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What Is the Significance of Difference
in Phenotypic Variability across SNP Genotypes?

Xiangqing Sun,1 Robert Elston,1,* Nathan Morris,1 and Xiaofeng Zhu1

We studied the general problem of interpreting and detecting differences in phenotypic variability among the genotypes at a locus, from

both a biological and a statistical point of view. The scales onwhich wemeasure interval-scale quantitative traits are man-made and have

little intrinsic biological relevance. Before claiming a biological interpretation for genotype differences in variance, we should be sure

that no monotonic transformation of the data can reduce or eliminate these differences. We show theoretically that for an autosomal

diallelic SNP, when the three correspondingmeans are distinct so that the variance can be expressed as a quadratic function of themean,

there implicitly exists a transformation that will tend to equalize the three variances; we also demonstrate how to find a transformation

that will do this. We investigate the validity of Bartlett’s test, Box’s modification of it, and a modified Levene’s test to test for differences

in variances when normality does not hold. We find that, although they may detect differences in variability, these tests do not neces-

sarily detect differences in variance. The same is true for permutation tests that use these three statistics.
Motivated by a recent report1 of significant differences in

the variance of body mass index (BMI) across the three

genotypes of a SNP in the FTO locus [MIM 610966], we

consider here the general problem of interpreting and

detecting differences in phenotype variability and, more

specifically, variances among SNP-specific genotypes. By

restricting our consideration to an autosomal diallelic

SNP, and hence to only three genotypes, we can examine

the problem comprehensively, both from a biological

and a statistical point of view.

There are many measures that can be used to describe

the phenotype distribution of a quantitative trait, and

these can be broadly classified into measures of location

(e.g., the mean and the median) and measures of vari-

ability. We shall use the word variability here to indicate

all the aspects of a distribution other than its location.

The measures of variability include measures of spread

(e.g., the variance and the interquartile distance) and

shape (e.g., skewness and kurtosis). In general, the com-

plete distribution can be identified by all its moments, pro-

vided they exist. Although the commonest measures used

for describing the genotype-specific distribution of a quan-

titative trait are measures of location, it has sometimes

been suggested that measures of variability be used to

both describe and infer particular biological phenomena.

For example, genetic segregation underlying a trait will

induce platykurtosis, positive skewness, and/or an increase

in sibship variance as a function of the sibship mean,2,3

and differences in the genotypic variances of a trait of

interest result if the ‘‘reaction norm’’4,5 of each genotype

is different, suggesting the possibility of a genotype3 envi-

ronment or genotype 3 genotype interaction. In this last

case the environment or genotypes at other loci could be

acting at the cellular, organ, or individual level; at some

point, a metabolic process that results in trait variability,

and variance in particular, that differs from genotype to
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genotype might be involved. However, whereas in each

of these cases the phenomenon would result in differences

in the variability of the phenotype distribution, as indi-

cated in the references cited, this does not necessarily

imply that such differences, when found, must be due to

that phenomenon.

In this report we argue that, for an autosomal diallelic

SNP in particular, it is difficult to make valid biological

inferences about a quantitative trait on the basis of vari-

ance heterogeneity among the genotype-specific dis-

tributions unless the locations (in particular, the means)

of the three distributions are equal. We first argue that,

when themeans are not all equal, the variance heterogene-

ity might in fact be explained by a distribution in which

the variance is a function of the mean. To highlight this

fact, we argue that there exists a transformation of the

data that will tend to make the variances equal and

describe a standard method that will at a minimum

decrease the variance heterogeneity. We then consider

the difficulty of even testing specifically for differences

among variances. In order to demonstrate our argument,

we illustrate these points by using statistics that have

been reported elsewhere.1

The first thing to note is that, for the purpose of statisti-

cal analysis, the informational content of a set of data

points remains the same if each is transformed by a strictly

monotonic function, which amounts to a change in the

scale of measurement in the sense that, if we know all

the data values on one scale, we can determine them on

the other. Clearly, whenever we measure a quantitative

trait the scale units used must be taken into account,

whether for clinical purposes or merely for their magni-

tudes to be generally understood; and some scales help

us better understand physical processes. Nevertheless, the

scales on which we measure quantitative (interval-scale)

traits are man made and have little intrinsic biological
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Figure 1. Pictorial Representation of
Four Different Nonlinear Changes in
the Scale of Measurement Representing
Four Different Classes of Monotonic
Transformations
In each panel, equal intervals on the orig-
inal scale of measurement (top line)
become different, unequal intervals on the
transformed scale (bottom line). In panel
(A) the transformation leads to decreasing
intervals with increasing values on the orig-
inal scale; in panel (B), the transformation

leads to increasing intervals. In the lower panels, the red line is the point at which there is a change from increasing to decreasing
(C) or from decreasing to increasing (D) intervals, corresponding to a zero second derivative of the transformation function.
relevance. Figure 1 illustrates four different changes in

scale, each of which corresponds to a nonlinear transfor-

mation. In each case the transformation is a strictly mono-

tonic function, so that the ranks of the measurements are

identical on the two scales, the original and the trans-

formed, as indicated by the fact that the lines connecting

the two scales never cross. Furthermore, arbitrary scales

of measurement can induce a variety of relationships

between the mean and variance of any distribution.

It follows that making any biological inferences on the

basis of the fact that genotype-specific variances are

different is highly questionable when a simple monotonic

transformation could remove the observed differences. At

the very least, we should attempt to show that no such

transformation of the data can drastically reduce, or even

eliminate, any differences in the variances that are found.

As explained above, there aremany differentmeasures of

variability for a quantitative trait, and hence, as opposed to

the distribution means, these various distribution mea-

sures can differ from SNP genotype to SNP genotype in

many different ways. If the genotype-specific distributions

differ in any specific measure of variability, this could be a

hint that we should seek an underlying cause for the differ-

ences. Here we concentrate on the variance and show that,

provided the three means are different, there is always a

monotonic transformation that will tend to equalize the

three variances. Finding a transformation that will do

this is often simple when we assume there are only three

phenotypic distributions, so that the variance, V, can

always be expressed as a quadratic function, f, of the

mean, m:

V ¼ f ðmÞ ¼ am2 þ bmþ c: (Equation 1)

If we can express the variance of a trait x as a function of

its mean mx, f(mx), then a standard way of seeking a trans-

formation y that will tend to make the variances approxi-

mately equal is given by Bartlett:6

y ¼ gðxÞf
Z

dxffiffiffiffiffiffiffiffiffi
f ðxÞp : (Equation 2)

This is based on approximating the variance of a func-

tion of a random variable by the first few terms of a Taylor

series; the more terms taken in the series, the more equal
The Amer
we would expect the variances to be, so that with enough

terms the variances would be equal; however, with more

terms we would arrive at an integral equation with no

analytical solution.

Provided this integral equation can be solved, it gives us

an approximate variance-equalizing transformation.

Because it is always possible to fit a quadratic polynomial

to three points on the plane, we consider this as the

functional relationship between the variance and the

mean. Note that if the three means are equal, the three var-

iances, unless all equal, cannot be the same function of the

means.

Because a variance must be positive, there are four

possible situations, as illustrated in Figure 2. In this figure,

panels A and B illustrate the special situation when a ¼ 0,

so that f is a linear function that meets the x axis at –c/b.

The corresponding transformations, shown in Figures 3A

and 3B, result in the changes of scale seen in Figures 1A

and 1B, respectively. (Once transformed, any further

linear transformation applied to all the data does not

change the homogeneity or heterogeneity of the vari-

ances, so there are no vertical scales shown in Figure 3).

Figures 2C and 2D illustrate the two types of quadratic

function possible; for the integral in Equation 2 to be

solvable (in the sense of having a real solution) for these

quadratic functions, we must either have a > 0 and b2 �
4ac % 0 or have a < 0 and b2 � 4ac > 0. The correspond-

ing transformations, shown in Figures 3C and 3D, result

in the changes of scale seen in Figures 1C and 1D, respec-

tively (mathematical expressions for all these transforma-

tions are given in Appendix A). Note that if the minimum

of the curve in Figure 2C touches the x axis, which occurs

at the point –b/(2a), this would indicate a point where the

variance would be 0; in this case the transformation

would be monotonic only if the values of x lie either all

below or all above that minimum point; if the minimum

is below the x axis (when b2 � 4ac > 0), the variance is

positive only below L1 and above L2. Conversely, the

curve in Figure 2D meets the x axis at two points, L2
and L1, and as seen in Figure 3D, only values of x between

these two points could be transformed by the correspond-

ing transformation.

Thus, a first step should be to fit a quadratic equation to

the SNP data: the three pairs of values (variance, mean).
ican Journal of Human Genetics 93, 390–397, August 8, 2013 391



Figure 2. Functional Relationship
between the Variance and the Mean,
V ¼ am2 þ bm þc, Fitted to Three Points,
which Are SNP Genotypes
(A and B) Linear functions (a ¼ 0) with
b > 0 and b < 0, respectively.
(C and D) Quadratic functions. (C) a > 0:
the solid curve is for b2 � 4ac < 0; the
dotted curve is for b2 � 4ac¼ 0; the dashed
curve is for b2 � 4ac> 0. (D) a< 0 and b2 �
4ac > 0. The red points in (C) and (D)
correspond to the red lines in Figures 1C

and 1D. L1 ¼ ð�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
Þ=2a and

L2 ¼ ð�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
Þ=2a.
There are the four possibilities, illustrated in Figures 1–3

and summarized as follows:

Panel A: a ¼ 0, b > 0; the transformation can only be

applied to values of x > �c/b

Panel B: a ¼ 0, b < 0; the transformation can only be

applied to values of x < �c/b.

Panel C: a > 0; if b2 � 4ac < 0, all values of x can be

transformed; if b2 � 4ac ¼ 0, we obtain a monotonic

transformation only when all x lie to one side

of�b/(2a); if b2 � 4ac> 0,we obtain a monotonic trans-

formation only when all x < L1 or > L2.

Panel D: a < 0, b2 � 4ac > 0; the transformation can

only be applied to values of x in the interval (L2, L1).

We now illustrate the above procedure with the data in

Table 1, which we adapted from the bottom six entries in

the first column of Table 2 in Yang et al.1 This adaptation

gave BMI estimates corresponding to the SNP rs7202116

(we arbitrarily added 25 to the mean values they report;

doing this puts into perspective the mean differences

that were found but has no effect on the final results we

give below). Although Yang et al. considered various trans-

formations to reduce the variance heterogeneity among

the genotype groups, they did not use a transformation

designed specifically for this purpose, so it is of interest,

as an illustration, to see what their particular result might

have been. From the data in Table 1 we find the quadratic

equation

V ¼ f ðmÞ ¼ 2:101m2 � 104:123mþ 1290:918:

(Equation 3)

We note that b2 � 4ac ¼ �7.419 < 0 and a ¼ 2.101 > 0.

We are therefore in the situation illustrated in panel C of

Figures 1–3, so that all values of x can be transformed.

Figure 4 shows that all the means are to the right of the
392 The American Journal of Human Genetics 93, 390–397, August 8, 2013
red cutoff in those figures, so for these

data the transformed intervals always

decrease as BMI increases.

The question now arises as to how

well this transformation performs in

equalizing the three variances, which

could be examined in the data.
Without the data, however, given the values in Table 1

we can estimate the three variances after transformation

if wemake assumptions about the form of the distribution.

We did this for two situations: assuming three normal

distributions and assuming three log-normal distributions

(details are given in Appendix B). We note in Table 1 that

the largest variance divided by the smallest variance is

1.226; the corresponding ratio after the transformation is

1.106 when we assume normal distributions and 1.103

when we assume log-normal distributions. Thus, in either

case there is more than a 50% reduction in the difference

between the largest and smallest variance.

Before we seek a variance-equalizing transformation of

the data, it would be reasonable to test whether the data

at hand exhibit significantly different variances between

genotype groups. One way this might be done is to use

Bartlett’s test.7 Let s2 be the pooled variance estimated

from the three groups corresponding to the three geno-

types, let s2t be that from the t-th group, with ft being the

number of degrees of freedom, and let F ¼Ptft . Then, if

we let M ¼ F ln s2 �Ptft ln s2t , Batlett’s test statistic is

M1 ¼ M

ð1þ AÞ where A ¼ 1

3ðk� 1Þ

 X
t

1

ft

� 1

F

!
and k ¼ 3;

the number of groups:

Under the assumption of normality and equal variances,
in large samples this is distributed as c2
k�1 (i.e., chi-square

with k � 1 degrees of freedom [df]). However, even when

one uses permutations to evaluate the p value, this test is

not robust to non-normality, so a significant result could

indicate either non-normality or differences in variability

among the three distributions. If we are specifically inter-

ested in testing variances, it might be possible to use

Bartlett’s test statistic as modified by Box.8 Let g2 denote

the standardized fourth cumulant, i.e., the excess kurtosis



Figure 3. The Four Classes of Monotonic
Transformation Functions
(A, B, C, and D) These panels correspond,
respectively, to Figures 2A, 2B, 2C, and
2D. In each panel the abscissa (x axis) is
the original value, and the ordinate
(y axis) is the transformed value. (C and
D) Red points correspond to the red points
in Figure 2 and to the red lines in Figure 1.
(C) The solid line is the transformation for
b2 � 4ac < 0; the dotted one is for b2�
4ac ¼ 0 and is monotonic only on each
side of x ¼ �b/(2a); the dashed line is the
transformation for b2 � 4ac > 0. L1 ¼
ð�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
Þ=2a and L2 ¼ ð�b þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

Þ=2a.
(the coefficient of kurtosis � 3). Then, for large samples,

Box showed that if g2 is the same in all groups, we might

expect M to be distributed as (1 þ g2=2) c2
2; that is,

M2 ¼ M/(1 þ g2=2) should be distributed as c2
2. Alterna-

tively, we might consider using either M1 or M2 in a

permutation test. We attach the genotype as a label to

each observation and obtain a replicate sample by shuf-

fling the labels. From each of N replicates we calculate

the test statistic and compare the N values with our

observed statistic M*. The permutation p value of the

observed statistic M* is then estimated to be:

p value ¼ number of statistics from replicatesRM�

N
:

(Equation 4)

However, centering the observations—as required in the

calculation of M1 and M2—must be performed prior to

shuffling the labels when one obtains each permutation

replicate, rather than after shuffling. To the extent that

we can equate all measures of spread of a distribution, a

better way to test whether variances are different might

be to use a modification of Levene’s test, which has been

reported to be robust to many types of non-normality pro-

vided it is used with a bootstrapping approach.9

Because bootstrapping and a permutation test could be

computationally intensive, and because there is no under-

lying theoretical result for conducting the modification
Table 1. Estimated Means and Variances of BMI for the Three
Genotypes at FTO SNP rs7202116

AA AB BB

Variance (V) 0.93 0.99 1.14

Mean (m) 24.929 25.005 25.129

Adapted from Yang et al.1
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that Box made to Bartlett’s test for

variance homogeneity when there is

different excess kurtosis in the groups

being tested, we conducted small

simulation experiments to determine
to what extent the asymptotic distributions are good

approximations for a test of variances when we substitute

for g2 a pooled estimate obtained from the three groups.

For each experiment we simulated 1,000 data sets each of

1,000 individuals under the assumption that the 1,000 in-

dividuals are from three differentmarker genotype distribu-

tions. We assumed that the minor allele frequency (MAF),

q, is 0.5 or 0.1 and that the genotype frequencies follow

Hardy-Weinberg proportions, q2, 2q(1 � q), and (1 � q).2

Within each marker group, we assumed normal or log-

normal trait distributions. In each simulation, the three dis-

tributions had the same variance, but different means and

(in the case of log-normal distributions) different excess

kurtosis, as detailed in Table 2.We considered two different

commonvariances, 1 and100; in the latter case the additive

effect of an allele is 1/10 of a standard deviation, which cor-

responds approximately to what was found for the FTO

locus SNP.1 Estimating g2 as indicated in Appendix C, we

calculated the statistics M1 and M2 ¼ M/(1 þ g2=2); the

former should asymptotically follow c2
2 if the data in each

group are normally distributed, and the latter should follow

the same distribution if the excess kurtosis is the same in

each group. We also performed Levene’s test, modified to

use the median instead of the mean because, for this test

also, there are no underlying theoretical results and only

simulation results have been reported. The left half of Table

3 shows the fractions of the data sets for which the statistics

reached or exceeded the 0.95 and 0.99 fractiles of the c2
2

distribution (respectively, 5.991465 and 9.21034). It can

be seen that the type I error is reasonably well controlled

when the data in each group are normally distributed but

that it is inflated when they are log-normally distributed—

especially when the variance is large compared to themean

(which leads to more excess kurtosis).

Furthermore, we investigated whether the same statis-

tics, when used in a permutation test, could serve as tests
enetics 93, 390–397, August 8, 2013 393



Figure 4. The Quadratic Function Fitted by the Three Geno-
types at SNP rs7202116 in the FTO Locus with the Means and
Variances in Table 1

Table 2. Parameters Used for Data Generation in the Simulation
Experiments

Group 1 Group 2 Group 3

Normal Distribution, Variance 1

Mean 1 2 3

Excess kurtosis 0 0 0

Normal Distribution, Variance 100

Mean 1 2 3

Excess kurtosis 0 0 0

Log-Normal Distribution, Variance 1

Mean 2.8777 7.4552 20.1104

Excess kurtosis 2.1616 0.2928 0.0397

Log-Normal Distribution, Variance 100

Mean 5.5792 10.2991 22.0539

Excess kurtosis 511.6796 34.2338 3.9777
for variance homogeneity. To do this, we subtracted the

groupmeans for each generated data set and then obtained

1,000 replicate permutation samples. From each of these

we calculated the permutation p value as in Equation 4;

this value should follow a uniform distribution in [0,1]

under the null distribution. We then determined the type

I error of the permutation test as the fraction of the

1,000 data sets for which the permutation p value was

less than or equal to 0.05 or 0.01. In the case of Levene’s

test, this should be equivalent to bootstrapping. The re-

sults of these simulations are presented in the right half

of Table 3. It is seen that, if the data in each of the three

groups are normally distributed, the corresponding permu-

tation tests are reasonably valid for testing differences in

variance; however, this does not hold when the three

groups are log-normally distributed. Note that although

these tests might detect differences in variability, they are

not valid for specifically testing differences in variance. (It

is well known that Batlett’s test without permutation can

also detect departure from normality, even when all the

central moments are the same in the three groups7).

Finally, several things should be noted. First, had the

three means in Figure 4 spanned both sides of the mini-

mum on the curve, this would imply that, with increasing

values of the trait (see Figure 1C), on the transformed scale

intervals first increase and then decrease. Because it is not

unnatural for traits to have both a floor and a ceiling (this is

always true for a proportion, which must lie between

0 and 1), this would not be a reason to disqualify the

transformation.

Second, when we fit a quadratic polynomial to the data

on three genotypes, the resulting integral in Equation 1

does not have a real solution when the variance is nega-

tive, which is of course impossible. However, it could

happen that some extreme data points lie to the right of

L1 or to the left of L2 (see Figure 2) and that they thus
394 The American Journal of Human Genetics 93, 390–397, August 8
correspond to no real solutions and cannot be trans-

formed. Unless such data points are too numerous (which

is unlikely to happen when the data are normally distrib-

uted within groups), they could be trimmed or winsorized.

It is also possible that a different function that would

always lead to a real solution to Equation 1 and that fits

three points perfectly (Figure 5) could be found. In fact,

it is always possible to find a polynomial that it will fit

any number of points and is of high enough degree that

it will always lie above 0. In particular, this is true if the

three points that fit a quadratic polynomial lie on the

dashed line illustrated in Figure 2C, for the case b2 –

4ac > 0. Thus we can always find a transformation that

will tend to equalize the variances, both in this case and

more generally, when there are more than three genotypic

groups with different means. But a transformation that

changes intervals as the trait increases in value from

increasing to decreasing, and then back to increasing

(and this occurs multiple times), would hardly be

acceptable.

Third, a reviewer asked whether the reduction in vari-

ance heterogeneity obtained by using the transformation

given by Equation 1, which necessarily would not be ex-

pected to eliminate all the variance heterogeneity, would

reduce the statistical significance of the differences among

the variances. We showed in our example that the ratio of

the largest to the smallest variance is reduced, but interest-

ingly, that is not sufficient to show that the statistical

significance of the variance heterogeneity is reduced. We

therefore simulated 1,000 samples, each comprising

1,000 individuals for whom BMI values mimicked values

in Table 1, by assuming Hardy-Weinberg proportions and

using genotypic fractions based on one of the reported

allele frequencies:1 173 were simulated to have values

from N(24.929,0.93), 486 from N(25.005,0.99), and 341

from N(25.129,1.14). We applied the six tests indicated

in Table 3 before and after transformation and found

that the distribution of p values increased after transforma-

tion. For example, before transformation the proportion of

tests significant at the 5% level (whether the p values were

nominal or obtained from a permutation test) ranged from
, 2013



Table 3. Type I Error Studied by Simulation Experiments with the Parameters Described in Table 2

Allele
Freqency qa Variance

As c2
2 Testsb As Permutation Tests

a ¼ 0.05 a ¼ 0.01 a ¼ 0.05 a ¼ 0.01

M1 M2 L M1 M2 L M1 M2 L M1 M2 L

Normal Distribution

0.1 1 0.054 0.060 0.042 0.013 0.015 0.008 0.057 0.056 0.043 0.012 0.012 0.010

100 0.052 0.056 0.042 0.010 0.011 0.008 0.055 0.055 0.043 0.011 0.012 0.010

0.5 1 0.059 0.056 0.049 0.009 0.008 0.008 0.052 0.054 0.049 0.008 0.008 0.008

100 0.055 0.060 0.049 0.009 0.011 0.008 0.062 0.059 0.049 0.010 0.009 0.008

Log-Normal Distribution

0.1 1 0.095 0.092 0.058 0.025 0.024 0.011 0.084 0.085 0.068 0.019 0.021 0.014

100 0.781 0.325 0.688 0.663 0.159 0.470 0.373 0.328 0.700 0.169 0.132 0.441

0.5 1 0.122 0.072 0.094 0.048 0.019 0.023 0.070 0.063 0.097 0.019 0.016 0.027

100 0.818 0.231 0.936 0.722 0.119 0.850 0.213 0.154 0.940 0.115 0.060 0.864

Bartlett’s statistic (M1), Box’s modification of Bartlett’s statistic (M2), and Levene’s test statistic based on the median (L) are compared to fractiles of the c2
2

distribution (left half of table); permutation tests using these three statistics are compared to estimated fractiles of the corresponding null distributions (right
half of table).
aThe proportions of the three groups are respectively q2, 2q(1 � q), (1 � q)2.
bLevene’s statistic L asymptotically follows ð1=2Þ c2

2.
0.308 to 0.341; after transformation, that proportion

ranged from 0.015 (the original Bartlett’s test) to 0.188

(Box’s modification of Bartlett’s test, by permutation).

That the p value is expected to increase is not necessarily

a general result, however, because it can be shown (specif-

ically in the case of Levene’s test) that it is possible to find a

small part of the parameter space (i.e., values of the means

and proportions in each genotype group) where this result

would not hold. Of course, what level of significance to use

for such a test depends on both the purpose of the test and

how many such tests are performed. We argue that in any

case it is difficult to make valid biological inferences from

such a test alone. If we wish to use such a test as a screen

to seek specific biological phenomena, to be tested by

other means, we might be ready to allow for a relatively

large type I error, especially in view of the fact that much

larger samples are required to detect differences in

measures of variability than differences in measures of

location. But then we might be more interested in other

measures of variability than simply the variance because

in principle, specifically for three distributions, it should

be possible to transform the data to make the estimated

variances equal if the means are different.

Fourth, it might be thought that one can always make

the data virtually normally distributed within groups by

applying the inverse normal transformation to the ranks

of the data within each group. But if we transform the

data this way, then their ranks in the total sample, across

all three groups, no longer stay the same and the transfor-

mation is thus not monotonic.

Fifth, it is of interest to note that any change of scale that

eliminates variance heterogeneity must also eliminate any

interaction caused by this heterogeneity. This implies that
The Amer
the recent enthusiasm for using tests of variance heteroge-

neity as a screen to find interactions with diallelic

SNPs10–12 should be tempered by the knowledge that,

unless the genotype means are virtually equal, such a

screen might serve no useful purpose. Because more parsi-

monious statistical models without interaction terms

tend to lead to more precise parameter estimates,13,14

scale transformation should generally be considered for

statistical modeling purposes, but the results should

be transformed back to the original scale for ease of

interpretation.

In conclusion, we might always expect there to be small

differences among the genotype groups, either in their

means or in their variances. In large enough samples, we

are virtually certain to find statistically significant differ-

ences. The biological and/or clinical significance of such

differences will always need to be determined on nonstatis-

tical grounds. It is well appreciated that statistically sig-

nificant differences among genotype means require a

plausible mechanism to be biologically significant. The

same is true for any measure of variability. In the absence

of genotypic mean differences, we can hardly infer that

differences in variances are per se of biological interest.

We have demonstrated how when the means are different

a relatively simple change of scale can diminish any vari-

ance heterogeneity, and from a theoretical point of view,

as we have indicated, there implicitly exists a scale that

would remove all the variance heterogeneity – although

that scale might have undesirable properties, especially if

there are more than three genotypes. In addition, it is

not clear how we can even test for differences in variance.

We have shown by simulation that Bartlett’s test, Box’s

modification of it, and Levene’s test, as well as permutation
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Figure 5. Different Functions that Can Be Fitted to Three
(Mean, Variance) Points
The solid curves are the functions shown in Figure 2. Panels (A)
and (B) correspond to Figures 2A and 2D, respectively. The dashed
curves are a cumulative logistic function in (A) and an exponenti-
ated quadratic in (B). Because these functions are always positive,
a corresponding approximate variance-stabilizing transfor-
mation is theoretically available for all x (an analytical solution
to the integral is possible for the function in [B], but not for that
in [A]).
tests based on the same statistics, are generally applicable

to testing for variance differences only when the data

are normally distributed in each genotype group. For

non-normal cases, they might detect statistically signifi-

cant variability differences, which could well have biolog-

ical significance, but not necessarily significant variance

differences.
Appendix A

We give here the mathematical expressions for the trans-

formations in the four panels of Figures 1–3.

Panel A

y ¼ gðxÞf
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
bxþ c

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bxþ c

p

b
; where b > 0; x > �c

b
:
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Panel B

y ¼ gðxÞf
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
bxþ c

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bxþ c

p

b
; where b < 0; x < �c

b
:

Panel C

(1) If b2 � 4ac < 0,

y ¼ gðxÞf
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p ¼ 1ffiffiffi
a

p sinh�1 2axþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p ;
(2) If b2 � 4ac ¼ 0,

y ¼ gðxÞf
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p ¼ 1ffiffiffi
a

p ln j2axþ b j :

in this case, if all the x > �b/(2a), the transformation is a

monotonic increasing function; if all the x < �b/(2a), the

transformation is a monotonic decreasing function; if the

x values are on both side of �b/(2a), the transformation

is not monotonic;

(3) If b2 – 4ac > 0,

y ¼ gðxÞf
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p

¼ 1ffiffiffi
a

p ln j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðax2 þ bxþ cÞ

p
þ 2axþ b j ;

x <
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
or x >

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
:

Panel D

y ¼ gðxÞf
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p ¼ �1ffiffiffiffiffiffiffi�a
p sin�1 2axþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p ;

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
< x <

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
;

in the above expression, y takes on the principal values

of the inverse sine function between �p=2 and p=2.
Appendix B

If we take the transformation y ¼ gðxÞ ¼ ð1=ffiffiffi
a

p Þ sinh�1 ð½2axþ b�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p
Þ, where x is the variable

on the original scale and y is on the transformed scale,

and if a ¼ 2.101, b ¼ �104.123, and c ¼ 1290.918 (see

Equation 3), within each genotype group the variance on

the transformed scale is E(y2) � [E(y)]2 ¼ E[g(x)]2 �

{E[g(x)]}2 ¼
ZþN

�N

ðgðxÞÞ2f ðxÞdx� ½
ZþN

�N

gðxÞf ðxÞdx�2, where
, 2013



f(x) is the probability density function of x on the original

scale. If BMI is normally distributed, then f(x) ¼
ð1=s ffiffiffiffiffiffi

2p
p Þ e�ðx�mÞ2=2s2 , where m and s2 were taken to be the

means and variances in Table 1. If BMI is log-normally

distributed with mean m and variance s2, then f(x) ¼
ð1=xn ffiffiffiffiffiffi

2p
p Þ e�ðln x�tÞ2=2n2 (x > 0), where n2 ¼ lnðs2=e2 ln m þ 1Þ

and t ¼ ln m� n2=2. The integrals were calculated with the

R function ‘‘integrate’’ and a requested accuracy of 10�6.

Appendix C

We estimated the excess kurtosis for the t-th genotype

group by

G2t ¼ k4
k22

¼ ðnt þ 1Þntðnt � 1Þ
ðnt � 2Þðnt � 3Þ

Pn
i¼1

ðxit � xtÞ4�Pn
i¼1

ðxit � xtÞ2
�2

� 3
ðnt � 1Þ2

ðnt � 2Þðnt � 3Þ ; t ¼ 1;2;3;

where xit is the i-th observations in the t-th group, which

has sample mean xt .

Then we took the pooled estimate of g2 for the

whole data set to be G2pool ¼
Pk

t¼1jtG2t=
Pk

t¼1jt , where

jt ¼ ðnt þ 1Þntðnt � 1Þ=ðnt � 2Þðnt � 3Þ, t ¼ 1, 2, 3.
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