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Abstract
Ecological responses to climate change may depend on complex patterns of variability in weather and local

microclimate that overlay global increases in mean temperature. Here, we show that high-resolution tempo-

ral and spatial variability in temperature drives the dynamics of range expansion for an exemplar species,

the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we esti-

mate the thermal suitability of 906 habitat patches at the species’ range margin for 27 years. Population

and metapopulation models that incorporate this dynamic microclimate surface improve predictions of

observed annual changes to population density and patch occupancy dynamics during the species’ range

expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability

drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion

and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at

spatial and temporal scales relevant to conservation interventions.
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INTRODUCTION

Climate change is causing shifts in species distributions (Parmesan

& Yohe 2003; Chen et al. 2011), but limitations remain in our

understanding of how climate-driven changes in demographic rates

translate into range shifts under realistic conditions of limited dis-

persal, landscape heterogeneity and environmental stochasticity.

Models to predict climate-induced range shifts typically represent

spatial climatic gradients as smooth surfaces, and temporal changes

either as smooth trends, stepped changes or abrupt shifts from one

climate state to another (Guisan & Thuiller 2005; Early & Sax

2011). In contrast, the environmental conditions that affect the sur-

vival and fecundity of individuals vary greatly over fine spatial

scales, because of variation in topography and habitat structure

(Ashcroft et al. 2009; Daly et al. 2010; Sears et al. 2011), and consid-

erable interannual and decadal fluctuations are superimposed upon

long-term natural and anthropogenic climate trends (Karl et al.

1995; Canning-Clode et al. 2011). The dynamics of range shifts are

further structured by the spatial distribution of suitable habitat,

which is often patchy, and fragmented either naturally or because of

anthropogenic processes (Opdam & Wascher 2004). New

approaches are needed to understand how habitat fragmentation

and spatiotemporal variability in climate combine to determine rates

and patterns of climate-driven range shifts (Jackson et al. 2009;

Bateman et al. 2012).

Several approaches have begun to address the effects of fine-

scale environmental variability in space and time on species range

shifts. Mechanistic models integrate the effects of climate on the

ecophysiological processes determining the survival of individuals

at their range margins. Such models can incorporate both bio-

physical models to down-scale regional climate to the operational

temperature of organisms, and/or demographic models to up-

scale physiological effects to the viability of populations at range

margins (Morin et al. 2007; Kearney et al. 2009; Buckley et al.

2010, 2011). At fine spatial resolutions, topography is known to

modify temperatures, leading to variability in survivorship (Weiss

et al. 1988) and local extinction risk (McLaughlin et al. 2002).

Fine-scale topographic microclimates could thus help species to

persist within regions which would otherwise be climatically

unsuitable (Ashcroft et al. 2009; Daly et al. 2010; Sears et al.

2011). Temporal variability in climate and extreme weather events

have also been statistically linked to historical rates and patterns

of range expansion (Gray et al. 2006; Walther 2009), and niche

models applied to future scenarios of climate change suggest that

temporal variability in the climate could determine realised species

distributions (Early & Sax 2011). However, the combined effects

of short-term, fine-scale variation in climate on population sur-

vival and colonisation in fragmented landscapes remain to be

incorporated in realistic, empirically tested models of species’

range shifts.
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Here, we test the hypothesis that fine-scale variation in thermal

habitat quality determines the rate and pattern of species range

expansion through a fragmented habitat network covering hundreds

of kilometres. We develop and test models for the effects of spatial

and temporal variation in microclimate on both population and

metapopulation dynamics in an exemplar system, the butterfly

H. comma at its cool range margin in Britain. In common with many

other ectotherms (Courtney & Duggan 1983; Kingsolver 1983;

Chamaill�e-Jammes et al. 2006), individuals of this species show ther-

mal constraints on activity and fecundity (Davies et al. 2006). We

use an empirically derived thermal activity threshold to model the

availability, quality and connectivity of suitable habitat patches for

the species over 27 years, by applying a high-resolution, physically

based model to calculate hourly near-ground temperatures in chalk

grassland (Bennie et al. 2008). We then investigate the effects of this

dynamic thermal environment on range expansion, using two analy-

ses. First, we model annual population size fluctuations as a func-

tion of thermal habitat quality in continuously monitored local

populations. Second, we let thermal habitat quality determine colo-

nisation potential and extinction risk in a metapopulation model.

We calibrate the metapopulation model using patch occupancy

observations from 1982 to 1991, and empirically test the model

using independent data for the subsequent 18 years (1991–2009).
We show that both population and metapopulation models includ-

ing dynamic microclimate variation: (1) quantitatively out-perform

models in which spatial and temporal variability in temperature are

not included; and (2) capture important features of the episodic and

spatially localised patterns of range expansion, that are important

for understanding, predicting and managing the responses of species

distributions to climate change.

MATERIAL AND METHODS

We use three modelling approaches, described in the sections

below. First, a topographic microclimate model developed for chalk

grassland (Bennie et al. 2008) was used to predict thermal habitat

quality within all potential habitat patches (see ‘Microclimate

model’), providing an input for the other two analyses. Second, we

tested the hypothesis that thermal habitat quality determines annual

population growth rates and carrying capacity, using annual time

series from ten monitoring transects (‘Long-term monitoring tran-

sects’; ‘Microclimate and population dynamics’). Third, the influence

of microclimate on range expansion was tested by running meta-

population simulations in which patch-level extinction risk and colo-

nisation rates depend on thermal habitat quality (‘Microclimate and

metapopulation dynamics’). The metapopulation models were pa-

rameterised and independently tested using distribution data from

comprehensive field surveys of patch occupancy undertaken at

nine-year intervals (‘Distribution survey’).

Study system

The silver-spotted skipper H. comma (L; Lepidoptera; Hesperiidae)

has a holarctic distribution, reaching the north-western limit of its

European range in south-east England (Fig. 1a). Here, the species is

restricted to grazed calcareous grasslands where its larval food plant,

sheep’s fescue grass Festuca ovina (L.), grows in hot microclimates

among short, broken turf (Thomas et al. 1986). During the 20th

Century, H. comma suffered a drastic decline in Britain, attributed to

habitat loss caused by agricultural intensification, and changes in

chalk grassland habitat due to reduced grazing by European rabbit

(Oryctolagus cuniculus, L.) following outbreaks of myxomatosis, which

led to taller vegetation and a shortage of locations with host plants

growing in suitable microclimates. By 1982, fewer than 70 H. comma

populations survived in Britain, all associated with warm microcli-

matic conditions on grazed south-facing slopes (Thomas et al.

1986). The decline of the species has been followed by a localised

re-expansion since 1982 (Thomas & Jones 1993; Davies et al. 2005;

Lawson et al. 2012), associated with the recovery of rabbit popula-

tions, widespread adoption of grazing as a conservation manage-

ment tool, and a series of exceptionally warm summers compared

with 20th Century norms (UK Met Office 2011a).

Hesperia comma is univoltine, and adult butterflies fly during late

summer (August). Adults become fully active (Appendix S1), and

egg-laying rates increase rapidly, when temperatures measured close

to the ground exceed approximately 25 °C (Davies et al. 2006).

Recent work has shown that (1) the species occurs in higher densi-

ties on south and west facing slopes where this temperature thresh-

old is most frequently exceeded during the flight season; and (2) the

risk of local population extinction at this upper-latitude range mar-

gin is significantly higher on cooler, shaded north-facing slopes

(Lawson et al. 2012).

Distribution survey

Comprehensive field surveys to record the distributions of H. comma

and its habitat were conducted at nine-year intervals from 1982 to

2009. Suitable habitat patches included any agriculturally unim-

proved chalk grassland containing more than 5% cover of the larval

food plant F. ovina. The surveys covered five main habitat networks,

each of which supported refuge populations in 1982 (Fig. 1). One

network, the Chiltern Hills in the north–west of the region, was not

surveyed in 1991. In surveys prior to 2009, all habitat patches iden-

tified within 20 km of existing records of H. comma were surveyed

for presence of adult butterflies and/or eggs (Thomas et al. 1986;

Thomas & Jones 1993; Davies et al. 2005). In 2009, to ensure long-

distance dispersal events were not missed and to provide full cover-

age of the available habitat network, all chalk grassland patches

within 30 km of an existing distribution record of the species

(including records held by the national UK butterfly recording

scheme) were visited, and mapped using handheld GPS (Lawson

et al. 2012). The 906 habitat patches that were recorded, ranging in

size from 39 m2 to 71 ha (mean 3.61 ha), form the habitat network

for the microclimate and metapopulation models.

Long-term monitoring transects

Population dynamic data were analysed for H. comma populations

that are regularly surveyed by the United Kingdom Butterfly Moni-

toring Scheme (UKBMS). In this scheme, transect counts are car-

ried out weekly at fixed locations, provided that weather conditions

meet specified criteria (Pollard & Yates 1993). We limited our analy-

sis to the 10 UKBMS transects having positive counts of H. comma

for at least ten consecutive years between 1982 and 2009 (circles in

Fig. 1b; details in Table S1). These transects include three north-

facing, six south- or south-west- facing, and one flat habitat patch,

and are located across all five main habitat networks. While

UKBMS transects often pass through several habitat types, only
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data from the transect section(s) covering suitable habitat for

H. comma, as defined above, were used in this study. The sampling

units, whether full UKBMS transects within chalk grassland, or sec-

tions of longer transects through mixed habitat, are henceforth

referred to as ‘transects’. An annual index of abundance for each

transect was calculated by the addition of weekly counts, accounting

for missing values (Moss & Pollard 1993), and this index was

divided by the length of the transect to yield a relative density esti-

mate D for each year. The number of consecutive years with data

varied between transects, but the ten transects selected gave a sam-

ple size of 191 estimates of interannual changes in population den-

sity (Table S1).

Microclimate model

We used a spatially explicit model of topographic microclimate

which was developed and empirically tested in typical H. comma

chalk grassland habitat (see Bennie et al. 2008 for details), to esti-

mate interannual variation in the thermal niche of H. comma at 5 m

resolution within each habitat patch. This microclimate model esti-

mates hourly air temperature at 10 cm height in short turf, allowing

for changes in solar altitude and azimuth throughout the day, given

slope, aspect, topographic shading, hourly radiation balance, ambi-

ent air temperature and wind speed. Near-surface air temperatures

within the grassland sward were modelled, rather than the operative

temperature of the butterfly itself, for comparison with existing data

from field observations on activity (Appendix S1; Davies et al.

2006). We modelled temperature during the flight season, rather

than at other stages of the species’ annual life-cycle, because preli-

minary analysis suggested strong thermal constraints on population

growth during this period, with limited effects of climatic variables

at other times of year (Appendix S1).

Regional meteorological data were used to provide hourly esti-

mates of ambient meteorological conditions for input to the micro-

10 km

(a)

1982

2000

1 km

0 130

Hours above
25 oC

(b)

(c)

(d)

Figure 1 Availability of suitable Hesperia comma habitat in SE England: (a) Approximate European distribution of H. comma showing the location of the study area; (b)

1 km squares containing suitable habitat (blue), black circles indicate locations of long-term monitoring transects, with red box showing location of 16 9 6 km area

enlarged in c and d. (c, d) Example of modelled thermal quality of habitat patches in contrasting years. Colour shading shows the total number of hours in which near-

ground temperatures exceeded 25 °C, the critical threshold for activity, during the August flight period in 1982 (c) and 2000 (d), modelled at 5 m resolution. Patches with

bold outlines indicate observed presence of H. comma in the respective year, showing expansion from a refuge population on a large warm south-facing slope in 1982 to a

wider range of patches in 2000 as the number of thermally suitable patches increased.
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climate model. A time series of hourly air temperature, wind speed

and sunshine hours from 1982 to 2009, representative of weather

patterns in south-east England, was obtained from Heathrow Air-

port (UK Met Office 2011b), located between the five habitat net-

works (51°28′ N 0°27′ W). To allow for regional gradients in

ambient climate between Heathrow and the habitat patches, the

hourly time series was adjusted for consistency with a 5 km resolu-

tion gridded observation data set (Perry & Hollis 2005). This data

set included daily maximum and minimum temperature values, and

monthly mean wind speed and monthly mean sunshine duration.

For each 5 km grid cell, we linearly re-scaled Heathrow’s hourly

temperature for each day so that daily maximum and minimum

temperatures matched the gridded data. We also re-scaled hourly

wind speed and sunshine hours so that monthly average values

matched the gridded monthly averages, constraining sunshine dura-

tion in each hourly timestep to be ≤ 1 h.

The microclimate model was run using topography derived from a

5 m resolution digital terrain model (Intermap Technologies 2007).

The radiation balance for each cell was calculated by adjusting clear-

sky direct and diffuse radiation for sunshine hours, slope, aspect and

topographic shading (Bennie et al. 2008, 2010). Local wind speed

was adjusted for topographic shelter using a shelter index derived

from the tangent of the angle to the horizon in the direction of the

wind (Ryan 1977). The microclimate model incorporates the main

factors determining daytime near-surface temperatures in summer in

this system. Other significant topographic effects on temperature,

such as temperature inversions, were not modelled, as their influence

is limited to night-time and winter periods when long-wave radiation

dominates the energy balance (Bennie et al. 2010).

The modelled hourly microclimate temperature at 5-m resolution

was converted into an annual estimate of thermal habitat quality for

H. comma in each of the 906 surveyed habitat patches. Thermal hab-

itat quality was obtained as the sum of the mean number of hours

that each 5-m cell in the habitat patch exceeded a temperature

threshold of 25 °C, during August of each year. This threshold rep-

resents the low-temperature threshold for activity and egg-laying in

this species (Appendix S1; Davies et al. 2006).

Microclimate and population dynamics

To test the influence of annual climatic and microclimatic variability

on population growth rates measured in the field, we modelled

annual density on each of the 10 long-term monitoring transects

(Table S1). Population time series were fitted with discrete-time

logistic models of population growth, DD = rD (1�D/K ) in which

both the intrinsic rate of population growth r and carrying capacity

K vary as linear functions of temperature during the flight season.

Models were fitted to observed values of DD using the lmer func-

tion in the lme4 package of R version 2.13.0 (R Development Core

Team 2011), and model performance was assessed using the

Akaike’s Information Criterion (AIC). Transforming the above

equation, the fitted model form was

DD ¼ b0D þ b1D
2 þ b2TD þ b3TD

2 þ e;

where T is one of several measures of temperature (see below) rele-

vant to the transect, e is the error term, and b0, b1, b2 and b3 are

fitted parameters – b0 and b2 represent the slope and intercept of

the linear dependency of r on T, and b1 and b3 represent the slope

and intercept of the linear dependency of �r/K on T.

To test the usefulness of microclimate for modelling population

dynamics, values of T were randomised between all transects and

years, models were fitted for observed population dynamics, and fit

values (R2) were calculated. This process was repeated 10 000 times,

and the R2 for observed T was compared with the distribution to

obtain a P-value.

To test whether a population density model incorporating mod-

elled patch microclimate, rather than regional climate, better

described the relationship between temperature and population

dynamics, we tested fit to observed changes in population density

of the following models, each representing different hypotheses

about how temperature influences intrinsic growth rates and carry-

ing capacity. The model forms were as follows: (i) r and K are equal

across all transects, and for all years, representing no climatic or

transect-specific influence on population dynamics (‘Single fitted r

and K’); (ii) r and K vary between transects (as a random factor)

with no relationship with temperature, representing transect-specific

population dynamics with no influence of climate (‘Fitted r and K

varying between transects’); (iii) r and K vary linearly with the

August mean daily maximum temperature from gridded climate data

at 5 km resolution (Perry & Hollis 2005), with no effect of transect

(‘Regional climate’); (iv) r and K vary with regional (5 km) tempera-

ture as above, with transect included as a random factor determin-

ing the intercept, allowing r and K to vary according to transect-

level differences (‘Regional climate, intercepts varying between tran-

sects’); (v) r and K vary with regional temperature as above, with

transect included as a random factor determining both the intercept

and slope of this relationship (‘Regional climate, slopes and inter-

cepts varying between transects’); (vi) r and K were fitted across all

ten transects using modelled thermal habitat quality for each year,

such that r and K were determined by interactions between annual

temperature, sunshine, wind speed and topography (‘Microclimate’);

(vii) a model with the same structure as model (vi), using thermal

habitat quality from the previous year.

Microclimate and metapopulation dynamics

To predict regional range expansion, we modelled H. comma metapop-

ulation dynamics using the incidence function model (IFM; Hanski

1994). In the IFM, the probability of colonisation in a given timestep

is Ci = Si
2/(y + Si

2) and the probability of extinction is Ei = (1�Ci)

lAi
�x, where Si denotes the connectivity of patch i. Connectivity is

given by Si = sumj[(dij + 0.05)�aAj
b], and Ai is a proxy for the popu-

lation carrying capacity of patch i, usually taken as the patch area,

influencing both local extinction risk and the capacity to generate col-

onists (Moilanen & Hanski 1998). In this model, dij is the centre-to-

centre distance between each pair of patches i and j. The parameters

(a, y, l, x, and b) are used to relate the size and configuration of

patches and populations to dispersal (b, a), colonisation probability

(y), and extinction risk (l, x). We used a power law dispersal kernel

(a) because of its better fit than negative exponential kernels to mark-

recapture data for H. comma (Hill et al. 1996).

For our comparison of models excluding or including microcli-

mate, Ai was either the polygon area of patch i (‘habitat area

model’), or the patch area weighted by the modelled thermal habitat

quality (number of hours each August exceeding the thermal thresh-

old), scaled such that the mean value of thermal habitat quality

across patches between 1982 and 1991 equals 1 (‘microclimate

model’).
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We used nonlinear optimisation in the R package bblme (Bolker

& R Development Core Team 2010) to fit the five IFM parameters

(a, y, l, x and b) using survey data from the 686 patches for which

occupancy data (population presence or absence) were available in

1982 and 1991, and maximising the likelihood of the 1991 occu-

pancy given the 1982 occupancy. Confidence intervals on parameter

estimates were wide, so for simulations we sampled parameter sets

in proportion to their likelihood, within the joint 95% confidence

interval. The parameter estimates and confidence intervals were very

similar whether Ai was given as polygon area or thermal habitat

quality adjusted area, but nevertheless when simulating we used the

parameters that had been fitted using the appropriate measure of

Ai. We ran 500 iterations of each fitted IFM for all 906 habitat

patches recorded in 2009, either starting from the 1982 observed

distribution, and evaluating fit to the observed 2000 distribution

(model run 1), or starting from the 2000 observed distribution and

evaluating fit to the observed 2009 distribution (model run 2).

In our empirical tests of metapopulation simulations, the likeli-

hood of each presence or absence observation in 2000 or 2009 was

calculated as the proportion of model runs in which that observation

was reproduced in the simulation. Overall, AIC was calculated using

these likelihood values, either treating every patch as an independent

observation, or grouping patches within 5 km squares, and evaluat-

ing the joint likelihood of every patch in a square being predicted

correctly by the simulation. The latter is a conservative method to

account for spatial autocorrelation of patch occupancy. The impor-

tance of microclimate in determining the spatial pattern of range

expansion was tested by comparing AIC values between simulations

using the microclimate model versus the habitat area models.

RESULTS

Microclimate and population dynamics

In the ‘microclimate’ model (vi) where transect- and year-specific

microclimate determined local population growth rates, all fitted

parameters were significantly different from zero at P < 0.001

(b0 = 1.2 9 10�6, b1 = 1.8 9 10�6, b2 = 5.2 9 10�7, b3 = 8.7 9

10�5). The R2 value of 0.15 was significantly greater than expected

(randomisation test, P = 0.02). The microclimate model (model vi)

had more empirical support than any of the alternative models for

observed population dynamics at the ten continuously monitored

transects (Table 1). The next best performing models incorporated

the effects of regional climate only (model iii), or regional climate

interacting with random transect-specific effects (model v), reinforc-

ing the importance of interactions between interannual climatic vari-

ability and local habitat characteristics (including topography) in

driving population dynamics in this system. Model v was able to fit

observed data reasonably well (R2 = 0.314), but had a high number

of parameters due to the inclusion of transect as a random effect.

Microclimate and metapopulation dynamics

The ‘microclimate’ model captures the observed rate and pattern of

range expansion by the species from 1982 to 2000, and from 2000 to

2009 (Fig. 2), and has consistently more support than the ‘habitat

area’ model in predicting the occupancy state (presence vs. absence)

of individual habitat patches in the test years, for both model runs

(overall DAIC c. 40 for 2000 and 2009: Table 2, Fig. 2). In terms of

the temporal pattern of range expansion, while the habitat area model

predicted a steady annual increase in patch occupancy by around 3%

each year, the ‘microclimate’ model predicted sharp peaks in colonisa-

tion during warm summers, counteracted by no net colonisation or

even an excess of extinction over colonisation in cold summers

(Fig. 3). The pattern of peaks and troughs in relative numbers of col-

onisations and extinctions correlates well with the observed popula-

tion dynamics of H. comma in the independent data set of populations

that have been continuously monitored by the UK Butterfly Monitor-

ing Scheme since 1985 (Fig. 3; Pearson’s R2 = 0.52, P < 0.001).

The 9-year test periods following the model calibration period,

from 1991 to 2000 and 2000 to 2009, presented contrasting thermal

conditions, and different rates and patterns of range expansion. Dur-

ing the warmer 9-year period simulated in model run 1 (1991–2000),
H. comma rapidly expanded its distribution in Britain: 156 unoccupied

habitat patches were colonised, but only 4 of 78 local populations

recorded in 1991 were extinct in 2000. The microclimate model was

more successful than the habitat area model in predicting long-dis-

tance colonisations of relatively high quality patches, with improved

fit for large, relatively warm patches which were vacant and isolated

from occupied patches in 1982 but occupied in 2000 (Fig. S1).

Conditions were on average slightly cooler between 2000 and

2009 (model run 2), albeit warmer than the long-term average

(Fig. 3). In this second test period, 67 new populations were

recorded, and the range of the species locally expanded up to

18 km (Fig. 2), but the colonisations were set against 48 local

extinctions. The greater support for the microclimate vs. habitat

area model during the second period (Table 2) appears mainly due

to more accurate prediction of absence of the species caused by

local extinctions from micro-climatically cool habitat patches (Fig.

S1). In contrast, the habitat area model was somewhat more suc-

cessful than the microclimate model in identifying relatively isolated

habitat patches that were occupied by the species in 2009 (Fig. S1).

DISCUSSION

We integrate fine-scale spatial and temporal variability in weather

and microclimate with the realistic representation of a fragmented

habitat network, to simulate the range expansion of a thermally lim-

Table 1 Models for the population dynamics of Hesperia comma on regularly mon-

itored transects between 1982 and 2009. Models represent change in density D

between years and take the form DD = rD(1�D/K ), where r is the intrinsic rate

of population growth and K is carrying capacity. N = 191 time step per transect

observations; see Table S1 for transect details, and methods text for model

descriptions

Model Parameters R2 AIC ΔAIC

vi) Microclimate 4 0.150 �652.0 0

iii) Regional climate 4 0.093 �639.8 12.2

v) Regional climate, slopes and

intercepts vary between transects

40 0.314 �638.2 13.8

i) Single fitted r and K for

all transects

2 0.085 �638.1 13.9

vii) Microclimate for

previous year

4 0.067 �633.5 18.5

ii) Fitted r and K varying

between transects

20 0.134 �612.1 39.9

iv) Regional climate, intercepts

vary between transects

22 0.124 �610.0 42.0
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ited butterfly species. Our empirical tests of this model, using

detailed observations of population dynamics and patch occupancy

over 27 years, support the hypothesis that fine-scale variation in

thermal habitat quality determines the rate and extent of range

expansion at the species’ cool margin during climate warming.

Climate variability and population dynamics at range margins

At species’ range margins, demographic variability is often linked to

fine-scale spatial and temporal variation in climatic factors (King-

solver 1983; Roy & Thomas 2003). As a result, the geographical

range margins of species may be characterised by high demographic

variability (Thomas et al. 1994; Curnutt et al. 1996), and climate

warming has led to a dampening over time in the population vari-

ability of species near their poleward range margins (Oliver et al.

2012). Our findings confirm for the butterfly H. comma that popula-

tion variability can be linked explicitly to spatial and temporal varia-

tion in thermal habitat quality, which is a function of both weather

conditions and the topographic characteristics of different habitat

patches, particularly aspect (Table 1).

1982

2000 2009

(c)

(b)

(a)

Predictive success (relative to habitat only model)

Predicted distribution incorporating microclimate

Observed distribution at 2 km resolution

20 km

2000

2000

2009

2009

1991

Difference in log-likelihood
0.5–0.5 0

BetterWorse

Probability of presence
0% 100%

Figure 2 Observed and predicted range expansion of Hesperia comma from 1982 to 2009. The observed distribution maps (a) show 2 km grid cells containing surveyed

habitat occupied by H. comma (blue) or vacant (green). Only comprehensively surveyed cells are coloured in each survey date. Predicted distribution maps (b) show the

modelled patch network aggregated to 2 km resolution, in each case shaded to represent the proportion of 500 model runs in which each grid square was occupied in the

microclimate model. Predictive success (c) is shown relative to the habitat area model, showing the difference in log-likelihood achieved by incorporating microclimate.
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Local demographic variability in response to environmental sto-

chasticity has important implications for the rate and extent of

range expansion for species in which a discontinuous distribution of

habitat creates a metapopulation structure (Opdam & Wascher

2004). By including the effects of temporal variation in microcli-

mate, our metapopulation model captures the episodic nature of

range expansion by H. comma (Fig. 3), predicting enhanced rates of

colonisation during hotter years that favour population growth, and

local extinctions during cool periods. During hot years, the microcli-

mate-driven metapopulation model predicts net peaks of colonisa-

tion over extinction. The timing of these peaks coincides with the

recorded population dynamics of the species from independently

monitored populations in Britain (Fig. 3), demonstrating how the

combined microclimate and metapopulation model is able to trans-

late local demographic effects of climate variability to the temporal

pattern of range expansion by the species.

The spatial and temporal resolution of range shifts

Evidence from palaeoecology suggests that the existence of micro-

refugia may be necessary to explain the responses of species’ geo-

graphical ranges to climate change (Sublette Mosblech et al. 2011).

In addition, temporal variability in climate can influence the location

of species range margins (Early & Sax 2011; Bateman et al. 2012)

by driving episodes of colonisation, population growth and local

extinction (Jackson et al. 2009; Walther 2009). Here, we confirm

empirically that topographic variation at fine scales plays an impor-

tant role in determining rates and patterns of range expansion under

contemporary climate change and variability. As a species shifts its

range, topographic variation may provide climatically favourable mi-

crorefugia beyond the more continuous geographical range limits.

For H. comma, warm, south-facing slopes act as nuclei for range

expansion by increasing the chances of colonisation and population

growth in favourable (hot) years at the cool range margin; but

importantly, these warm environments may also enable the species

to retain footholds at the margins of the distribution during less

favourable (cool) years.

Our results show that including the effects of temporal and spatial

variability in climate can improve the ability of a metapopulation

model to capture the observed spatial dynamics of range expansion.

Our empirical data set encompasses a period of range expansion con-

taining the three warmest Augusts recorded in south-east England

(1995, 1997 and 2003) since at least 1910 (UK Met Office 2011b).

Incorporating microclimate into the metapopulation model helped to

identify the high thermal-quality but geographically isolated habitat

patches that were colonised by H. comma during a run of hot years

between 1991 and 2000. The metapopulation model incorporating

spatial and temporal variation in climate also identified more accu-

rately the microclimatically marginal habitat patches (e.g. on north-

facing slopes; Lawson et al. 2012) from which the species suffered

local extinction during the cooler, second period of metapopulation

simulation (2000–2009). These empirically tested simulations confirm

how advances made by a thermophilic species in unusually warm sea-

sons can be offset by limited expansion or retraction to locations with

hot microclimates during cooler periods, from which they may

expand again during subsequent warmer seasons. In the case of H.

comma, an increased frequency of hot summers during the predicted

continued warming trend (Solomon et al. 2007) is likely to cause

future pulses of population growth, which will translate into intermit-

tent waves of colonisation of habitats beyond the species’ current

range limits. As such, future rates of range expansion are likely to

depend on the frequency and magnitude of temporal fluctuations in

climate, in addition to changes in mean climate.

Mechanistic models of range shifts under climate variability

Species distribution modelling has moved in recent years away from

purely correlative models towards more mechanistic approaches

(Morin et al. 2007; Buckley et al. 2010, 2011). Such mechanistic

Figure 3 Changes in patch occupancy at the range margin of Hesperia comma

predicted by the microclimate model. Top panel shows median value of 500

simulations, shaded area shows 95 percentile limits. Colonisations greatly exceed

extinctions in warm years. Since the mid-1980s, this pattern closely matches the

trend shown by changes in population density based on estimates from transect

surveys (mid panel; plot shows annual rate of change) and the August

temperature record for south-east England (lower panel).

Table 2 Performance of microclimate- vs. habitat area-based metapopulation

models in predicting observed occupancy of habitat patches by Hesperia comma in

two time periods. 500 simulations were run for the periods 1982–2000 and 2000

–2009, starting with observed occupancy. Table shows the Akaike Information

Criterion (AIC) based on the log-likelihood that observed occupancy was cor-

rectly predicted a) for individual habitat patches (612 in 2000; 906 in 2009), or

b) for all habitat patches grouped per 5 km square in which they occur

(n = 115 9 5 km squares in 2000, 149 in 2009). b) represents a more conserva-

tive measure which takes account of likely spatial autocorrelation of nearby

patches. DAIC is positive where the microclimate model out-performed the area

model

Test data

Start year 1982 2000

End year 2000 2009

a) Independent patches AIC Habitat area model 728.2 841.4

AIC Microclimate model 688.6 799.1

DAIC 39.5 42.3

b) All patches per 5 km square AIC Habitat area model 440.8 550.9

AIC Microclimate model 434.9 535.5

DAIC 5.8 15.4
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approaches typically involve integrating models and data across

drastically different scales. Available climate data must be down-

scaled to biologically relevant spatial and temporal scales, and then

biological responses at the level of the organism or population must

be up-scaled to predictions of distribution at a regional or even glo-

bal scale. Incorporating fine-scale effects of climate may require a

flexible approach for different species and landscapes, which may

be deduced from direct activity and physiological measurements (as

here) or from statistical relationships between species and environ-

ment (Sears et al. 2011). Our results demonstrate how incorporating

both climatic variability and realistic representations of landscape

structure, including topography, into down-scaled climate, can cap-

ture potential effects of microclimate in driving population-level

responses. Furthermore, we suggest that representation of both

population- and metapopulation-level processes may need to be

incorporated into methods to translate the effects of climate on

individuals to species range dynamics, including both extinction and

colonisation at range edges.

Implications for conservation

For species experiencing climate variability around the warming

trend, range expansion models that incorporate dynamic microcli-

mates and realistic conditions of habitat fragmentation have the

potential to reveal the dynamics of colonisation and extinction at

spatial and temporal scales relevant to conservation interventions. It

may already be feasible for some species of conservation concern to

predict the success of assisted colonisation schemes given different

initial introduction sites, or the ability of fragmented habitat net-

works to support range shifts; however, given that different species

and their habitats will respond in different ways and on different

timescales to climate change, it will remain a challenge to give spe-

cific and dependable conservation advice for multiple species. Nev-

ertheless, there is a need to develop principles of action, and test

their effectiveness through realistic models and long-term observa-

tions where available. One strategy for conservation of biodiversity

in the face of uncertain species responses to climate is to focus

conservation efforts on retaining landscape structures (including

geological and topographic units) that will promote diversity and

facilitate range shifts (Beier & Brost 2009; Anderson & Ferree

2010). Hence, when planning regional conservation for a suite of

species, it may be important to protect and manage suitable habitats

that include a range of microclimates. The warmest habitats repre-

sent potential footholds for species expanding their distributions

polewards, whereas the coolest locations may act as microrefugia

for species at ‘warm’, lower latitude range margins. More generally,

topographic and microclimatic variability could enhance metapopu-

lation persistence by increasing asynchrony in local population

dynamics. Although the broader geographical direction of range

shifts may be deduced from species-environment relationships and

bioclimate modelling (e.g. Early & Sax 2011), our results show that

conservation planning in specific regions or landscapes may benefit

from an understanding of the effects of local variation in microcli-

mate on the likelihood of metapopulation persistence or expansion.
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