small sample.

Another example relates to LIPC which was detected in the TG-

HDL combination (and also associated with the TG-HDL-LDL

group, Figure 1C and Table S1) but not with any single trait. SNP

rs261333 is located within the LIPC gene encoding hepatic lipase

which hydrolyzes TG and catabolizes TG-enriched HDL [32].

Given the tight relationship between TG and HDL in the reverse

transport cholesterol pathway, considering both traits jointly

enhanced the power to detect LIPC. In a simpler analysis,

Teslovich et al. [2] looked at the marginal strongest associations

with the same locus and reported the association with HDL, as a

primary trait, and with TG as a secondary trait, indirectly

confirming our findings.

Multi-SNP associations identified by the Best Model
Visited

Figure 1C shows combinations of SNPs that have an additive

effect on each phenotype or group of phenotypes. The multi-SNP

association provided by GUESS Best Models Visited (BMV)

enhanced the interpretation of the results and the identification of

phenotypically important variants, as shown in the case of HDL

and APOA1 traits (Figure 1C). APOA1 is the major apolipopro-

tein of HDL, and circulating levels of both traits are highly

correlated (Figure S1) and are often thought to have common

genetic determinants. Our multi-SNP model suggests that the

main genetic locus for HDL is CETP, whereas both CETP and

LIPC are equally involved in APOA1 determination (Table S1).

This result concurs with that discussed in a recent study showing

that variants in LIPC and CETP are associated with serum levels of

APOA1-containing lipoprotein subfractions whereas only CETP is

associated with HDL [33].

Another example is related to the phenotypic group TG-APOB,

where the BMV enabled the identification of GCKR and APOB

genes as the genetic regulators of TG-APOB in chromosome 2.

Another SNP, rs13392272, which is in a non-coding region and is

in high LD with rs1469513 (Figure S2), was not included in the

BMV, but is only indicated as potentially marginally associated

through model averaging. This highlights the ability of GUESS to

differentiate variants that may not directly influence quantitative

phenotypes [34]. Therefore, despite the relatively small sample

size of the GHS, GUESS is able to distinguish spuriously

correlated SNPs from primary associated variants.

Comparison with alternative GWAS Bayesian methods
For each branch of the two trees we compared the performance

of GUESS with that of SNPTEST and for single traits with

piMASS. Details about the implementation of GUESS (including

the calibration of the posterior quantities) and the descriptions of

SNPTEST and piMASS analysis are presented in Material and

Methods.
Comparison in single trait analyses. Figures 2A–2C

illustrate the genome-wide output obtained running the three

algorithms for the analysis of TG trait. It is apparent how the

multivariate SNPs model and the sparsity prior implemented in

GUESS increase the interpretability of the results, clearly

separating a small set of SNPs that are statistically associated with

TG, whereas the other two plots (Figures 2B–2C) are somewhat

similar and less separated. piMASS multivariate SNP model

identifies the same top SNPs although the different prior

specification adopted for the variance of the regression coefficients

(Table S2) leads to a less marked separation of the BF between

signal and noise. In particular, a large number of SNPs had non-

negligible BFs by piMASS analysis, with only small differences in

BF scale between important variants and SNPs with low signal-to-

noise ratio. Since piMASS does not provide the BMV, it is hard to

decide if borderline associated SNPs (for instance rs17489268 and

rs11036635) should be included or discarded (Figure 2C). The

comparison with SNPTEST in Figure 2B shows the advantage of

a multivariate SNP approach in accounting for complex LD

structures. For instance, Figure 2D magnifies a region of

chromosome 11 around rs964184 spanning nearly 500 Kb where

SNPTEST identifies four additional SNPs connected through a

complex LD pattern (rs3741298, rs6589567, rs7396835 and

rs5128) that are medium/weakly correlated with rs964184. When

the effect of rs964184 was removed (using standard single linear

regression) none of the four additional SNPs were called significant

by SNPTEST (log10(BF).5) [19]. A recent study [35] shows that

haplotype associations of seven reported significant GWAS SNPs

(lying from ZNF259 to SIK3) with TG disappears after including

rs964184 in the model, confirming the results obtained with

GUESS. Figure 2E shows that the majority of SNPs detected by

SNPTEST with medium/large BF are correlated (directly and or

indirectly through another SNP) with the significant SNPs found

by GUESS.

Figures S3A–S3B summarise the comparison between GUESS,

SNPTEST and piMASS for all the single trait analyses where, for

each SNP, the genome-wide BFs of SNPTEST-GUESS and

piMASS-GUESS algorithms are plotted. Overall SNPTEST is not

able to separate clearly primary/secondary associations from the

large bulk of SNPs (Figure S3A). There is a good agreement of the

BF levels between GUESS and piMASS (Figure S3B). However

GUESS outperforms the C++ version of piMASS computation-

ally: GUESS is about 2.5 times faster than piMASS in evaluating

three times more models (Table S3). Apart from the CUDA

implementation of GUESS (see Material and Methods), the good

performance of GUESS depends also on the prior specification of

the variance of the regression coefficients (see Material and

Methods and Table S2). The latter helps the search algorithm to

focus on well-supported models, to reach the BVM more quickly

(Table S3) and permits the fine exploration of alternative models

on regions of high posterior probability (Figures S4, S5, S6).

Comparison in multi-trait analyses. Figure 3 reports the

comparison between GUESS and SNPTEST for the TG-LDL-

APOB group. The multivariate SNPs model and the sparsity prior

implemented in GUESS enable the algorithm to identify the

important genetic control points of the joint variation of TG-LDL-

APOB (Figure 3A), with the top seven SNPs ranked by the their

BF for belonging to the BMV. In contrast, SNPTEST (Figure 3B)

is not able to separate clearly the SNPs according to their joint

predictive ability, and would discard well known loci. For instance,

rs17489268 (LPL locus) and rs1469513 (APOB) are not included in

the list of SNPs with log10(BF).5, a conventional threshold

adopted for selecting significant SNPs [19]) (Table S4), while

GUESS includes these two SNPs in the BMV (Table S1).

Moreover the separation between SNPs obtained with GUESS

facilitates the application of the empirical FDR procedure (see

Material and Methods and Table S5) since the null and alternative

distributions are kept well apart. The overall comparison (Figure

S7) shows that, as expected for any single SNP methods,

SNPTEST has difficulty clearly separating the groups of associated

variants from correlated SNPs. This is particularly important for

the group of SNPs that are declared significant at 5% FDR by

GUESS but are not in the BVM as they are hidden inside the

group of predictors correlated with top associated SNPs. GWAS
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plots for the other branches of the two trees using GUESS are

presented in Figures S8, S9, S10.

Replication of multi-trait genetic associations
To demonstrate how GUESS can provide useful insights into

new genetic associations with multi-phenotypes, we carried out a

replication study in the Copenhagen City Heart Study (CCHS)

[36], [37] and in the Data from an Epidemiological Study on the

Insulin Resistance syndrome (DESIR) [38], comprising 8,261 and

4,663 individuals, respectively. We focused on two newly identified

associations between SORT1 with TG-APOB and LIPC with TG-

HDL phenotypic groups to illustrate the added value provided by

multi-trait analyses to uncover common genetic regulation

underlying correlated phenotypes. To replicate both the genetic

association and the order of association between the causal SNPs

and the phenotypic groups we have used a two-step procedure: (1)

identification of the most significant variant associated with TG-

APOB and TG-HDL in each independent cohort and (2)

investigation of the order of association between the variants

detected in (1) and the branches of the two trees in the candidate

regions.

In the first step, we selected a 2Mb region centred at each

identified variant (rs629301 and rs261333) and ran GUESS in

each region with an adapted specification of the a priori expected

model size (number of true associations) and standard deviation

such that the prior model size is likely to range from 0 to 3. Table

S6 shows that for the selected phenotypic groups that were

significantly associated with rs629301 and rs261333 in the original

discovery dataset, the associations are confirmed in the two

independent replication datasets. Remarkably, in CCHS and

DESIR, GUESS detects the same causal variant originally

identified (rs629301) for both phenotypic groups (TG-APOB and

TG-LDL-APOB). The second SNP, rs261332 inside the LIPC

gene, is not present in the CardioMetabochip [39] used for CCHS

and DESIR. The variants identified by GUESS for both

phenotypic groups (TG-HDL and TG-HDL-LDL) are

rs8034802 (CCHS) and rs1077834 (DESIR) with r2 and D9 level

equal to 0.582 and 0.979 between rs261332 and rs8034802

respectively, and 0.838 and 0.982 between rs261332 and

rs1077834 respectively, in populations of European ancestry

(1000 Genome project [40]). These results show that significant

and novel multi-trait genome-wide associations obtained by

GUESS are robust and reproducible in independent cohorts

despite the relatively small size of the discovery dataset (n = 3,175).

In the second step, we investigated whether we would find

similarities between the order of association obtained previously

between the causal SNPs and the phenotypic groups (Table S1)

and that obtained by applying our measure of association, RBF on

the replication datasets. Specifically, for all subsets of traits in the

two trees, we calculated the RBF (see Material and Methods) for

the SNPs identified in the first step as associated in each selected

region (Table S6). Table S7 shows the results of this analysis for

the two independent cohorts. Conditionally on rs629301, in

CCHS the two phenotypic groups that receive higher RBF are

TG-APOB and TG-LDL-APOB (Table S7A). The same analysis

applied to the DESIR dataset (conditionally on the top BF hit SNP

rs629301) provides similar results with TG-APOB ranked first

(Table S7B), but with TG-LDL-APOB (ranked third) superseded

by LDL-APOB. In both cases LDL is not the primary trait

associated with the identified genetic variant, refining the

suggested association found in [2]. In summary, the results

obtained in two independent cohorts are consistent to those seen in

the discovery dataset (Table S1) with the multi-trait group TG-

APOB more tightly linked to the rs629301 genetic variant than

any single trait. In the second region centered on rs261332, we

also replicated the order of association of the phenotypic groups

with rs8034802 in CCHS and rs1077834 in DESIR (Table S7A

and Table S7B, respectively). In particular, in both datasets the

TG-HDL-LDL and TG-HDL group receive substantially higher

RBF than any other single and multiple traits group. Moreover the

pattern of the RBF values is similar to that shown in the original

discovery dataset (Table S1) confirming that LDL does not

increase power to detect the causal variant.

Power comparison (multiple and single-trait analyses)
The real data analysis shows that SNPTEST has good power to

detect the main variants but it includes several additional SNPs,

possibly increasing the number of false positives. Using 273,294

SNPs from the GHS study (see Material and Methods) we carried

out two simulation studies for single and multiple traits to quantify

the power of SNPTEST and GUESS. In the multiple traits

scenario, we also tested the performance of non-Bayesian multiple

traits algorithms MANOVA [10], MLASSO [11] and SPLS [12]

(see Material and Methods). We also tried a recently proposed

generalised Group Fused LASSO [41], a multilocus sparse

regression model which is designed to borrow information across

correlated phenotypes. However the GFLASSO C++ implemen-

tation was not able to handle the whole GHS genotype dataset,

requiring .33 GB RAM, while the analysis of one replicate on the

smallest chromosome with cross-validation took .400 hours. For

these reasons we decided to drop the comparison with GFLASSO

in the simulation study. Finally, we ran GUESS with the same

prior specifications used in the real data analysis (see Material and

Methods), but we reduced the number of iterations to 55,000

sweeps, with 5,000 sweeps as burn-in, since the number of sweeps

used in the real case study was larger than what would be required

to explore adequately the posterior model space (see Material and

Methods).

Multiple-trait simulation study. We simulated a group of

three traits choosing four chromosomes (2, 11, 16, and 18) and, for

Figure 2. Comparison of the marginal phenotype-SNP associations provided by GUESS, SNPTEST and piMASS in the single trait
analysis of TG. (To increase readability, the log10(BFs) are truncated at 20). (A) Genome-wide log10(BF) obtained from GUESS. Significant SNPs found
associated at an FDR of 5% are depicted by black dots (with the SNP’s name) whereas significant SNPs that are also in the top Best Model Visited are
represented by red dots (also with the SNP’s name). (B) Genome-wide log10(BF) obtained from SNPTEST. The horizontal dashed line indicates the level
of log10(BF) that provides strong evidence of a phenotype-SNP association with Marginal Posterior Probability of inclusion close to 1. For comparison
purposes, SNPs detected by GUESS are highlighted (their name is printed). SNPs found by SNPTEST with log10(BF).5 are coloured coded according to
the level of pairwise Pearson correlation with the closest significant GUESS SNP (see colour bar for correlation scale). (C) Genome-wide log10(BF)
obtained from piMASS. The horizontal dashed line indicates the level of log10(BF) that provides strong evidence for a phenotype-SNP association. (D)
log10(BF) signals obtained from SNPTEST in a region of chromosome 11 spanning nearly 500 Kb (116,519,739–116,845,104 bp). The horizontal dashed
line and colour code used to identify relevant SNPs are the same as defined in (B). Top bars indicate the position of genes in the region retrieved from
Ensembl R66. (E) Scatterplot of genome-wide log10(BF) of TG obtained from GUESS and SNPTEST. Colour code used to identify relevant SNPs and the
horizontal dashed line are as defined in (A) and (B). (F) Scatterplot of genome-wide log10(BF) of TG obtained from GUESS and piMASS. The colour
code used to identify relevant SNPs and the horizontal dashed line are as defined in (A) and (B).
doi:10.1371/journal.pgen.1003657.g002
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each of them and in each replicate, we selected at random without

replacement two SNPs. The number of SNPs selected reflects the

average number of associations (7.6) found in the multiple traits

real data analysis. The effects of the SNPs on the three traits were

fixed ([0.2, 0.1, 0.2, 0.1, 0.075, 0.1, 0.075, 0.1]T, [0.1, 0.075, 0.1,

0.075, 0.1 0.2, 0.1, 0.2 ]T, [0.075, 0.1, 0.075, 0.1, 0.2, 0.1, 0.2,

0.1]T, respectively), but we adjusted the error variance of each trait

such that the expected proportion of variance explained is not

greater than 5%. Given the effects and error variance of each trait,

we simulated 20 replicates using a Normal matrix-variate

distribution [42]. The residual correlation between traits was set

to 0.95, 0.50 and 0.30 between the first and the second, the second

and the third and first and the third trait, respectively. In a second

scenario, we retained the previous setup, but we halved the

Figure 3. Comparison of the marginal phenotype-SNP associations provided by GUESS and SNPTEST in the multiple traits analysis
of TG-LDL-APOB. (To increase readability, the log10(BFs) are truncated at 20). (A) Genome-wide log10(BF) obtained from GUESS. Significant SNPs
found associated at 5% FDR are depicted by black dots (with the SNP’s name) whereas significant SNPs that are also in the top Best Model Visited are
represented by red dots (with the SNP’s name). (B) Genome-wide log10(BF) obtained from SNPTEST. The horizontal dashed line indicates the level of
log10(BF) that provides strong evidence of a phenotype-SNP association with Marginal Posterior Probability of inclusion close to 1. For comparison
purposes, SNPs found by GUESS are highlighted (their name is printed). SNPs with log10(BF).5 are coloured coded according to the level of pairwise
Pearson correlation with the closest significant GUESS SNP (see colour bar for correlation scale). (C) log10(BF) signal obtained from SNPTEST in a
region of chromosome 11 spanning nearly 500 Kb (116,519,739–116,845,104 bp). The horizontal dashed line and colour code used to identify
relevant SNPs are as defined in (B). Top bars indicate the position of genes in the region retrieved from Ensembl R66. (D) Scatterplot of genome-wide
log10(BF) of TG-LDL-APOB obtained from GUESS and SNPTEST. The colour code used to identify relevant SNPs and the horizontal dashed line are as
defined in (A) and (B).
doi:10.1371/journal.pgen.1003657.g003
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residual correlation between traits to test the multivariate methods

in this more challenging case where the correlation pattern among

traits is weak.

For the first simulated scenario, the Receiver Operating

Characteristic (ROC) curves in Figure 4A demonstrate that, at

the same Type-I error level, GUESS has higher power than

SNPTEST. When we relax the definition of false positive

associations for SNPTEST (i.e., considering a single association

in an interval centred at each top hit and spanning 25 Kb, 50 Kb

and 100 Kb on both sides) the SNPTEST ROC curves are still

dominated by our GUESS multi-SNP approach (Figure S11A).

When compared with non-Bayesian multiple responses methods,

GUESS shows higher power than robust MANOVA over a range

of FDR levels [43] and SPLS for different choices of the number of

Figure 4. Receiver Operating Characteristic (ROC) curves of SNPTEST (black), SPLS (blue), MLASSO (dark green), (M)ANOVA
(purple), piMASS (green) and GUESS (red) for multiple traits and single trait simulated datasets. For GUESS, ROC curves are obtained
using the top Best Model Visited (BMV) (red star) and the Marginal Posterior Probability of Inclusion (MPPI) (solid red line). For SNPTEST, the ROC
curve is calculated using log10(BF) while for piMASS ROC curves are obtained using MPPI. (Average) number of SNPs retained by SPLS and MLASSO
under different levels of penalization are indicated (A–B). For MANOVA Wilks (A–B) and ANOVA Kruskal (C–D), the ROC curve is derived using the SNPs
declared significant over a range of FDR levels. Number of false positives (x-axis) is indicated at the top of the figure while proportion of false positives
is presented at the bottom. Given the large number of predictors (273,294), false positives are truncated at 1024 at which level a large number
already occurs (27.5).
doi:10.1371/journal.pgen.1003657.g004
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SNPs retained (see Material and Methods) and when the definition

of positive associations is relaxed (Figure S11C). MLASSO has

slightly higher power than GUESS when the average number of

SNPs detected across replicates (see Material and Methods) is

larger than 16. However, in our real case study we did not notice

any multiple-trait associated with more than 11 SNPs (and on

average 7.6). Under this constraint, GUESS outperforms

MLASSO especially when the number of false positives is low.

For the second simulated scenario, the ROC curves are

depicted in Figure 4B. The power comparison between GUESS

and Bayesian and non-Bayesian multiple traits methods, confirms

that our algorithm also has higher power than any other method

considered when the residual correlations among traits is weak.

Figures S11B–S11D display the power of SNPTEST, MANOVA

and SPLS when the definition of positive associations is relaxed.

Also in this second scenario, GUESS BMV has higher power than

any of the alternative methods investigated.

The computational time for GUESS for both multiple traits

scenarios and 55000 sweeps is on average around 84 hours while

MLASSO and SPLS (if cross-validation is performed) took about

twice and 12 times more CPU time than GUESS, respectively.

Single-trait simulation study. Similar results are obtained

when SNPTEST and GUESS are tested on a single trait.

Figure 4C shows that GUESS outperforms SNPTEST when the

ROC curve is calculated on the first trait of the multiple-trait first

simulated scenario. GUESS also provides better results when

compared with the non-parametric ANOVA test over a range of

FDR levels and when the definition of positive associations is

relaxed (Figure S12A). The comparison between Figure 4A and

Figure S12A highlights the importance of jointly analyzing

correlated multiple traits since the power to detect important

variants is greatly enhanced in the multi-trait case.

The single-trait scenario allows us to also compare GUESS with

piMASS. Since in Figure 4C the two methods show nearly

identical power, we simulated a more complicated single-trait

scenario where a secondary effect is placed closed to the main

effect. Specifically, we chose four chromosomes (2, 11, 16, 18) and,

for each of them and in each of the 20 replicates, we selected one

SNP at random. For each chromosome the second associated SNP

was then selected at random from among the SNPs within 25 Kb

from the first SNP. Four groups with a large and small effect that

mimic primary/secondary effects ([4, 1, 1, 6, 1.5, 3, 4, 0.5]T ) were

used to simulate the trait, adjusting the error variance such that

the expected proportion of variance explained was not greater

than 5%. Figure 4D shows that in this scenario GUESS and

piMASS also have similar power with slightly better performance

from GUESS at larger Type-I error rates. Closer inspection of the

results reveals that both methods identify the majority of primary

genetic associations, but GUESS was also able to detect additional

SNPs with small effects. In this second single-trait scenario

GUESS also outperforms SNPTEST and ANOVA over a range

of FDR levels and when the definition of positive associations is

relaxed (Figure S12B).

Discussion

As large scale GWAS and meta-analyses of multiple continuous

phenotypes are becoming increasingly common, there is a

mounting need to develop models and computationally efficient

algorithms for joint analysis of multi-SNP and multi-phenotype

data. Current state-of-the-art Bayesian approaches have limita-

tions either in the analysis of one SNP at a time [9] or in

modelling single phenotypes with multiple SNPs [8]. To address

both these problems, we propose a powerful Bayesian statistical

computational tool for analysing genome-wide scale datasets that

deals with both multiple continuous traits and predictors, with a

parallelized implementation. Our algorithm enables the identifi-

cation of additive effects of many predictors on multiple

combinations of traits as well as secondary genetic associations.

To detect multiple associated variants, stepwise-like methods

have been proposed [44] but these suffer from known problems of

instability when faced with correlated predictors in a high

dimensional predictor space [45]. Penalised regression methods

[11] and dimension reduction techniques [12] offer solutions for

single and multiple-trait GWAS analysis. However since they

require the calibration of the penalty parameters, they can

become computationally expensive when large data are analyzed

(as illustrated in the simulation study) or when resampling

techniques are used to quantify the uncertainty of the SNP(s)-

trait(s) associations. An alternative strategy to account for the

uncertainty inherent in the model selection process is to perform

model averaging [46]. This is implemented in our algorithm,

GUESS, which employs the Bayesian framework for feature

selection and, in particular, has the benefit of robustness and ease

of interpretation of multiple SNP-trait(s) association results.

We integrated the GUESS algorithm with a new strategy for

multiple traits analysis and applied this to study lipid metabolism

in the Gutenberg Health Study (GHS). Despite the relatively small

sample size of the GHS (n = 3,175) as compared with recent meta-

GWAS of blood lipids [2] (n.100,000 individuals), we were able

to recover eight out of the nine previously identified top

associations. In particular, we were able to elucidate the

associations between the SORT1 gene and the TG-APOB

phenotypic group and uncover the association of LIPC with the

TG-HDL group, which would have a low threshold of evidence if

an alternative GWAS single SNP Bayesian method was used. By

simply contrasting p-values for the four single traits considered and

ranking them, Teslovich et al. [2] identified HDL as the leading

associated trait with LIPC and TC as the second associated trait.

Our new finding of the association of LIPC with multiple traits

rather than with a single phenotype is supported by recent data

[32]. We validated this finding in two independent datasets and,

specifically, we were able to replicate the genetic association and

reproduce the order of the strength of association of the genetic

variant with the phenotypic groups.

Beyond the application to lipid metabolism in GHS, the strategy

we propose can be applied to any set of phenotypes where

unsupervised clustering methods can be used to create informative

groups of traits from which a ‘‘tree-like’’ structure can be derived.

The increased power of GUESS shown in the real-case analysis

was also demonstrated by an extensive simulation study,

highlighting how alternative approaches, both Bayesian and

non-Bayesian and in particular those specifically designed to deal

with correlated predictors (MLASSO), are influenced by complex

LD structures in the SNP data, and as a consequence have

increased false positive association rates. The latter complicates,

and often masks, the identification of secondary variants that are

truly associated with multiple correlated traits. In contrast, the

ability of GUESS to separate causal SNPs from correlated SNPs

facilitates the application of empirical FDR procedures to declare

robustly associated SNPs, which improves the reproducibility of

results provided by GUESS.

Our implementation of BVS for high dimensional genome-wide

data was made possible using the parallel computing power of the

GPU interface and accelerated linear algebra libraries. In this

paper we demonstrated that, exploiting the power of GPU

processing, it is now feasible to run sophisticated Bayesian search

algorithms in very high dimensional spaces, opening the path
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towards more complex model searches that might include

interaction terms. On-going work in several bioinformatics and

statistical groups (http://www.oxford-man.ox.ac.uk/gpuss/) is fast

advancing in this area and our modular algorithm will be able to

benefit from these developments. One important factor in the

processing speed is the number of subjects involved in the analysis.

Large meta-analyses nowadays often involve hundreds of thou-

sands of subjects and running GUESS with such a large number of

individuals will be relatively slow even with new GPU implemen-

tations in the future. On the other hand, it will be feasible and

relatively straightforward to use Bayesian evidence synthesis

methods [47] to combine outputs from independent GUESS runs

in each individual study.

In summary, we have developed a new efficient algorithm for

genome-scale analysis of multiple phenotypes that maximizes

genetic variants discovery and reduces complex genetic associa-

tions into understandable patterns to improve biological interpre-

tation of results. In contrast to existing methods, the flexible prior

structure used for the regression coefficients adapts to any

correlation structure of the predictors, which can be of a different

nature. Therefore, GUESS can be employed for large-scale

analysis of multiple continuous traits with both discrete and

continuous predictors and their combinations. Beyond the

straightforward application to GWAS of multiple traits, GUESS

is particularly suitable for the analysis of diverse genomic datasets

where complex dependencies in the predictor space are present

(for instance, correlation between expression levels or methylation

profiles).

Materials and Methods

Samples, genotyping and traits in the primary discovery
dataset

More details about the GHS study are provided in [29]. The

present study included 3,175 individuals of both sexes aged 35–74

years, who were successively enrolled into the GHS, a community-

based, prospective, observational single-center cohort study in the

Rhein-Main region in western mid-Germany. Fasting Apolipo-

protein A1 (APOA1) and B (APOB), HDL-cholesterol (HDL) and

LDL-cholesterol (LDL) and Triglycerides (TG) were measured on

an Architect c8000 by commercially available tests from Abbott

(htpp://www.abbottdiagnostics.de). APOB is the primary apoli-

poprotein of LDL whereas APOA1 is the major protein

component of HDL. Genotyping was performed using the

Affymetrix Genome-Wide Human SNP Array 6.0 and the

Genome-Wide Human SNP NspI/StyI 5.0 Assay kit. Genotypes

were called using the Affymetrix Birdseed-V2 calling algorithm.

SNPs with a Minor Allele Frequency (MAF),0.01 or deviating

from Hardy-Weinberg equilibrium (p-value,1024) were excluded.

Only autosomal SNPs were considered for analysis.

Missing values for each of the 22 autosomal chromosomes were

imputed using FastPhase [48], allowing 20 random starts of the

EM algorithm (-T20), 100 iterations of the EM algorithm for each

random start (-C100), no haplotype estimation (-H-4), without the

determination of the number of clusters (-K1).

To reduce the number of SNPs prior to analysis, we performed

tagging at r2.0.80 level using an in-house method similar to [49].

The original dataset consisting of 650,010 SNPs was reduced to

273,294 SNPs after tagging (57.9% reduction).

Replication datasets
The Copenhagen City Heart Study [36], [37] (CCHS) is a

prospective study of the Danish general population initiated in

1976–78 with follow-up examinations in 1981–83, 1991–94, and

2001–03. Individuals (n = 8,261) were selected based on the

National Danish Civil Registration System to reflect the adult

Danish population aged 20–100 years. Data were obtained from a

questionnaire, a physical examination, and from blood samples

including DNA extraction at the 1991–94 examination. A lipid

profile was measured using standard hospital assays and genotyp-

ing was performed using customised version of the Illumina

CardioMetabochip [39]. For the replication, we selected a region

centered at rs629301 (SORT1) and rs261333 (LIPC) comprising

543 and 204 SNPs, respectively.

We also analyzed 4,663 subjects of European descent from the

Data from an Epidemiological Study on the Insulin Resistance

syndrome (DESIR) cohort. More details about this study are

available in [38]. The subjects were genotyped using the Illumina

CardioMetabochip genotyping array. None of those individuals

were prescribed lipid lowering treatments. Serum HDL-cholester-

ol was assayed by the phosphotungstic precipitation method while

total cholesterol and triglycerides levels were assayed by the

enzymatic Trinder method. These measurements were obtained

using a Technicon DAX24 from Bayer Diagnostics, Puteaux,

France or using a Delta a 60i from Konelab, Evry, France.

Apolipoprotein B levels were measured by nephelometry using a

BNA or BN 100 nephelometrer from Behring, Reuil Malmaison,

France. The regions selected for replication comprise 1,003 and

442 SNPs spanning 1.94 and 1.97 Mb, respectively.

GUESS implementation for large number of predictors
The GUESS implementation extends the original ESS++ code

[50], permitting an effective posterior exploration of model spaces

of the size typically encountered in GWAS problems. Similarly to

ESS++, GUESS simulates multiple Markov chains in parallel, with

a different temperature attached to each chain. The different

temperatures have the effect of flattening the log-Posterior (log-

marginal likelihood6log-prior on the model space). The state of

the chains is tentatively swapped at every iteration by a within-

and between-chains probabilistic mechanism. This ensures that

the posterior distribution is not trapped in any local mode and that

the algorithm mixes efficiently since every chain constantly tries to

transmit information about its state to the others. For interested

readers, description of the probabilistic swapping mechanisms, i.e.

local (Fast Scan Metropolis Hastings sampler) and global moves

(Crossover operators, Exchange operator) implemented in

GUESS, their efficiency to explore the posterior model space as

well as the automatic tuning of the temperature ladder are

discussed in details in [7].

As indicated by its name, the novel implementation involves the

use of Graphical Processor Unit (GPU) technologies, specifically

using NVIDIA’s Complete Unified Device Architecture (CUDA),

http://developer.nvidia.com/category/zone/cuda-zone). CUDA

is a parallel processing architecture that utilizes the processing

power of the many processors present on a GPU, allowing

significant performance increases for many mathematical opera-

tions and algorithms. By rewriting code in CUDA C/C++ parts of

the algorithm can be redirected to the GPU rather than the CPU,

often greatly speeding up a typical run [17]. As detailed by [7], at

each MCMC update of the ESS algorithm, it is necessary to

evaluate the log-Posterior, which requires the expensive compu-

tation of the marginal likelihood. To increase stability, the

marginal likelihood is calculated using the technique of QR

matrix decomposition, as described in [3]. For variable selection

problems where the number of possible predictors in the model

can be large, performing QR decomposition using regular CPU

operations becomes prohibitively computationally expensive,

resulting in infeasible run times. GUESS replaces core linear
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algebra operations, including the QR decomposition, with

versions that exploit the GPU. In the implementation used to

produce the results described in this paper, we use version R11 of

the proprietary CULA library (http://www.culatools.com/),

which is freely available to academic users, directly replacing the

GNU Scientific Library (http://www.gnu.org/software/gsl) ver-

sions of the relevant linear algebra routines present in the ESS++
code, with CUDA C/C++ equivalents from this library.

Beyond the primary extension to ESS++, GUESS also

implements a slight difference in the Metropolis-Hastings move

type of the underling algorithm (see [7]). In particular, for the

heated chains, the original move allowed the probability of

proposing whether a particular variable was included or not to

depend upon the temperature of the chain. We found that this

encouraged too many proposals to models with a large number of

variables (in the heated chains) which were very frequently

rejected. By altering the algorithm so that the proposal probability

no longer depended on the temperature of the chain (and

changing the acceptance probability accordingly) the efficiency of

the algorithm was improved.

Whilst the change to GPU based linear algebra routines marks a

significant performance improvement, even with these changes in

place, attempting to evaluate the marginal likelihood for a model

with many variables can be prohibitively slow. Because we put a

strong penalty on such models through the prior on the number of

predictors in the model, they are typically very rarely visited by the

unheated chain in the transient phase of the algorithm, when the

posterior is being explored. However, in the burn-in phase of the

chain, or for the heated chains, such models might be visited more

frequently.

To prevent inefficiency in the burn-in phase and allowing the

successful exploration of the posterior density, we truncate the

prior on the number of variables in the model to exclude any

models with too many variables. This truncation leads to a re-

normalization of the posterior distribution, but as the normaliza-

tion constant is not required in the acceptance ratio of the affected

MCMC moves (local moves), in practice, the algorithm rejects any

proposed moves to any model with more than the permitted

number of variables.

The truncation (T) is set by the user through an additional

parameter (F), through the relation T = E+F6S, where E is the

expected value and S is the standard deviation of the prior model

size pc. Given the very large number of predictors (SNPs) in a

GWAS and the Central Limit Theorem approximation of a

binomial distribution already for moderate values of F, for instance

F.3, Pr(pc.T) = 12W(F)<0, so that the truncation has a

negligible effect. The space of candidate models is reduced from

2p to
PT

j~1

p

j

� �
which is still considerably large.

Finally, in GUESS we use the same hierarchical conjugate prior

structure for the regression coefficients presented in [7], where the

g-prior on the genetic effects, that replicates the covariance

structure of the likelihood, is coupled with an inverse gamma

hyper-prior on the selection coefficient g, giving rise to the so-

called Zellner-Siow prior and a recommended heavy tailed

distribution for the regression coefficients.

The original GPU-enabled version of GUESS/ESS++ is freely

available at http://www.bgx.org.uk/software/guess.html with an

installation guide and an extensive description of the features of

the algorithm. Moreover, GUESS has been wrapped into an R

package called R2GUESS which provides an easy way to install

and run the CULA/C++ version of the GUESS code, including

an integrated post-processing of the output and automatic FDR

calculation. It can be downloaded from http://www.bgx.org.uk/

software/guess.html and will soon be available on CRAN.

GUESS analysis
After performing normal quantile transformation for each single

trait, we run GUESS for each branch of the trees shown in

Figure 1 adjusting for sex, age and body mass index which were

considered important for all models. We imposed sparsity with

E = 20, S = 12, the a priori expected model size (expected number

of true associations) and standard deviation of the model size, and

F = 7, meaning the prior model size is likely to range from 0 to 56

with a maximum model size of T = 104. In this set-up, given the

level of sparsity and the number of predictors (p = 273,294), the

average prior probability p that a SNP is truly associated with the

phenotype is 7.3261025 which is well inside the range of the prior

probability suggested by [19] for Bayesian GWAS. GUESS was

run for 110,000 sweeps, with 10,000 sweeps as burn-in, with three

chains run in parallel (number of chains chosen after a pilot study)

and a hyper-prior on the selection coefficient g. The analysis was

performed on a HPC cluster computer with a 2.8 GHz Dual-Core

Xeon processor and an NVidia Tesla C1060 GPU with 8 Gb of

RAM. Average computational times for the single- and multi-trait

analysis were 252 and 229 hours, respectively (Table S3 for

details). Visual inspection of the trace of the log-Posterior (log-

marginal likelihood6log-prior on the model space), model size and

selection coefficient g show the chains converged to their apparent

stationary distributions (Figure S4 for TG-HDL-LDL group). As

illustrated in Figure S5 for the TG-HDL-LDL group, GUESS is

able to move very quickly towards competing models well

supported by the data, highlighting the fact that the number of

sweeps used is larger than would be required for a faithful

exploration of the model space. Formal diagnostic tests for

convergence were performed similarly to [42]. Table S3 shows for

each group of phenotypes the number of models visited and the

number of models explored before visiting the top BMV (after the

burn-in phase), the number of unique models visited (after burn-in

phase), the models average size and the overall computational time

(in hours). While most of the time the BMV is visited immediately

after the end of the burn-in phase, for two phenotypic groups, TG-

LDL and in particular LDL-APOB, the number of models visited

before reaching the BMV is quite large, suggesting that for

multiple and diverse groups of traits running the algorithm for a

large number of iterations is recommended in order to explore the

huge model space of predictors.

To evaluate the impact of the prior setup on the regression

coefficients and the choice of the hyper-coefficients of the sparsity

prior, we performed a sensitivity analysis. Firstly, we implemented

a new version of our algorithm based on a conjugate hierarchical

independent prior for the genetic effects with a diffuse exponential

hyper-prior for the variance of the regression coefficients [7].

Table S8 shows that results are very consistent with those obtained

with the Zellner-Siow prior (Best Models Visited, Top BMV

Posterior Probability and the Top 5 BMV Posterior Probability),

suggesting that when the number of observations is large, as

typically the case in GWAS, the prior structure is dominated by

the likelihood [18]. Secondly, we tested the effect of the hyper-

coefficients of the sparsity prior on the multiple-trait simulation

study. Specifically, we halved and doubled the a priori expected

model size, E = 10 and E = 40, respectively, while keeping the

same value of the standard deviation of the model size, S = 12.

With these two new input parameterizations, the prior model size

is likely to range from 0 to 46 with a maximum model size of

T = 94 and 0 to 76 with a maximum model size of T = 134,

respectively. Figure S13 shows the ROC curves for the first five
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replicates of the two simulated multi-trait examples under the

different sparsity prior settings. Although the average prior

probability p that a SNP is truly associated with the phenotype

now ranges between 3.6661025 and 1.4761024, its value is still

relatively low with a negligible impact on results.

GUESS output and empirical FDR
GUESS provides two types of output. The first is the Best

Models Visited (BMV), i.e. the most supported multivariate

models ranked according to their Model Posterior Probability

(MPP). For each multivariate model visited during the MCMC,

the log-Posterior (log-marginal likelihood6log-prior on the

model space) is available and, for each unique model visited,

the MPP is equal to the renormalized log-Posterior (with respect

to all unique models visited). See [6] for details. The second type

of output is related to the Marginal Posterior Probability of

Inclusion (MPPI). As detailed in [50], MPPI provides a model-

averaged measure of importance of each predictor with respect

to the models visited and can be interpreted as the posterior

strength of association between a single SNP and a group of

phenotypes.

Several alternatives have been proposed in the literature to

select significant MPPI either based on prediction consider-

ations [51] or FDR principles [52]. Here, we proposed a

strategy similar to the ‘‘Bayes/non-Bayes compromise’’ de-

scribed in [53]. However, instead of deriving empirical p-values

as the proportion of permuted datasets for which the MPPI

exceeds the MPPI for the observed data, the permutation

strategy allows us to define the MPPI threshold at a specific

empirical FDR level. Specifically, for each group of phenotypes,

we compute the MPPI for the observed data and, based on the

same prior specification and the same parameters for the

GUESS algorithm, the MPPI for artificial datasets created by

permuting three times the rows (subjects) of the observed traits.

Overall for each group of traits 819,882 (273,29463) observa-

tions from the null distribution were obtained using this

procedure. The MPPI threshold is then defined as the MPPI

level for which the ratio between the number of declared

associations in the shuffled datasets and the observed dataset is

not greater than a specified FDR level. Since the sample size

needs to be large to evaluate the tail of the MPPI distribution in

the artificial datasets, we combined the MPPI of the null

distributions for all the artificial groups of phenotypes with the

same dimension (triplets, pairs and singleton). Table S5 shows

for each branch of the two trees the sample size (and number of

artificial datasets) used to approximate the MPPI null distribu-

tion, the MPPI threshold and the number of MPPI declared

significant at 5% empirical FDR.

Ratio of Bayes Factors
Bayes Factor (BF) for the jth SNP in the gth group of phenotypes

is defined as

BF(cjg~1; cjg~0)~
p(cjg~1DYg)

1{p(cjg~1DYg)

,
E(pcg)

�
p

1{½E(pcg)
�

p�
, ð1Þ

where the numerator is the Posterior Odds and the denominator is

the Prior Odds. For each SNP in the gth group, it compares two

different models (cjg = 1 vs cjg = 0) regardless of the prior

probability [54]. Let pFDR(cjg~1DYg) be the MPPI threshold

obtained from each group of phenotypes at a specified FDR level

obtained through permutation. The corresponding BF threshold is

BFFDR(cjg~1; cjg~0)~
pFDR(cjg~1DYg)

1{pFDR(cjg~1DYg)

,
E(pcg)

�
p

1{½E(pcg)
�

p�

which provides the threshold on the BF scale, at some FDR level,

to call the jth SNP associated with the gth group of phenotypes

regardless of the prior probability. It is expected that this threshold

varies depending on the number and correlation of the group of

phenotypes. The quantity

BF(cjg~1; cjg~0)

BFFDR(cjg~1; cjg~0)
~

p(cjg~1DYg)

1{p(cjg~1DYg)

,
pFDR(cjg~1DYg)

1{pFDR(cjg~1DYg)

rescales the BF with respect to its FDR ‘‘baseline’’ level obtained in

each group. The Ratio of Bayes Factors (2) (with RBFjg$1 since a

SNP is declared associated if p(cjg~1DYg)§pFDR(cjg~1DYg)) is

similar to (1), but there is an important difference that distinguish

them: the former is the ‘‘relative measure of risk’’ of the jth SNP to

be associated with the gth group of phenotypes with respect to the

prior beliefs, while the latter is the ‘‘relative measure of risk’’ of the

jth SNP to be associated with the gth group of phenotypes with

respect to the MPPI threshold obtained from each group g at a

specified FDR level. The denominator in (2) acts as a standard-

isation factor. For a given SNP j, RBFjg can be compared across

groups of traits and provides a formal way to rank them with

respect to the strength of association with the SNP.

Let RBFjg and RBFjh be the RBF defined in (2) for two groups of

traits. If RBFjg.RBFjh, then

BFjg

BFjh

w

BFFDR
jg

BFFDR
jh

:

Therefore RBFjg.RBFjh if the ratio of the Bayes Factors of the two

groups of traits is larger than the ratio of the Bayes Factors at the

FDR baseline level (that can be , or .1). Finally, given a groups

of traits, if BFig.BFjg, i?j, then RBFig.RBFjg, showing that the

new measure does not alter the rank of the phenotype(s)-SNP

association within each group.

SNPTEST analysis
SNPTEST V2.2.0 (https://mathgen.stats.ox.ac.uk/genetics_

software/snptest/snptest.html) automatically performs normal

quantile transformation to each trait and adjusts for sex, age and

body mass index (-cov_all). We chose the Bayesian analysis

(-bayesian 1) with suggested default hyper-parameters for the

single trait analysis (normal prior on the effect centred in 0

(-prior_qt_mean_b 0) and variance 0.02s2 (-prior_qt_V_b

0.02)) and InverseGamma prior on the error variance s2 with

finite mean 1 (-prior_qt_a 3 and -prior_qt_b 2). For the

multiple traits analysis we selected the suggested default values

(normal matrix prior on the effects centred in 0 (-prior_qt_-

mean_b 0) with covariance matrix 0.02g (-prior_qt_V_b 0.02))

and InverseWishart prior on the error variance g (-prior_mqt_c

6 and -prior_mqt_Q 4). The prior probability of association

cannot be modified and it is set at p= 1024. SNPTEST provides

the value of the BF automatically. Table S2 compares the prior set-

up and hyper-priors coefficients used in GUESS and SNPTEST.

piMASS analysis
Each trait was normal transformed using the R function

qqnorm. The effect of sex, age and body mass index was removed
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by performing standard multiple linear regression software and

then running piMASS v0.9 (www.bcm.edu/cnrc/mcmcmc/

pimass) on the residuals from this regression. In order to match

the prior on the model size used in GUESS, we set the minimum

and the maximum of p (the prior probability that a SNP is truly

associated with the phenotype) equal to 1 and 56 out of the total

number of SNPs (-pmin 1 -pmax 56), restricting the minimum

and maximum number of SNPs in a model to be 1 and 104 (-

smin 1 -smax 104) without any constraint on the hyper-parameter

h and no cut-off on MAF (-exclude-maf 0). We ran piMASS

with 106 warm-up steps followed by 107 sampling steps (-w

1000000 -s 10000000), recording a sample every 10 steps (-num

10). Although we did not match the number of visited models by

GUESS with those of piMASS (for piMASS the number of

sampling steps coincides with the number of models visited), we

are confident that the very large number of sampling steps allows

piMASS to explore faithfully the model space. Table S3 shows for

each single trait the computational time required by piMASS to

complete the task while Figure S6 presents the trace plot of the

model log10(BF) for TG. Since piMASS provides the MPPI

through Rao-Blackwellization [8], but not the BF for each SNP,

we calculate it as in (2) with E(pc) = 13.663 which corresponds to

E(p) = 561025. Finally Table S2 compares the prior set-up and

hyper-priors coefficients used in GUESS and piMASS.

Multivariate ANOVA analysis
We implemented the frequentist analysis of multiple traits using

the function wilks.test from the rrcov R package (http://cran.r-

project.org/web/packages/rrcov/) to compare the responses’

means for each SNP in the simulated experiments. Setting

method=rank the classical Wilks’ Lambda statistic for testing

the equality of the group means for all the responses is modified

into a robust version [10]. For the single trait analysis we used the

non-parametric ANOVA function kruskal.test implemented in the

R package stats. In both cases Storey’s FDR method [43] was used

to control for multiple testing and to call associated SNPs. Finally,

in the power calculation, the definition of false positives was

relaxed by considering a single association in the interval centred

at each top associated SNP with the multiple traits and spanning

100 Kb on both sides (Figures S11C–S11D and Figure S12).

Sparse SPLS analysis
We used the spls function from the mixOmics R package

(http://cran.r-project.org/web/packages/mixOmics/index.html)

[55], [56] to predict the multivariate outcome by a linear

combination of SNPs. In accordance with the structure of the

multiple traits simulated datasets, we only retained one axis

(ncomp=1) and investigated nine different values of the number of

SNPs in this component (KeepX) ranging from 4 to 36. SNPs

contributing to the component are defined as those with non-zero

loadings coefficient. In this special case where only one component

is retained for the regression model, SPLS corresponds to

canonical regression [12].

Building on the known structure of the multiple responses

simulated dataset we were able to fix the number of components as

well as the number of the SNPs contributing to each component.

The analysis of each replicate took approximately 40 minutes.

Using the model on real data, these two features have to be

assessed by means of a V-fold cross-validation procedure. Using

standard 10-fold cross-validation replicated 50 times, each

combination of ncomp and KeepX would take over 33 hours. In

summary, even when browsing a limited number of combinations

of values for ncomp and KeepX, (e.g. ncomp ranging from 1 to 3,

and KeepX ranging from 1 to 100 with an increment of 10) the

overall computational time required by SPLS is around 12 times

greater than that of GUESS.

Multivariate LASSO analysis
We fitted a LASSO-type penalized multivariate linear regres-

sion model using glmnet (http://cran.r-project.org/web/

packages/glmnet/index.html) R package [11]. The LASSO

penalty used in this model generalizes the group LASSO penalty

to account for potential correlation within the multivariate

response. To accommodate for continuous multiple responses,

the response type was set to family=mgaussian, and the

LASSO penalty was enabled by setting alpha=1. The penalty l
was calibrated based on the first replicate of each multiple traits

simulated dataset such that the number of retained SNPs by

MLASSO is consistent with the sequence of values of KeepX

defined in the SPLS analysis. The resulting set of nine values for l
was used in all replicates of the two simulated multiple traits

scenarios.

Similarly to SPLS, application of this group LASSO procedure

on real data will require the calibration of l. Running a 10-fold

cross-validation procedure over a grid containing 100 values of l
replicated 50 times, would yield an average computing time

exceeding 110 hours.

Supporting Information

Figure S1 Heat-map of the correlation matrix of the five traits

used in the tree analysis. Off-diagonal correlation between each

pair of traits is indicated inside the heat-map.

(TIF)

Figure S2 Heat-map of the squared correlation matrix of the 16

SNPs which were marginally associated with any group of traits

using an empirical FDR cut-off of 5%. Squared correlation

between rs11902417 and rs13392272 is 0.2711, rs11902417 and

rs1469513 is 0.1949 and rs13392272 and rs1469513 is 0.5582.

Squared correlation between rs326 and rs17410962 is 0.3305,

rs326 and rs17489268 is 0.7901 and rs17410962 and 17489268 is

0.2165.

(TIF)

Figure S3 Comparison of the marginal phenotype-SNP associ-

ation provided by GUESS, SNPTEST and piMASS for all single

traits of two trees. (To increase readability, the log10(BFs) are

truncated at 20). (A) Scatterplot of log10(BF) GUESS vs SNPTEST

obtained superimposing the scatterplot of each single trait. A

horizontal dashed line indicates level of log10(BF) that provides

strong evidence of a phenotype-SNP association (log10(BF).5). Red

and black dots highlight significant SNPs found by GUESS while

non-significant SNPs are colour coded according to the level of

pairwise Pearson correlation with the closest significant GUESS

SNP (see the colour bar for the correlation scale). (B) Scatterplot of

log10(BF) GUESS vs piMASS obtained superimposing the scatter-

plot of each single trait. Colour code used to identify relevant SNPs

and horizontal dashed line are the same as defined in (A).

(TIF)

Figure S4 GUESS diagnostic plots in the TG-HDL-LDL group

analysis. (A) Trace plot of the log-Posterior (log-marginal like-

lihood6log-prior on the model space) of the three chains run in

parallel. (B) Trace plot of the size of the models explored by the

three chains run in parallel. (C) Trace plot of the selection

coefficient g (blue) and shrinkage factor g/(1+g). In all plots, black

vertical dotted line indicates the end of the burn-in phase.

(TIF)
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Figure S5 Trace plot of the size of the models explored by the

non-heated chain of GUESS in the TG-HDL-LDL group analysis.

Letters A-H indicate when GUESS first identifies the top Best

Model Visited (A), the second Best Model Visited (B) and etc. with

models ranked by the Model Posterior Probability. A black vertical

dotted line indicates the end of the burn-in phase.

(TIF)

Figure S6 Trace plot of piMASS ‘‘Model log10(BF)’’ in the

single trait TG analysis. Values of log10(BF) are recorded every ten

iterations.

(TIF)

Figure S7 Comparison of the marginal phenotype-SNP associ-

ation provided by GUESS and SNPTEST for all multiple traits of

two trees. (To increase readability, the log10(BFs) are truncated at

20). Scatterplot of log10(BF) GUESS vs SNPTEST obtained

superimposing the scatterplot of each multiple trait group. A

horizontal dashed line indicates the level of log10(BF) that provides

strong evidence of a phenotype-SNP association (log10(BF).5).

Red and black dots highlight significant SNPs found by GUESS

while non-significant SNPs are colour coded according to the level

of pairwise Pearson correlation with the closest significant GUESS

SNP (see the colour bar for the correlation scale).

(TIF)

Figure S8 Genome-wide log10(BF) obtained from GUESS for

single trait analysis. (A) LDL, (B) APOB (first tree), (C) HDL and

(D) APOA1 (second tree). Significant SNPs found associated at a

5% FDR are depicted by black dots (with the SNP’s name)

whereas significant SNPs that are also in the top Best Model

Visited are represented by red dots (with the SNP’s name) (the

log10(BF) is truncated at 20).

(TIF)

Figure S9 Genome-wide log10(BF) obtained from GUESS in the

first tree centred in the LDL pathway. (A) TG-LDL, (B) TG-

APOB and (C) LDL-APOB. Significant SNPs found associated at

a 5% FDR are depicted by black dots (with the SNP’s name)

whereas significant SNPs that are also in the top Best Model

Visited are represented by red dots (with the SNP’s name) (the

log10(BF) is truncated at 20).

(TIF)

Figure S10 Genome-wide log10(BF) obtained from GUESS in

the second tree centred in the HDL pathway. (A) TG-HDL, (B)

TG-APOA1, (C) HDL-APOA1 and (D) TG-HDL-APOA1.

Significant SNPs found associated at 5% FDR are depicted by

black dots (with the SNP’s name) whereas significant SNPs that are

also in the top Best Model Visited are represented by red dots

(with the SNP’s name) (the log10(BF) is truncated at 20).

(TIF)

Figure S11 Receiver Operating Characteristic (ROC) curves

comparison. ROC curves of SNPTEST (black), SPLS (blue),

MANOVA (purple), and GUESS (red) for the first (A–C) and

second (B–D) multiple-trait simulated datasets when the definition

of positive associations is relaxed, i.e. considering a single

association in an interval centred at each top hit and spanning

25 kb, 50 kb and 100 kb on both sides. For GUESS, separate

ROC curves are obtained using the top Best Model Visited (red

star) and the Marginal Posterior Probability of Inclusion (solid red

line). For SNPTEST, the ROC curve is calculated using the

log10(BF). The number of SNPs retained by SPLS under different

levels of penalization is indicated. For MANOVA Wilks, the ROC

curve is derived using SNPs declared significant over a range of

FDR levels. The number of false positives (x-axis) is indicated at

the top of the figure while the proportion of false positives is

presented at the bottom. Given the large number of predictors

(273,294), false positives are truncated at 1024 at which level a

large number already occurs (27.5).

(TIF)

Figure S12 Receiver Operating Characteristic (ROC) curves

comparison. ROC curves of SNPTEST (black), ANOVA (purple)

and GUESS (red) for the first (A) and second (B) single-trait

simulated datasets when the definition of positive associations is

relaxed, i.e. considering a single association in an interval centred

at each top hit and spanning 25 kb, 50 kb and 100 kb on both

sides. For GUESS, separate ROC curves were obtained using the

top Best Model Visited (red star) and the Marginal Posterior

Probability of Inclusion (MPPI) (solid red line). For SNPTEST, the

ROC curve is calculated using the log10(BF). For ANOVA

Kruskal, the ROC curve is derived using SNPs declared significant

over a range of FDR levels. The number of false positives (x-axis) is

indicated at the top of the figure while the proportion of false

positives is presented at the bottom. Given the large number of

predictors (273,294), false positives are truncated at 1024 at which

level a large number already occurs (27.5).

(TIF)

Figure S13 Receiver Operating Characteristic (ROC) curves of

GUESS under different parameterization. ROC curve of the a

priori expected model size, i.e E = 10 (blue), E = 20 (red) and E = 40

(green) for five replicates of the first (A) and second (B) multi-trait

simulated dataset are depicted. Separate ROC curves were

obtained using the top Best Model Visited (star) and the Marginal

Posterior Probability of Inclusion (solid line). Given the large

number of predictors (273,294), false positives are truncated at

1024 at which level a large number already occurs (27.5).

(TIF)

Table S1 Post-processed output obtained from GUESS for all

the elements of the two trees (green and blue colour coded) and

TG-HDL-LDL. Horizontal lines separating groups of traits with

the same cardinality (singleton, pairs and triplets). Model Posterior

Probability (MPP) of the top Best Model Visited (BMV) and the

cumulative MPP of the five top BMV are indicated in the first two

columns of the table, respectively. The unique set of significant

SNPs (FDR,0.05) which predict a group of phenotypes is

indicated on the top of the table as well as the associated locus.

Based on Ensembl R66 annotation, each locus is classified as: (1)

intronic, (2) 39UTR, (3) downstream, (4) previously associated and

(5) a tagSNP of a previously associated SNP. In the centre of the

table log10(RBF), i.e. rescaled marginal phenotype-SNP associa-

tion, are included with significant SNPs depicted in black and

significant SNPs that are also in the top BMV indicated in red (the

log10(RBF) is truncated at 20). The Ratio of Bayes Factors (RBF) is

a rescaled measure of SNP-trait(s) association and it is defined as

the ratio between the BF to test the SNP-trait(s) association

hypothesis and the ‘‘baseline’’ BF level obtained through

permutations.

(PDF)

Table S2 Comparison of prior setup between GUESS,

SNPTEST and piMASS. In SNPTEST the hyper-priors on p
and on the variance of the regression coefficients are not specified.

piMASS differs from GUESS by a different specification of the

priors on the regression coefficients and on their variance.

(PDF)

Table S3 Comparison of the MCMC efficiency between

GUESS and piMASS. GUESS was run for 100,000 sweeps with

10,000 as burn-in and with 3 chains. piMASS was run for 1.16107

Graphical Unit Evolutionary Stochastic Search

PLOS Genetics | www.plosgenetics.org 15 August 2013 | Volume 9 | Issue 8 | e1003657



iterations with 106 as burn-in. GUESS analysis was performed on

an HPC cluster computer with a 2.8 GHz Dual-Core Xeon

processor and a NVidia Tesla C1060 GPU with 8 Gb of RAM,

while piMASS was run on a 3 GHz computer with a 1024 KB

cache size Dual-Core AMD Opteron processor and 16 Gb of

RAM. ‘‘Computational time’’ is reported in hours (rounded to the

nearest integer). ‘‘Number of models evaluated’’ includes the burn-

in phase, while ‘‘Number of unique model visited’’ and ‘‘Number

of model visited before (visiting) top Best Model Visited’’ are

calculated after the burn-in phase. ‘‘Average model size’’ is the

average dimension (standard deviation in brackets) of the model

recorded in GUESS (from the non-heated chain) and piMASS

(every 10 iterations). For piMASS the number of models evaluated

corresponds to the number of iterations and is roughly equal to a

third of the models evaluated by GUESS.

(PDF)

Table S4 Output obtained from SNPTEST for all elements of

the two trees (green and blue colour coded) and TG-HDL-LDL.

Horizontal lines separating groups of traits with the same

cardinality (singleton, pairs and triplets). The unique set of

significant SNPs (FDR,0.05) found by GUESS which predict a

group of phenotypes is indicated on the top of the table as well as

the associated locus. Based on Ensembl R66 annotation, each

locus is classified as: (1) intronic, (2) 39UTR, (3) downstream, (4)

previously associated and (5) tagSNP of previously associated SNP.

In the centre of the table the SNPTEST log10(Bayes Factor) for

significant SNPs found associated by GUESS is included (the

log10(BF) is truncated at 20).

(PDF)

Table S5 Results of the empirical FDR procedure. For each

element of the two trees centred on the LDL and HDL pathways

and TG-HDL-LDL, we report the sample size of the null

distribution used in the empirical FDR procedure that we

obtained combining the Marginal Posterior Probability of

Inclusion (MPPI) for all the artificial groups of phenotypes with

the same dimension (each element of the trees was permuted 3

times and the MPPI of all artificial groups of traits with the same

dimension, i.e. 5 singleton (+), 6 pairs (++) and 3 triplets (+++), were

used to calculate the empirical FDR), the MPPI threshold at an

FDR of 5% and the number of significant SNPs associated with

each group of phenotypes.

(PDF)

Table S6 Genetic associations for selected phenotypic groups

(TG-APOB and TG-LDL-APOB in ‘‘Tree I’’; TG-HDL in ‘‘Tree

II’’ and TH-HDL-LDL) detected by GUESS. Two independent

replication datasets were used (a) Copenhagen City Heart Study

(CCHS) and (b) Data from an Epidemiological Study on the

Insulin Resistance syndrome (DESIR). Each region centred at the

identified causal variant in the discovery dataset (rs629301 and

rs261333, respectively) and spanning 2 Mb is regressed against the

phenotypic groups previously associated with the variant. Genetic

markers with the largest significant BF obtained with SNPTEST in

each region are reported in each table as well as their position in

the genome. SNP rs261332 is not present in the CardioMeta-

bochip. Using 381 Caucasian individuals from the 1000 Genomes

project, r2 and D9 are 0.582 and 0.979 between rs261332 and

rs8034802 in (A) and 0.838 and 0.982 between rs261332 and

rs1077834 in (B), respectively.

(PDF)

Table S7 Strength of the genetic association provided by the

RBF between genetic variants identified in Table S6 and the

branches of the two trees and TG-HDL-LDL. Two independent

replication datasets were used (a) Copenhagen City Heart Study

(CCHS) and (b) Data from an Epidemiological Study on the

Insulin Resistance syndrome (DESIR) (computations of RBF

based on the SNPTEST BF). Combinations of phenotypic groups

and genetic markers previously found to be most associated in the

discovery data set Gutenberg Health Study (GHS) are highlighted

in bold. A dashed line indicates that the genetic association is not

significant at a 5% FDR in the selected 2 Mb region.

(PDF)

Table S8 Post-processed output obtained from GUESS with

different prior specification. For selected elements of the two trees

(green and blue colour coded) and TG-HDL-LDL GUESS was

run using a conjugate hierarchical independent prior for the

genetic effects with a diffuse exponential hyper-prior for the

variance of the regression coefficients. Model Posterior Probability

(MPP) of the top Best Model Visited (BMV) and the cumulative

MPP of the five top BMV are indicated in the first two columns of

the table, respectively. The previously identified unique sets of

significant SNPs (FDR,0.05) which predict a group of phenotypes

is indicated on the top of the table as well as the associated locus.

Based on Ensembl R66 annotation, each locus previously

identified is classified as: (1) intronic, (2) 39UTR, (3) downstream,

(4) previously associated and (5) a tagSNP of a previously

associated SNP. SNP-trait(s) association identified in the BMV

by GUESS with the new prior specification are presented in the

centre of the table. The BMV for the selected elements of the two

trees are as depicted in Table S1.

(PDF)
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