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Abstract

Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is 

disrupted in approximately half of meningiomas1 but the complete spectrum of genetic changes 

remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas 

and focused sequencing on an additional 48 tumors to identify and validate somatic genetic 

alterations. Most meningiomas exhibited simple genomes, with fewer mutations, rearrangements, 
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and copy-number alterations than reported in other adult tumors. However, several meningiomas 

harbored more complex patterns of copy-number changes and rearrangements including one tumor 

with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations 

in epigenetic modifiers among an additional 8% of tumors. A subset of meningiomas lacking NF2 

alterations harbored recurrent oncogenic mutations in AKT1 (E17K) and SMO (W535L) and 

exhibited immunohistochemical evidence of activation of their pathways. These mutations were 

present in therapeutically challenging tumors of the skull base and higher grade. These results 

begin to define the spectrum of genetic alterations in meningiomas and identify potential 

therapeutic targets.

Meningiomas, tumors that arise from arachnoidal cap cells of the leptomeninges, constitute 

approximately one-third of primary central nervous system (CNS) tumors1. Most 

meningiomas (80%) are World Health Organization (WHO) grade I and treated by surgical 

resection. However, resection of some meningiomas, particularly at the skull base, is 

associated with high morbidity. Moreover, 18% of these will recur within five years, and 

patients with grade I tumors have significantly reduced long-term survival related to both 

tumor recurrence and stroke risk2. Recurrence rates for grade II and III meningiomas can be 

as high as 40% and 80%, with 5-year overall survival of approximately 76% and 32%, 

respectively1,3,4. Although there are recent reports of a stepwise progression of a subset of 

grade I meningiomas to higher grades5,6, these secondary grade II/III meningiomas may 

differ fundamentally from spontaneously arising grade II/III tumors. Radiation is frequently 

used as an adjunct to surgery; however, there are no effective chemotherapeutic options 

when surgery and radiation fail to offer durable long-term disease control7.

We sequenced DNA from a discovery set of grade I meningiomas using whole-genome (n = 

11) and whole-exome (n = 6) techniques to identify somatic copy-number alterations 

(SCNAs), rearrangements, mutations, and insertions/deletions throughout the genome. We 

then sequenced 645 known cancer-associated genes, including genes altered in this 

discovery set, in a validation set of 30 additional grade I tumors. We also sequenced these 

genes in an extrapolation set of 18 grade II-III meningiomas to evaluate whether findings in 

grade I tumors extended to the tumors of higher grades (Online Methods, Supplementary 

Tables 1 and 2).

Meningiomas in the discovery set exhibited a small number of somatic genetic events 

compared to other tumor types8–14. We sequenced to high depth (median 57X genome, 

181X exome, and 154X validation/extrapolation coverage) and utilized large-insert libraries 

in whole-genome samples (500 bp and 800 bp) to optimize our detection of rearrangements 

and other events. Nevertheless, we found that the median meningioma exhibited SCNAs 

affecting only 3.3% of the genome, one rearrangement, and 8 non-synonymous mutations. 

Among mutations, cytosine to thymidine transitions within a CpG context predominated, 

consistent with spontaneous deamination (Supplementary Fig. 1a)15. The rates of alteration 

we observed in meningiomas were significantly lower (often by a factor of 10 or more) than 

previously determined rates for other tumors that have been sequenced to lower depth and 

with smaller insert sizes (Fig. 1a–c). These findings may reflect differences in mitotic index, 

prior treatments, or carcinogen exposure between these tumor types.
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In contrast, rates of genomic disruption were higher among the grade II-III meningiomas in 

the extrapolation set than their grade I counterparts (Supplementary Fig. 2). The mean rate 

of non-synonymous mutations within the 645 sequenced genes was nearly twice as high in 

higher-grade tumors (3.0 vs. 1.6; p<0.02), and the proportion of the genome affected by 

SCNAs was dramatically higher (median 12.8 vs. 0.3%; p<0.001).

Among SCNAs, loss of chromosome 22 (containing NF2) was the most frequent genetic 

alteration in the discovery cohort, occurring in all 10 tumors with focal NF2 alteration 

(defined as mutation, insertion/deletion, or rearrangement within the NF2 locus) and one 

without (Fig. 1d, Supplementary Fig. 3). The association between NF2 mutation and chr22 

loss extended to the validation and extrapolation sets (p<0.0001) and confirms prior reports 

using other methods16. In the grade I tumors, we also found recurrent significant losses on 

1p, 7p, 14p, and 19 and gains on chr5 and chr20 (q<0.1), some of which have been 

described previously17. Higher-grade tumors of the extrapolation set exhibited additional 

recurrent losses on 10q and 14q, previously reported in atypical and anaplastic 

meningiomas1. We did not observe previously described losses of DAL-1, a gene related to 

NF2 on 18p18.

We identified a total of 110 candidate somatic rearrangements in whole-genome samples, of 

which 93 were confirmed to have reads spanning the putative fusion site (Supplementary 

Table 3, Supplementary Fig. 4). Most of these were concentrated in three tumors (Fig. 2), 

one of which exhibited chromothripsis, a simultaneous rearrangement of one or more 

chromosomes estimated to occur in 2–3% of aggressive malignancies19,20. One of the genes 

disrupted by chromothripsis was the putative tumor suppressor NEGR1, which was also 

rearranged in a second tumor. NEGR1 plays a role in CNS development and is recurrently 

deleted in neuroblastoma21, though its role in tumorigenesis remains to be elucidated. A 

third sample harbored disruptions in the known and putative tumor suppressors NF1, NF2, 

and CDK14. A copy-neutral 12.5Mb inversion caused reciprocal fusion of NF2 (before exon 

2) and TCF20, representing a novel mechanism of inactivating NF2 in meningiomas. We 

also identified other translocations in samples that were not subjected to whole-genome 

analysis, including a truncating translocation in CHEK2 (Supplementary Fig. 4i and 

Supplementary Table 3). The loss of CHEK2 may lead to impaired DNA repair, as has been 

described in meningioma cell lines22.

The most frequently mutated gene was NF2, which exhibited a total of nine nonsense 

mutations, nine splice site mutations, nine frame-shift insertions-deletions, and the above-

mentioned translocation (Supplementary Fig. 5). The majority of these events overlap with 

previously reported events, and our rates of NF2 inactivation are consistent with published 

rates1. The non-synonymous mutation rates of tumors with and without focal NF2 

alterations did not differ significantly, nor did the spectra of their mutation subtypes 

(Supplementary Fig. 1b–d).

We also identified non-synonymous mutations in 190 other genes (Supplementary Tables 4 

and 5). We determined the significance of mutation rates in individual genes relative to 

genome-wide background rates. Six genes reached statistical significance (Fig. 3, 

Supplementary Fig. 5, Supplementary Table 4). Four of these (NF2, KDM5C, SMO, and 
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AKT1) have previously been implicated in cancer, and the other two (RGPD3 and CD300C) 

have not. Isolated or rare mutations that did not reach significance across the entire cohort 

were observed in 23 genes with known involvement in cancer, including TP53, APC, CBL, 

STK11 and NOTCH2.

Among genes mutated in our cohort and previously associated with cancer, three (KDM5C, 

KDM6A, and SMARCB1) are epigenetic modifiers. Mutations involving these genes affected 

8% of the cohort. Both KDM5C (also known as JARID1C) and KDM6A are histone 

demethylases23; SMARCB1 (also named SNF5 and INI1) is a member of the SWI/SNF 

chromatin-remodeling complex. SMARCB1 is located 6 Mb from NF2, and a “four hit” 

model of biallelic inactivation of both genes has been described in familial schwannomas24. 

The mutation we identified (R374Q) is near a mutational hotspot (R377H) described in 

meningiomas25 and germline mutations in SMARCB1, including R374Q, have been reported 

in the congenital disorder, Coffin-Siris syndrome26.

We observed mutations of SMO, a member of the Hedgehog (Hh) signaling pathway, in 

three tumors (5%). None of these tumors exhibited focal alterations of NF2. Two samples 

harbored SMO W535L, a known oncogenic mutation in basal cell carcinomas27, and a third 

harbored an L412F mutation, previously reported in desmoplastic medulloblastoma28. The 

allelic fractions of these mutations (45%, 55% and 47%) were among the highest in these 

tumors, suggesting clonality. Moreover, dysregulation of the Hh pathway has been 

previously described in meningiomas29,30. Gorlin syndrome (nevoid basal-cell carcinoma 

syndrome) is caused by a germline PTCH1 mutation (upstream of SMO), and is 

characterized by predisposition to multiple cancers, including desmoplastic 

medulloblastomas and meningiomas31,32. Although we did not observe somatic mutations in 

PTCH1, two samples harbored germline alterations that were also present in the tumor 

(D436N, E44G/P1282L). However, these patients did not exhibit manifestations of Gorlin 

syndrome, so the functional significance of these specific events is unclear.

Six samples exhibited mutations of the PI3K/AKT/mTOR pathway. None of these had 

mutations of NF2 or SMO (p=0.03). Five samples harbored identical AKT1 mutations 

(E17K) known to be oncogenic in breast, colorectal and lung cancers33. The E to K 

substitution results in constitutive AKT1 activation, which stimulates downstream mTOR 

signaling. The sixth sample exhibited a novel MTOR mutation (D1279V).

The Hh and PI3K pathway mutations were also associated with particular histopathologic 

subtypes (Fig. 4). SMO- and AKT1/MTOR- mutated meningiomas were predominantly of the 

meningothelial subtype (p=0.009, p=0.005, Fisher’s exact test). This is in contrast to the 

grade I NF2-altered tumors, which were predominantly fibroblastic and/or transitional 

(p=0.013), consistent with prior reports34. We did not find statistically significant 

correlations with other clinically relevant variables including age, location or prior resection. 

However, one AKT1- and two SMO-mutated tumors were resected from the skull base, a 

region that offers particular challenges to resection and higher rate of recurrence35 

(Supplementary Table 5).
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To validate these findings, we also genotyped an additional 46 grade I and 49 grade II/III 

meningiomas for AKT1 (E17K) and SMO (W535L and L412F) mutations using a mass 

spectrometric based method (Sequenom hME). We found one SMO (L412F) mutation and 

three additional AKT1 (E17K) mutations (Supplementary Table 6). One of these was in a 

grade III tumor, and the remaining three were in skull base tumors, of which two were of 

meningothelial histology.

Mutations in SMO, AKT1, and MTOR also correlated with markers of pathway activation. 

GAB1 immunoreactivity is used in medulloblastomas to characterize tumors with Hh 

pathway activation36. Among the 65 meningiomas, seven exhibited strong immunoreactivity 

for GAB1, including the three tumors harboring SMO mutations (p=0.0008). The other four 

GAB1-positive tumors were grade II meningiomas. Likewise, STMN1 expression is a 

marker of PI3K/Akt pathway activation37. Ten meningiomas exhibited strong STMN1 

expression, including all six AKT1 and MTOR-mutated meningiomas (p=3×10−6). Notably, 

all three SMO-mutated meningiomas also exhibited strong (n=2) or moderate (1) STMN1 

staining. This is consistent with studies that have suggested that Hh and PI3K/AKT/mTOR 

pathways may interact38.

We observed recurrent mutations in signaling pathways and epigenetic modifiers, but our 

data also highlight the heterogeneity of mutations in these tumors. Among the 17 tumors we 

comprehensively characterized, three (18%) did not exhibit mutations in any of the 

significantly mutated genes. Genomic characterization of additional tumors, particularly of 

higher grades, is likely to reveal additional oncogenic mechanisms.

These observations also have the potential to guide new therapeutic strategies. We observed 

SMO and AKT1 mutations in tumors that pose special therapeutic challenges, including a 

high-grade and six skull-base tumors. Inhibitors of SMO have generated high response rates 

in patients with basal cell carcinoma, many of which are driven by Hh pathway mutations39. 

Likewise, inhibitors of the PI3K/AKT/mTOR pathway have shown promise in preclinical 

and clinical trials in multiple cancer types40. The paucity of additional genetic events in 

meningiomas harboring mutations of PI3K and Hh signaling pathways suggests that patients 

with these meningiomas may benefit from such targeted therapies already in development or 

use.

ONLINE METHODS

Sample Selection and Preparation

This study was reviewed and approved by the human subjects institutional review boards of 

the Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and the Broad Institute 

of Harvard and MIT. Written informed consent was obtained from all participants. We chose 

to initially perform whole-exome sequencing in 6 meningiomas as a pilot study to determine 

the optimal depth of whole-genome sequencing needed to provide adequate tumor coverage 

in spite of stromal contamination. These six tumors and 11 additional whole-genome 

sequenced meningiomas comprised the discovery cohort. To validate clinically actionable 

mutations identified in the discovery set, we performed focused sequencing on a validation 

cohort consisting of an additional 30 grade I meningiomas. We also assembled an 
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extrapolation cohort of 15 grade II and 3 grade III meningiomas (Supplementary Table 1) in 

order to compare genetic aberrations of low- and high-grade tumors. Our approach of deep, 

broad sequencing of a small representative cohort followed by validation in an independent 

larger group is similar to the approach used by others to discover IDH141 and PIK3CA42 

mutations. Three study pathologists (SS/DL/ASR) reviewed the histopathologic diagnosis, 

grade and purity of each tumor.

Representative fresh-frozen blocks with estimated purity of ≥90% were selected. DNA was 

extracted from tissue shavings and buffy coat preparations of paired blood using standard 

techniques (QIAGEN, Valencia CA) then quantified using PicoGreen® dye (InVitrogen, 

Carlsbad CA). Identities of tumor-normal pairs were confirmed by mass spectrometric 

genotyping using a well-established 48-SNP panel (Sequenom, San Diego CA)43.

Data, including sequence data and analyses, are available for download via dbGaP (http://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000552.v1.p1).

Sequencing

For whole-genome sequencing (n=11), DNA was randomly fragmented and libraries of two 

insert sizes were prepared (500 and 800bp) for paired-end sequencing on Illumina HiSeq 

200010,11. Target depth (60X-tumor/30X-normal) was achieved in all but one sample 

(MEN0015) that failed 800bp library preparation; however, adequate coverage of the 500bp 

library was achieved.

For whole-exome sequencing (n=6), 250bp libraries were prepared by Covaris sonication 

(Covaris, Woburn MA), followed by double size-selection (Agencourt AMPure XP beads) 

and ligation to specific barcoded adaptors (Illumina TruSeq) for multiplexed analysis. 

Exome hybrid capture was performed with NimbleGen SeqCap EZ Exome Library SR v2.2, 

Agilent Sure Select All Exon v2.0 hybrid capture kit, or both approaches. All samples but 

one achieved >150X coverage in exon regions (MENex004, 79X-tumor/90X-normal).

We proceeded with sequencing 645 cancer-associated genes in our larger validation and 

extrapolation sample set (n=48) because this pre-selected gene set (OncoPanel) included all 

genes of interest that were also clinically actionable (including AKT and SMO) that arose in 

the discovery set. In addition, a wide breadth of other genes in the same families (such as 

MTOR in the AKT pathway) and other interesting cancer-related genes in other families were 

included (Supplementary Table 2). Briefly, DNA was sonicated to achieve an average 

fragment size of 150bp, then size-selected and barcoded as above. Each multiplexed pool 

was hybridized with biotinylated baits (Agilent SureSelect, Agilent) designed to capture 

exonic sequences. Streptavidin-coated beads were used to pull down the complexes, which 

were loaded on a HiSeq2000 for paired-end sequencing.

Sequencing Analysis Pipeline

For exome- and OncoPanel-sequenced data, pooled sample reads were de-multiplexed using 

Picard tools (http://picard.sourceforge.net). Read pairs were aligned to the hg19 reference 

sequence (b37) (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/) using the 

Burrows-Wheeler Aligner44 (http://bio-bwa.sourceforge.net/bwa.shtml) with options: -q 5 -l 
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32 -k 2 -o 1. Data were sorted and duplicate-marked using Samtools (http://

samtools.sourceforge.net) and Picard. Bias in base quality score assignments due to flowcell, 

lane, dinucleotide context, and machine cycle were analyzed and recalibrated, and local 

realignment around insertions/deletions was achieved using the Genome Analysis Toolkit 

(GATK) (http://www.broadinstitute.org/gatk/)45,46.

Variant and germline calling were performed within the Firehose environment11 using 

GenePattern47. All algorithms described are available publicly (https://

confluence.broadinstitute.org/display/CGATools). All sample pairs passed a QC pipeline to 

test for any tumor/normal and inter-individual mix-ups by comparing insert-size distribution 

and copy-number profile as described previously10. The Mann-Whitney test was used to 

determine significance of differences between rates of somatic genetic alteration between 

meningiomas and the other datasets.

Somatic copy-number alterations (SCNAs) and rearrangements

SCNAs were evaluated using SegSeq48, which uses a combination of local change-point 

analysis and subsequent merging of adjacent chromosomal segments with similar copy-

number. For arm-level significance analysis, pseudo-markers were added every 10,000 bases 

to segmented copy-number data, and these were analyzed by GISTIC 2.0 to determine 

which events occurred more often than expected by chance14.

Rearrangements and their exact breakpoints were identified using the combination of 

dRanger and BreakPointer algorithms8,10. Briefly, dRanger identifies potential 

rearrangements from read pairs mapping to different chromosomes or unexpected positions / 

orientations on the same chromosome, and BreakPointer locates reads spanning the fusion 

and maps the exact breakpoint using modified Smith-Waterman alignment10. 

Rearrangements are assigned a score reflecting the number of tumor reads supporting a 

breakpoint, the fraction of nearby reads with MAPQ0, the prevalence of other nearby 

discordant pairs, and the standard deviation of breakpoint starting positions. To minimize 

false-positive rearrangements, only breakpoints with score ≥8 passing BreakPointer were 

accepted. The specificity of this type of approach has previously been shown to be >90%10. 

Copy-number and rearrangement results were displayed using the Circos program (http://

mkweb.bcgsc.ca/circos)49.

Identification of base pair substitutions and short insertion-deletions

Mutations were only considered at covered positions (≥8X-normal and 14X-tumor sites). 

Somatic mutations and short insertions/deletions were called and post-filtered using MuTect 

and IndelLocator10,11. These were annotated to genes and compared to events in the 

Catalogue of Somatic Mutations in Cancer (COSMIC) using Oncotator, and spurious calls 

caused by mis-mapping and other previously identified systematic errors were removed 

using an established list of known problematic sites11–13. MutSig was used to determine the 

significance of mutated genes, adjusting for cohort- and genome-wide mutation rate, local 

background mutation rate, and gene length11–13. We used a cohort-wide background 

mutation rate instead of the more commonly used sample-specific mutation rate because the 

observed low mutation rate in these tumors leads to poor sampling of individual mutation 
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subcategories. This may lead to overly large apparent variations between background rates 

of mutation subtypes in different samples. Mutations are shown in the context of UniProt 

regions and domains (www.uniprot.org). Post-hoc analyses for significant non-overlap of 

NF2, SMO, and AKT1 mutations were determined by Fisher’s exact test, as were 

associations between these mutations and chr22 loss or specific categorical demographic 

characteristics. The Mann-Whitney test was used for comparisons of mutations and 

continuous demographic variables.

Germline variants were called using UnifiedGenotyper45,46, filtered against the 

1000genomes dataset50, and annotated to genes as above. Genes with known syndromic 

associations to meningiomas (NF1, NF2, SMARCB1 and PTCH1) were manually reviewed 

for germline non-synonymous mutations. These were visualized in Integrative Genomics 

Viewer (www.broadinstitute.org/igv/).

Sequenom Validation

We obtained IRB approval for collection of independent archival paraffin-embedded 

meningioma samples from the Brigham and Women’s Hospital Pathology Department. We 

identified 95 samples from patients that did not overlap with our cohort of 65 tumors, 

resected between 2005 and 2012. Forty-nine of these were higher-grade meningiomas. 

Tissue was de-paraffinized and DNA extracted using standard techniques (QIAGEN, 

Valencia CA). Variants in SMO (W535L and L412F) and AKT1 (E17K) were assayed using 

Sequenom’s homogeneous Mass-Extend (hME) Genotyping system (Sequenom, Inc. San 

Diego, CA). Bidirectional probes and primers were designed using Sequenom MassARRAY 

Typer software (v 4.0), and hME genotyping was performed using 5ng of unamplified 

genomic DNA template per assay pool (maximum of 4 assays per pool).

Immunohistochemistry

Tissue sections were deparaffinized and rehydrated using Xylene and graded alcohols. 

Endogenous peroxidase activity was blocked with 3% H2O2 in 100% ethanol (1:1; 15 

minutes). Antigen retrieval was performed with Dako Target Retrieval Solution, pH 6.0 and 

pressure cooker treatment (120+/−2°C, 15+/−5 psi) for 45 seconds. Sections were incubated 

with primary antibodies against GAB1 (Abcam ab27439, 1:100×45min), Ki67 (Vector Lab 

VP-451, 1:2500×45min), or Stathmin (Cell Signaling Technologies #3352, 1:120, 

4°C×16hr), followed by secondary antibody (Dako Labeled Polymer-HRP anti-rabbit IgG 

x30min). Visualization was with 3,3'-diaminobenzidine as a chromogen (Envision+System) 

and Gill hematoxylin counterstaining. Associations between specific mutations and their 

differences in histopathological subtypes and immunohistochemical staining were 

determined post-hoc with Fisher’s exact test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The landscape of somatic alterations in the grade I meningioma genome. (a) Fraction of the 

genome altered by somatic copy-number alterations (SCNAs), (b) number of somatic intra- 

and inter-chromosomal rearrangements, and (c) number of non-synonymous mutations in 

meningiomas and other tumor types. MEN: meningioma; PR: prostate; CRC: colorectal 

carcinoma; BCL: diffuse large B-cell lymphoma; MEL: melanoma; MM: multiple myeloma; 

HN: head and neck cancers. (d) Somatic genetic alterations in individual grade I 

meningiomas of the discovery cohort. Top: Copy-number profiles (red = gain, blue = loss). 
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Middle: Number of somatic rearrangements per tumor. Samples labeled as MENex are 

exome-sequenced, in which no rearrangements were detected. Bottom: Total non-

synonymous and synonymous mutations in exons. ** p<0.01, *** p<0.0001.
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Figure 2. 
Somatic rearrangements disrupt tumor suppressors in several meningiomas. Circos plots 

show the SCNAs (inner ring heat map) and intra- and inter-chromosomal rearrangements 

(green and purple arcs, respectively) in three whole-genome sequenced meningiomas. Left: 

Chromothripsis of chromosome 1 (enlarged in inset) in an NF2-mutated sample (MEN0017) 

disrupts the putative tumor suppressor NEGR1. Middle: A second NF2-mutated sample 

(MEN0018) harbors 29 rearrangements including disruption of NEGR1. Right: An inversion 

on chromosome 22 disrupts NF2, and other rearrangements affect NF1 and CDK14 

(MEN0009). Data from the remaining tumors are shown in Supplementary Figure 4.
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Figure 3. 
Significant and selected cancer-related somatic mutations, insertion-deletions, and 

translocations in meningiomas. Mutation subtypes are denoted by the indicated colors. If 

multiple mutations were found in a gene in a single sample, only one is shown. Discovery 

set tumors are in the same order as in Figure 1d. Right: Significance of mutations in each 

gene, as false discovery rate q-values. The full list of mutated genes is shown in 

Supplementary Table 4.
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Figure 4. 
Associations between mutations in Hh and Akt/mTOR pathways and histologic findings. (a) 

AKT/MTOR and SMO-mutated samples are predominantly of the meningothelial subtype 

(p=0.009, p=0.005). NF2-mutated samples are predominantly fibroblastic and transitional 

(p=0.013). (b) Immunohistochemistry indicates activation of Hh and Akt/mTOR pathways 

in tumors harboring SMO and AKT1 mutations, respectively (p=0.0008, p=3×10−6). GAB1 

staining was used as a marker of Hh pathway activation, and STMN1 staining was used as a 

marker of PI3K/Akt/mTOR pathway activation. Scale bars denote 50 micrometers.
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