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Decision-making is one of the most important intellectual abilities of the human brain. Here we propose an
efficient decision-making system which uses optical energy transfer between quantum dots (QDs) mediated
by optical near-field interactions occurring at scales far below the wavelength of light. The simulation results
indicate that our system outperforms the softmax rule, which is known as the best-fitting algorithm for
human decision-making behaviour. This suggests that we can produce a nano-system which makes
decisions efficiently and adaptively by exploiting the intrinsic spatiotemporal dynamics involving QDs
mediated by optical near-field interactions.

W
hich clothes should I wear? Which restaurant should we choose for lunch? Which article should I read
first? We make many decisions in our daily lives. Can we look to nature to find a method for ‘efficient
decision-making’? For formal discussion, let us focus on the multi-armed bandit problem (BP), stated

as follows. Consider a number of slot machines. Each machine when pulled, rewards the player with a coin at a
certain probability Pk (kg{1, 2, …, N}). For simplicity, we assume that the reward from one machine is the same
as that from another machine. To maximise the total amount of reward, it is necessary to make a quick and
accurate judgment of which machine has the highest probability of giving a reward. To accomplish this, the player
should gather information about many machines in an effort to determine which machine is the best; however, in
this process, the player should not fail to exploit the reward from the known best machine. These requirements are
not easily met simultaneously, because there is a trade-off between ‘exploration’ and ‘exploitation’. The BP is used
to determine the optimal strategy for maximising the total reward with incompatible demands, either by exploit-
ing rewards obtained owing to already collected information or by exploring new information to acquire higher
pay-offs in risk taking. Living organisms commonly encounter this ‘exploration-exploitation dilemma’ in their
struggle to survive in the unknown world.

This dilemma has no known generally optimal solution. What strategies do humans and animals exploit to
resolve this dilemma? Daw et al. found that the softmax rule is the best-fitting algorithm for human decision-
making behaviour in the BP task1. The softmax rule uses the randomness of the selection specified by a parameter
analogous to the temperature in the Boltzmann distribution (see Methods). The findings of Daw et al. raised many
exciting questions for future brain research2. How humans and animals respond to the dilemma and the under-
lying neural mechanisms still remain important and open questions.

The BP was originally described by Robbins3, although the same problem in essence was also studied by
Thompson4. However, the optimal strategy is known only for a limited class of problems in which the reward
distributions are assumed to be ‘known’ to the players, and an index called ‘the Gittins index’ is computed5,6.
Furthermore, computing the Gittins index in practice is not tractable for many problems. Auer et al. proposed
another index expressed as a simple function of the total reward obtained from a machine7. This upper confidence
bound (UCB) algorithm is used worldwide for many applications, such as Monte-Carlo tree searches8,9, web
content optimization10 and information and communications technology (ICT)11–14.

Kim et al. proposed a decision-making algorithm called the ‘tug-of-war model’ (TOW); it was inspired by
the true slime mold Physarum15,16, which maintains a constant intracellular resource volume while collecting
environmental information by concurrently expanding and shrinking its branches. The conservation law entails
a ‘nonlocal correlation’ among the branches, that is, the volume increment in one branch is immediately
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compensated for by volume decrement(s) in the other branch(es).
This nonlocal correlation was shown to be useful for decision-mak-
ing. Thus, the TOW is a dynamical system which describes spatio-
temporal dynamics of a physical object (i.e. an amoeboid organism).
The TOW connected ‘natural phenomena’ to ‘decision-making’ for
the first time. This approach enables us to realise an ‘efficient
decision maker’–an object which can make decisions efficiently.

Here we demonstrate the physical implementation of the TOW
with quantum dots (QDs) and optical near-field interactions by
using numerical simulations. Semiconductor QDs have been used
for innovative nanophotonic devices17,18 and optical near-field inter-
actions have been successfully applied to solar cells19, LEDs20, diode
lasers21 etc. We have already proposed QD systems for computing
applications, such as the constraint satisfaction problem (CSP) and
the satisfiability problem (SAT)22,23. We introduce a new application
for decision-making by making use of optical energy transfer
between QDs mediated by optical near-field interactions.

We use three types of cubic QDs with side lengths of a,
ffiffiffi
2
p

a and
2a, which are respectively represented by QDS, QDM and QDL

[Fig. 1(a)]. We assume that five QDs are one-dimensionally arranged
in ‘L-M-S-M-L’ or ‘M-L-S-L-M’ as shown in Fig. 1(b), where S, M
and L are simplified representations of QDS, QDM and QDL, respect-
ively. Owing to the steep electric fields in the vicinity of these QDs, an
optical excitation can be transferred between QDs through resonant
energy levels mediated by optical near-field interactions24–28. Here we
should note that an optical excitation is usually transferred from
smaller QDs to larger ones owing to energy dissipation processes
occurring at larger QDs (details are described in Supplementary
Information). In addition, an optical near-field interaction follows
Yukawa-type potential, meaning that it could be engineered by inter-
dot distances,

U rð Þ~Aexp {r=að Þ=r, ð1Þ

where r is the inter-dot distance, and A and a are constants29.
When an optical excitation is generated at QDS, it is transferred to

the lowest energy levels in QDLs; we observe negligible radiation
from QDMs. However, when the lowest energy levels of QDLs are
occupied by control lights, which induce state-filling effects, the
optical excitation at QDS is more likely to be radiated from QDMs30.

Here we consider the photon radiation from either left QDML or
right QDMR as the decision of selecting slot machine A and B,
respectively. The intensity of the control light to induce state-filling
at the left and right QDLs is respectively modulated on the basis of the
resultant rewards obtained from the chosen slot machine. We call
such a decision-making system the ‘QD-based decision maker
(QDM)’. The QDM can be easily extended to N-armed (N . 2) cases,
although we demonstrate only the two-armed case in this study.

It should be noted that the optical excitation transfer between QDs
mediated by optical near-field interactions is fundamentally prob-
abilistic; this is described below in detail on the basis of density
matrix formalism. Until energy dissipation is induced, an optical
excitation simultaneously interacts with potentially transferable des-
tination QDs in the resonant energy level. We exploit such probabil-
istic behaviour for the function of exploration for decision-making.

It also should be emphasised that conventionally, propagating
light is assumed to interact with nanostructured matter in a spatially
uniform manner (by a well-known principle referred to as long-
wavelength approximation) from which state transition rules for
optical transitions are derived, including dipole-forbidden transi-
tions. However, such an approximation is not valid for optical
near-field interactions in the subwavelength vicinity of an optical
source; the inhomogeneity of optical near-fields of a rapidly decaying
nature makes even conventionally dipole-forbidden transitions
allowable17,22,23.

We introduce quantum mechanical modelling of the total system
based on a density matrix formalism. For simplicity, we assume one

excitation system. There are in total 11 energy levels in the system: S 1

in QDS; ML1 and ML2 in QDML; LL1, LL2 and LL3 in QDLL; MR1 and
MR2 in QDMR; LR1, LR2 and LR3 in QDLR. Therefore the number of
different states occupying these energy levels is 12 including the
vacancy state, as schematically shown in Fig. 1(b). Because a fast
inter-sublevel transition in QDLs and QDMs is assumed, it is useful
to establish theoretical treatments on the basis of the exciton popu-
lation in the system composed of QDS, QDMs and QDLs, where 11
basis states are assumed, as schematically illustrated in Fig. 1(c).

Results
Here we propose the QDM that is based on the five QD system, as
shown in Fig. 1(b). Through optical near-field interactions, an optical
excitation generated at QDS is transferred to the lowest energy levels
in the largest-size QD, namely the energy level LL1 or LR1. However,
when LL1 and LR1 are occupied by other excitations, the input excita-
tion generated at S1 should be relaxed from the middle-sized QD, that
is, ML1 and MR1. The idea of the QDM is to induce state-filling at LL1

and/or LR1 while observing radiations from ML1 and MR1. If radi-
ation occurs in ML1 (MR1), then we consider that the system selects
machine A (B). We can modulate these radiation probabilities by
changing the intensity of the incident light.

We adopt the intensity adjuster (IA) to modulate the intensity of
incident light to large QDs, as shown at the bottom of Fig. 2. The
initial position of the IA is zero. In this case, the same intensity of
light is applied to both LL1 and LR1. If we move the IA to the right, the
intensity of the right increases and that of the left decreases. In
contrast, if we move the IA to the left, the intensity of the left
increases and that of the right decreases. This situation can be
described by the following relaxation rate parameters as functions

of the IA position j: CLR2~
1

100
{

1
10000

jz
1

100000
, and CLL2~

1
100

z
1

10000
jz

1
100000

.

In advance, we calculated two (right and left) radiation probabil-
ities from ML1 and MR1, namely SA(j) and SB(j), in each of the 201
states (2100 # j # 100) by using the quantum master equation of the
total system (see Supplementary Information). There are 101 inde-
pendent values. Results are shown in Fig. 2 as the solid red line. If j .

0, the intensity of incident light to the LR1 increases (the CLR2

decreases by the amount of j/10, 000), while that to the LL1 decreases
(the CLL2 increases by the amount of j/10, 000). Correspondingly, the
radiation probability SB(j) is larger than SA(j) for j . 0, while the
radiation probability SA(j) is larger than SB(j) for j , 0. For j , 2100,
we used probabilities SA(2100) and SB(2100). Similarly, we used
SA(100) and SB(100) for j . 100.

The dynamics of the IA is set up as follows. The IA position is
moved according to the reward from a slot machine. Here the para-
meter D is a unit of the move.

1. Set the IA position j to 0.
2. Select machine A or B by using SA(j) and SB(j).
3. Play on the selected machine.
4. If a coin is dispensed, then move the IA to the selected

machine’s direction, that is, j 5 j 2 D for A, and j 5 j 1 D
for B.

5. If no coin is dispensed, then move the IA to the inverse dir-
ection of the selected machine, that is, j 5 j 1 D for A, and j 5 j
2 D for B.

6. Repeat step (2).

In this way, the system selects A or B, and the IA moves to the right
or left according to the reward.

Figures 3(a) and (b) demonstrates the efficiency (cumulative rate
of correct selections) for the QDM (solid red line) and the softmax
rule with optimised parameter t (dashed line) in the case where the
reward probabilities of the slot machines are (a) PA 5 0.2 and PB 5
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(c)

Figure 1 | (a) Energy transfer between quantum dots (QDs). Two cubic quantum dots QDS and QDM, whose side lengths are a and
ffiffiffi
2
p

a, respectively, are

located close to each other. Optical excitations in QDS can be transferred to neighbouring structures QDM via optical near-field interactions, denoted by

US1M2
29, because there exists a resonance between the level of quantum number (1, 1, 1) for QDS (denoted by S1) and that of quantum number (2, 1, 1) for

QDM (M2). (b) QD-based decision maker. The system consists of five QDs denoted QDLL, QDML, QDS, QDMR and QDLR. The energy levels in the

system are summarised as follows. The (2, 1, 1)-level of QDML, QDMR, QDLL and QDLR is respectively denoted by ML2, MR2, LL2 and LR2. The (1, 1, 1)-

level of QDML, QDMR, QDLL and QDLR is respectively denoted by ML1, MR1, LL1 and LR1. The (2, 2, 2)-level of QDLL and QDLR is respectively denoted by

LL3 and LR3. The optical near-field interactions are US1Mi2 , US1Li3 , UMi2Li3 and UMi1Li2 i~L, Rð Þ. (c) Schematic summary of the state transitions. Shown are

the relaxation rates CLL3 , CLL2 , CML2 , CMR2 , CLR3 and CLR2 , and the radiative decay rates cLL1
, cML1

, cS1
, cMR1

and cLR1
.
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0.8 and (b) PA 5 0.4 and PB 5 0.6. In these cases, the correct selection
is ‘B’ because PB is larger than PA. These cumulative rates of correct
selections are average values for each 1, 000 samples. Hence, each
value corresponds to the average number of coins acquired from the
slot machines. Even with a non-optimised parameter D, the perform-
ance of the QDM is higher than that of the softmax rule with opti-
mised parameter t, in a wide parameter range of D 5 10–100
although we show only the D 5 50 case in Figs. 3(a) and (b).

Figure 3(c) shows the adaptability (percentage of correct selec-
tions) for the QDM (red line) and the softmax rule (black line).
The parameter t of the softmax rule was optimised to obtain the
fastest adaptation. The switching occurs at time steps t 5 3, 000
and 6, 000. Up to t 5 3, 000, the systems adapt to the initial envir-
onment (PA 5 0.4 and PB 5 0.6). Between t 5 3, 000 and 6, 000, the
systems adapt to the new environment (PA 5 0.6 and PB 5 0.4).
Beyond t 5 6, 000, the systems adapt to the first environment again
(PA 5 0.4 and PB 5 0.6). It is noted that we set b 5 0 at the switching
points because the softmax rule cannot detect the environmental
change. Nevertheless, the adaptation (slope) of the QDM was found
to be faster (steeper) than that of the softmax rule to the initial
environment (PA 5 0.4 and PB 5 0.6) as well as to the new envir-
onment (PA 5 0.6 and PB 5 0.4). Thus, we can conclude that the
QDM has better adaptability than the softmax rule.

Discussion
In summary, we have demonstrated a QDM on the basis of the
optical energy transfer occurring far below the wavelength of light
by using computer simulations. This paves a new way for utilising
quantum nanostructures and inherent spatiotemporal dynamics of

optical near-field interactions for totally new application, that is,
‘efficient decision-making’. Surprisingly, the performance of the
QDM is better than that of the softmax rule in our simulation studies.
Moreover, the QDM exhibits superior flexibility in adapting to envir-
onmental changes, which is an essential property for living organ-
isms to survive in uncertain environments.

Finally, there are a few additional remarks. First, it has been
demonstrated that the optical energy transfer is about 104 times more
energy efficient as compared with the bit-flip energy of conventional
electrical devices31. Furthermore, nanophotonic devices based on
optical energy transfer with such energy efficiency have been experi-
mentally demonstrated, including input and output interfaces with
the optical far-field32. These studies indicate that the QDM is highly
energy efficient. The second remark is about the experimental imple-
mentation of size- and position-controlled quantum nanostructures.
Kawazoe et al. successfully demonstrated a room-temperature-oper-
ated two-layer QD device by utilising highly sophisticated molecular
beam epitaxy (MBE)17. In addition, Akahane et al. succeeded in
realising more than 100 layers of size-controlled QDs33. Besides,
DNA-based self-assembly technology can also be a solution in realis-
ing controlled nanostructures34. Other nanomaterial systems, such as
nanodiamonds35, nanowires36, nanostructures formed by droplet
epitaxy37, have also been showing rapid progress. These technologies
provide feasible solutions. Finally, in the demonstration of decision-
making in this study, for simplicity, we dealt with restricted pro-
blems, namely, PA 1 PB 5 1. However, general problems can also
be solved by the extended QDM although the IA dynamics becomes a
bit more complicated. The IA and its dynamics can also be imple-
mented by using QDs.

Figure 2 | Intensity adjuster (IA) and difference between radiation probabilities from ML1 and MR1. The difference between radiation probabilities

SB(j) 2 SA(j) as a function of the IA position j, which are calculated from the quantum master equation of the total system, is denoted by the solid red line.

Here we used the parameters CLR2 ~
1

100
{

1
10000

jz
1

100000
, and CLL2 ~

1
100

z
1

10000
jz

1
100000

. As supporting information, the dashed line denotes

the case where CLR2 ~
1

10z500 100zjð Þ, and CLL2 ~
1

10{500 100{jð Þ.
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Methods
Calculation of radiation probabilities SA(j) and SB(j). Using the quantum Liouville
equation (see Supplementary Information), we can calculate the probabilities of
radiation from ML1 and MR1. We used the following relaxation rate and radiative

decay parameters as shown in Fig. 1(c), cS1
~

1

2ð Þ31,000
, cMR1

~
1

ffiffiffi
2
p� �3

1,000
,

cML1
~

1
ffiffiffi
2
p� �3

1,000
, cLR1

~
1

1,000
, cLL1

~
1

1,000
, CMR2 ~

1
10

, CLR3 ~
1

10
,

CLR2 ~
1

100
{

1
10,000

jz
1

100,000
, CML2 ~

1
10

, CLL3 ~
1

10
and CLL2 ~

1
100

z

1
10,000

jz
1

100,000
, where j represents the position of the intensity adjuster (IA).

Note that we used the following optical near-field interaction parameters so that
the QDs are one-dimensionally arranged in ‘‘M-L-S-L-M’’ order for this calculation:

US1MR2 ~
1

10,000,000
, US1LR3 ~

1
100

, UMR2LR3 ~
1

10,000
, UMR1LR2 ~

1
10,000

,

US1ML2 ~
1

10,000,000
, US1LL3 ~

1
100

, UML2 LL3 ~
1

10,000
and UML1 LL2 ~

1
10,000

. Here

we used A 5 0.1 and a 5 1029 for the parameters in eq.(1). Then, the distance between
QDS and QDL (r1) is 20 nm, and the distance between QDL and QDM (r2) is 24.5 nm,

such that U r1ð Þ~
1

100
and U r2ð Þ~

1
10,000

. Finally, we obtained two radiation

probabilities whose maximum ratio is 8520.82. The difference between radiation
probabilities, SB(j) 2 SA(j), is shown by the solid red line in Fig. 2.

Algorithms. Softmax rule. In the softmax rule, the probability of selecting A or B,
P’A tð Þ or P’B tð Þ, is given by the following Boltzmann distributions:

P’A tð Þ~ exp bQ’A tð Þ½ �
exp bQ’A tð Þ½ �zexp bQ’B tð Þ½ � , ð2Þ

P’B tð Þ~ exp bQ’B tð Þ½ �
exp bQ’A tð Þ½ �zexp bQ’B tð Þ½ � , ð3Þ

where Q’k k[ A,Bf gð Þ is the estimated reward probability of slot machines k, denoted
by Pk, and ‘temperature’ b is a parameter. These estimates are given as,

Q’k tð Þ~ Wk tð Þ
Mk tð Þ , ð4Þ

Wk tð Þ~wk tð ÞzaWk t{1ð Þ, ð5Þ

Mk tð Þ~mk tð ÞzaMk t{1ð Þ: ð6Þ

Here wk(t) (kg{A, B}) is 1 if a reward is dispensed from machine k at time t, otherwise
0, and mk(t) (kg{A, B}) is 1 if machine k is selected at time t, otherwise 0. a is a
parameter that can control the forgetting of past information. We used a 5 1 for
Figs. 3(a) and (b), and a 5 0.999 for (c).

In our study, the ‘temperature’ b was modified to a time-dependent form as
follows:

b tð Þ~t:t: ð7Þ

Here, t is a parameter that determines the growth rate. b 5 0 corresponds to a random
selection, and b R ‘ corresponds to a greedy action. Greedy action means that the
player selects A if Q’AwQ’B , or selects B if Q’AvQ’B .

Figure 3 | (a) Efficiency comparison 1. The efficiency comparison between the QDM and the softmax rule is for slot machine reward probabilities of PA 5

0.2 and PB 5 0.8. The cumulative rate of correct selections for the QDM with fixed parameter D 5 50 (solid red line) and the softmax rule with optimised

parameter t 5 0.40 (dashed line) are shown. (b) Efficiency comparison 2. The efficiency comparison between the QDM and the softmax rule for PA 5 0.4

and PB 5 0.6. The cumulative rate of correct selections for the QDM with fixed parameter D 5 50 (solid red line) and the softmax rule with optimised

parameter t 5 0.25 (dashed line) are shown. (c) Adaptability comparison. The adaptability comparison between the QDM and the softmax rule for PA 5

0.4 and PB 5 0.6. In every 3,000 steps, two reward probabilities switch. The percentage of correct selections for the QDM with fixed parameter D 5 50 (red

line), and the softmax rule with the optimised parameter t 5 0.08 (black line) are shown. In this simulation, we used the forgetting parameter a 5 0.999

(see Methods).
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Dynamics of the intensity adjuster. We adopt the IA to modulate the intensity of
incident light to large QDs as shown at the bottom of Fig. 2. The dynamics of the IA
also uses estimates Qk (kg{A, B}) which are different from those of the softmax rule.
The IA position j is determined by

j~floor QB{QAð Þ, ð8Þ

Qk tð Þ~rk tð ÞzaQk t{1ð Þ, ð9Þ

where the function floor(x) truncates the decimal point. rk(t) (kg{A, B}) is D if a
reward is dispensed from the machine k at time t, 2D if a reward is not dispensed
from the machine k and 0 if the system does not select the machine k. Here D is a
parameter and a is also a parameter that can control forgetting of past information.
We used a 5 1 for Figs. 3(a) and (b), and a 5 0.999 for (c).

If we set a 5 1, the dynamics can be stated by the following rules.

1. If a coin is dispensed, then move the IA to the selected machine’s direction, that
is, j 5 j 2 D for A and j 5 j 1 D for B.

2. If a coin is not dispensed, then move the IA to the inverse direction of the
selected machine, that is, j 5 j 1 D for A and j 5 j 2 D for B.
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