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Clustered Basic Amino Acids of the Small Sendai Virus C
Protein Y1 Are Critical to Its Ran GTPase-Mediated
Nuclear Localization
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Abstract

The Sendai virus (SeV) C proteins are shown to exert multiple functions during the course of infection. Perhaps
reflecting their many functions, they occur at multiple sites of the cell. In this study, we focused on the nuclear-
localizing ability of the smaller C protein, Y1, and found that this translocation is mediated by Ran GTPase but not by
passive diffusion, and that basic residues within the 149-157 amino acid region are critical for that. The mechanism of
inhibition of interferon (IFN)-signaling seemed to differ between the C and Y1 proteins, since deletion of 12 C-
terminal amino acids resulted in a loss of the function for the C but not for the Y1 protein. The ability of Y1 mutants to
inhibit IFN-a-induced, ISRE-driven expression of a reporter gene almost paralleled with that to localize in the nucleus.
These results suggest that nuclear localization of the Y1 protein might be important for the inhibitory effect on type-I
IFN-stimulated gene expression.
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Introduction

Sendai virus (SeV; mouse parainfluenza virus type 1) is a
prototype of the family Paramyxoviridae of the order
Mononegavirales which includes a number of important and
ubiquitous disease-causing viruses of humans and animals,
such as measles virus, parainfluenza viruses, mumps virus,
Nipah virus, human metapneumovirus, canine distemper virus,
and rinderpest virus [1]. SeV contains a nonsegmented,
negative-stranded RNA genome of 15,384 nucleotides
encoding six structural proteins, N, P, M, HN, F, and L,
tandemly, in this order [2]. The P gene of paramyxoviruses is
unique in producing more than one polypeptide species, and at
least seven polypeptides are expressed from the SeV P gene:
in addition to the P protein, four C proteins (C’, C, Y1, and Y2)
are translated from start codons in the +1 open reading frame
(ORF) relative to that of the P protein, and proteins V and W
are produced from the altered P ORF with the insertion of one
or two G residues at a specific position of the mMRNA,
respectively, during transcription [2]. These proteins are known
as “accessory” proteins, because they are inessential for
minimal viral growth in cultured cells. However, they have been
found to play important roles in viral growth and pathogenicity
[1,2].

PLOS ONE | www.plosone.org

The SeV C proteins have been shown to have multiple
functions during viral replication in cell cultures (in vitro) as well
as in mice (in vivo), such as counteraction against host innate
immunity, inhibition of virus-induced apoptosis, regulation of
polarized viral RNA synthesis, and promotion of efficient viral
assembly and budding [3—-9]. However, their best-characterized
function is to counteract the Jak/STAT signaling pathway after
stimulation by type | interferons (IFNs), resulting in a lack of
activation of IFN-stimulated genes (ISGs) and establishment of
an antiviral state in the infected cell [3,5,10-13]. This function
has been reported to be accomplished by inhibition of tyrosine
phosphorylation of cellular signal transducer and activator of
transcription (STAT) 2 through physical interaction with STAT1,
and mapped to the C-terminal half (amino acids [a.a.] 99-204)
of the C protein [12—-16]. The longer C proteins (C’ and C) have
been reported to induce STAT1 instability in certain kinds of
cells such as mouse embryonic fibroblasts (MEFs) and human
fiborosarcoma 2fTGH cells, thereby preventing the
establishment of an antiviral state in an IFN-a/f signaling-
independent manner [11]. The longer C proteins also induce
the IFN-independent phosphorylation of STAT1, although the
significance of this to viral replication and pathogenicity is
unknown [15,17,18]. The latter two functions are mapped to
within 23 N-terminal amino acids of the 204-residue C protein
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[19]. In addition, the C proteins have been shown to prevent
not only IFN-a/B, but also IFN-y signaling, and to suppress IFN-
B production through unknown mechanisms [3,5,13,16,20].

During viral replication, viral proteins must be located at
appropriate sites in the host cell to function properly. In this
regard, the SeV C proteins are unique in that they have been
shown to occur in the cytoplasm as well as at the plasma
membrane and in the nucleus [21-23]. In SeV-infected cells,
most C proteins are detected in the cytoplasm by
immunofluorescence  microscopy [21,22]. However, in
experiments with overexpression of the C proteins, the longer
C protein has been detected predominantly at the plasma
membrane, and the N-terminal 23 amino acid region of the C
protein acts as a membrane-targeting and membrane-
anchoring signal [19,23]. In addition, we recently reported that
the smaller Y proteins (Y1 and Y2) were predominantly
detected in the nucleus, although no potential nuclear
localization signal (NLS) sequence was found within the protein
[23].

In this paper, we found a cluster of basic amino acids at
position 149-157 of the Y1 protein important for its active
nuclear localization, and suggested a functional relevance of
the nuclear-localizing activity to its ability to inhibit IFN-induced
gene expression.

Materials and Methods

Cells and antibodies

293T cells (human renal epithelial cells expressing the SV40
large T antigen; RIKEN BRC Cell Bank, Tsukuba, Japan) were
maintained in Dulbecco’s minimum essential medium (DMEM;
Invitrogen) supplemented with 10% fetal bovine serum (FBS;
Biological Industries, Kibbutz, Israel) and penicillin-
streptomycin (Invitrogen) at 37 C as described previously [20].
A polyclonal antibody (pAb) against the SeV C protein was
kindly provided by A. Kato (National Institute of Infectious
Diseases, Japan). A pAb against the green fluorescent protein
(GFP) (sc-8334; Santa Cruz biotechnology, Santa Cruz, CA)
was used according to the manufacturer’s directions.

Plasmid Construction

Plasmids encoding SeV C and Y1 mutants (C-d2Y, Y1-dY2,
Y1-d192, -d188, and -d184) in pCAGGS.MCS and a plasmid
encoding SeV Y2 in the pKS vector have been described
previously [23,24]. The other Y1 mutants (Y1-d170, -d160, -
d150, -KMK149A3, -TER152A3, -WLR155A3, -TLI158A3, -
RGE161A3, -KTK164A3, -LKD167A3, -K149A, -M150A, -
K151A, -W155A, -L156A, -R157A, -T158A, -L159A, -1160A,
and -T152R,TLI158A3) were generated by introducing point-
mutations using an AMAP site-directed mutagenesis kit
(Amalgaam, Japan), and inserted back into the pPCAGGS.MCS
vector. The N-terminally EGFP-fused C and Y1 mutants
[EGFP-C, -C(1-23), -Y1, and Y1-d150] were generated using a
standard PCR technique, and inserted into pEGFP-C1
(Clontech). Each position was numbered from the first amino
acid of the C protein with 204 residues. A reporter plasmid,
pISRE-EGFP, was constructed by replacing the luciferase
gene in pISRE-Luc (Agilent Technologies) with the EGFP gene
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by standard PCR. The full-length cDNA clone of N-terminally
hemagglutinin (HA)-tagged human Ran GTPase was amplified
from a total RNA sample of 293T cells by using an RT-PCR
technique with specific primers and subcloned into the
pCAGGS.MCS. The dominant-negative (DN) form of Ran
containing T24N mutation was generated using an AMAP
mutagenesis kit. All mutations were confirmed by DNA
sequencing.

Immunofluorescence microscopy

293T cells cultured in 6-well plates containing glass
coverslips were transfected with the indicated plasmids using
the FUGENE HD transfection reagent (Roche Diagnostics). At
24 h post-transfection (p.t.), cells were fixed with a 3%
formaldehyde solution, and treated with 0.1% Triton X-100 in
phosphate-buffered saline (PBS). Cells were then stained
using anti-C pAb as a primary antibody and Alexa 488-
conjugated anti-rabbit 1gG goat pAb (Invitrogen) as a
secondary antibody. The coverslips were mounted on glass
slides and observed under a Zeiss LSM 5 confocal microscope
(Carl Zeiss).

Subcellular fractionation

293T cells cultured in 6-well plated were transfected with the
indicated plasmids using the FUGENE HD reagent. At 24h p.t.,
subcellular fractions were prepared using a Nuclear/Cytosol
Fractionation Kit (BioVision) according to the manufacturer’s
directions.

Reporter assay

293T cells cultured in 6-well plates were co-transfected with
the indicated plasmids using the FUGENE HD reagent. At 18 h
p.t., the culture medium was replaced with fresh medium
containing IFN-a (1,000 IU/ml, R&D Systems). After an
additional 8-h incubation, cells were lysed in SDS-PAGE
sample buffer (125 mM Tris-HCI [pH 6.8], 4.6% SDS, 10% 2-
mercaptoethanol, 0.005% bromophenol blue, and 20%
glycerol) and analyzed by SDS-PAGE (12%) followed by
Western blotting using pAbs against GFP and the SeV C
protein as primary antibodies, and horseradish peroxidase
(HRP)-conjugated anti-rabbit 1IgG goat pAb as a secondary
antibody. Protein bands were visualized using an Immobilon
Western Chemiluminescent HRP substrate (Millipore), and
analyzed wusing a chemiluminescence imaging system
(LAS-1000plus, Fuiji Film).

Results

Smaller Y but not larger C proteins actively localize to
the nucleus in a Ran GTPase-dependent manner

We have previously reported that the overexpression of
single proteins, SeV Y1 and Y2, lacking 23 and 29 amino acids
from the N-terminus of the C protein, respectively, resulted in a
subcellular distribution in the cytosol and/or nucleus, while the
full-length C proteins (C-WT and C-d2Y, lacking expression of
Y1 and Y2) were found predominantly at the plasma
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Figure 1. Subcellular localization of the Y1 mutants possessing C-terminal deletions. (A) Schematic representation of

expression plasmids encoding C-WT, C-d2Y, Y1, Y1-d192, -d188, -d184, -d170, -d160, and -d150. (B) The C and Y1 proteins were
expressed in 293T cells. At 24 h p.t., cells were fixed with 3% formaldehyde, permeabilized with 0.1% Triton X-100, and stained with
anti-C pAb and Alexa 488-conjugated anti-rabbit IgG antibody as primary and secondary antibodies, respectively. Cells were

observed under a Zeiss LSM5 confocal microscope.
doi: 10.1371/journal.pone.0073740.g001

membrane (Figure 1B) [23]. A computer analysis could find no
potential NLS throughout the C sequence (data not shown).
First, to identify the amino acid region responsible for the
nuclear localization of the Y1 protein, the subcellular
localization of a series of Y1 mutants possessing C-terminal
deletions was analyzed by immunofluorescence microscopy
using anti-C pAb (Figure 1). The Y1 mutants, Y1-d192, -d188, -
d184, -d170, -d160, and -d150, were constructed by
introducing stop codons at the positions next to the indicated
numbers. In the Y1-d160 and -d150-transfected cells,
fluorescence was no longer detected in the nucleus, while
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diffuse cytoplasmic and nuclear labeling was observed in the
cells transfected with either Y1-d192, -d188, -d184, or -d170
(Figure 1B), indicating that the region from a.a. 150 to 170 of
the Y1 protein is important to its nuclear localization. Among
these Y1 mutants, Y1-d184 seemed to be localized in the
nucleus in a greater degree than the other longer mutants
including Y1. Since the C-terminal region of the C and Y
proteins has been shown to be critical for their inhibitory effect
against the Jak/STAT pathway, this might imply some
functional difference between these proteins.
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Figure 2. Subcellular distribution of the EGFP-fused C and Y1 mutants. (A) Schematic representation of expression plasmids
encoding EGFP, EGFP-C, -C(1-23), -Y1, and -Y1-d150. (B) The EGFP-fused proteins were expressed in 293T cells. At 24 h p.t.,
cells were fixed with 3% formaldehyde and observed under a confocal microscope.

doi: 10.1371/journal.pone.0073740.g002

The nuclear pore complex allow unregulated passive
diffusion of small molecules (< 20-40 kDa), but those of more
than 40-60 kDa cannot migrate into the nucleus unless they
contain NLSs [25]. Therefore, the nuclear localization of the
approximately 20-kDa Y1 protein might be due to passive
diffusion, even though the nuclear localizing ability of the Y1
mutants were not size-dependent (Figure 1). To examine this
possibility, N-terminally EGFP-fused C and Y1 proteins were
constructed (Figure 2A), and their subcellular localization was
observed (Figure 2B). The expression of EGFP alone exhibited
diffuse cytoplasmic as well as marked nuclear localization as a
result of passive diffusion due to its small size of 27 kDa. In the
cells transfected with the EGFP-C, in which the entire C protein
was fused with the C-terminal of EGFP, marked nuclear
fluorescence was still observed, but the fluorescence was
detected also at the cell periphery, as expected from the ability
of the C protein to preferentially localize at the plasma
membrane. Interestingly, a similar distribution was observed in
the cells transfected with the EGFP-C(1-23), in which the PM-
targeting and membrane-anchoring N-terminal 23 amino acids
of the C protein were fused to the C-terminal rather than N-
terminal of EGFP. In the cells transfected with the N-terminally
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EGFP-fused Y1, EGFP-Y1, both diffuse cytoplasmic and
nuclear localization was detected as in the Y1-transfected cells.
In contrast, like Y1-d150, EGFP-Y1-d150, in which Y1-d150
was fused with the C-terminal of EGFP, could no longer be
detected in the nucleus. Unlike the unmodified EGFP that
localized both in the cytoplasm and nucleus, EGFP-Y1-d150
was found exclusively in the cytoplasm provably due to its
increase in size. These results again confirm the nuclear
localization of Y1 was not a result of passive diffusion.

It has been known that Ras-related nuclear protein (Ran) is a
GTPase involved in transport of proteins across the nuclear
envelope, and a T24N mutation within Ran leads to a
dominant-negative (DN) phenotype [26,27]. To further confirm
that the Y1 protein actively transported to the nucleus but not
by passive diffusion, we examined the effect of HA-tagged DN
form of Ran (HA-Ran-DN) expression on the nuclear
localization of Y1 (Figure 3). HA-Ran-DN alone expressed
mostly in the cytoplasm (Figure 3B, middle panel). Co-
expression of HA-Ran-DN with Y1 dramatically diminished the
nuclear concentration of the Y1 protein (Figure 3, compare
upper and lower panels), while nuclear distribution of EGFP
was not affected by the expression of HA-Ran-DN (Figure 3A).
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Figure 3. Subcellular distribution of EGFP (A) and the Y1 protein (B) in the presence of HA-Ran-DN. 293T cells co-
transfected with Y1 and HA-Ran-DN were stained with anti-C (green) and anti-HA (red) antibodies at 24 h p.t., and observed under

a Zeiss LSM5 confocal microscope.
doi: 10.1371/journal.pone.0073740.g003

This effect of HA-Ran-DN expression on the loss of nuclear
localization of Y1 was further confirmed by fractionation of cells
into cytosolic and nuclear extracts (Figure 4). C-d2Y observed
at the plasma membrane and in the cytosol [19,23] was
exclusively detected in the cytosolic fractions regardless of the
presence or absence of HA-Ran-DN (Figure 4A, lanes 1-4 and
4B, left two bars). Consistent with Figure 3, the Y1 protein was
detected in the cytosol more than in the nucleus in the
presence of HA-Ran-DN, as opposed to the case in the
absence of HA-Ran-DN where Y1 was detected in the nucleus
more than in the cytosol (Figure 4A, lanes 5-8 and 4B, center
two bars).
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These results indicate that the Y1 protein has the ability to be
actively distributed to the nucleus in a Ran GTPase-dependent
manner, and a region of a.a. 150 -170 is responsible for that.

Basic Amino Acids in the a.a. 149 -157 Region of the Y1
Protein Are Critical for Its Nuclear Localization

As mentioned above, no possible NLS was predicted
throughout the C protein, despite its active transport to the
nucleus. To identify amino acids critical for the nuclear
localization of the Y1 protein, another series of Y1 mutants, Y1-
KMK149A3, -TER152A3, -WKR155A3, -TLI158A3, -
RGE161A3, -KTK164A3, and -LKD167A3, in which amino acid
triplets starting from the indicated numbers within the 149-169
region were replaced by alanines, were constructed (Figure
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and nuclear (Nu) fractions were prepared as described in Materials and Methods at 24 h p.t., and equal amounts of each sample
were analyzed by Western blotting using anti-C pAb. (B) The C and Y1 mutants in the cytosolic and nuclear fractions were
quantitated using an LAS-1000 luminescent image analyzer. Ratios of the amounts each protein in the nuclear fractions to those in

the cytosolic fractions are shown as bar graphs.
doi: 10.1371/journal.pone.0073740.g004

5A). As for the Y1 protein, diffuse cytoplasmic and
concentrated nuclear labeling was observed in the cells
transfected with Y1-RGE161A3, -KTK164A3, and -LKD167A3.
In the Y1-TER152A3-expressing cells, the cytoplasmic
fluorescence was more apparent, but nuclear fluorescence was
still readily detectable. In contrast, cytoplasmic labeling was
clearly detected, but nuclear fluorescence was no longer
detected in the cells expressing Y1-KMK149A3, -WLR155A3,
and -TLI158A3 (Figure 5B).

To make a short list of the amino acids responsible for the
nuclear localization of the Y1 protein, single substitutions with
an alanine were introduced into the KMK149, WLR155, and
TLI158 regions (Figure 6A). The substitutions of K149A,
K151A, and R157A resulted in a loss of the nuclear
fluorescence, while the others did not greatly affect the
subcellular localization of Y1 (Figure 6B). These results

PLOS ONE | www.plosone.org

suggest that the basic K149, K151, and R157 residues are
important for nuclear localization of the Y1 protein, just as basic
amino acids play a key role in NLS function.

To firmly verify the importance of basic amino acids to the
nuclear-localizing function of the Y1 protein, we examined
whether the loss of nuclear localization of Y1-TLI158A3 could
be recovered by the substitution of a non-basic threonine with a
basic arginine residue at position of 152 (Figure 7A). In the
cells transfected with the mutant, Y1-T152R,TLI158A3,
predominant nuclear fluorescence was observed, although the
parental Y1-TLI158A3 had lost the ability for nuclear
localization (compare Figures 5B and 7B). This alteration of the
ability of nuclear localization was further confirmed by a
fractionation analysis (Figure 4A, lanes 9-12 and 4B, right two
bars).

August 2013 | Volume 8 | Issue 8 | e73740
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doi: 10.1371/journal.pone.0073740.g005

These results indicate that basic amino acid residues within
the 149-157 region of the Y1 protein play an important role in
its nuclear localizing ability, although an adjacent, non-basic
amino acid triplet TLI158 is able to affect the function.

Nuclear localization of the Y1 protein parallels its
antagonizing-ability against IFN-a-induced gene
expression

The best-known function of the SeV C proteins is the
counteraction of IFN-induced antiviral responses. To find a
relevance of the nuclear localization of the Y1 protein to its
antagonism of IFN-signaling, we finally examined whether the
Y1 mutants would be able to disrupt IFN-induced reporter gene
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expression. 293T cells were co-transfected with the indicated C
or Y1 mutants together with a reporter plasmid, pISRE-EGFP,
in which expression of EGFP was controlled by an IFN-
stimulated response element (ISRE), and then treated with
IFN-a to induce EGFP expression, as performed previously
[28-30]. The expression level of EGFP in each sample was
compared and expression of the C and Y mutants was
confirmed by Western blotting using anti-GFP and anti-C pAbs,
respectively (Figure 8). In the absence of any of the C and Y
proteins, expression of EGFP induced by IFN-a treatment was
readily detectable by Western blotting using anti-GFP pAb
(Figure 8A-C, lanes 2).
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indicated mutants were subjected to immunofluorescent microscopy as shown in Figure 1B.

doi: 10.1371/journal.pone.0073740.g006

As for the C protein, expression of the 204-residue-long C protein caused significant loss of the inhibition (Figure 8A,
protein clearly inhibited EGFP expression (Figure 8A, lane 3), lanes 4-6).
but the C-terminal deletions of 12-20 amino acids of the C
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As expected from previous reports [13], the Y1-dY2 lacking
expression of Y2 and Y2 proteins were also able to reduced
EGFP expression (Figure 8B, lanes 3 and 4). Like the C
deletion mutants, the Y1 mutants possessing C-terminal
deletions of more than 16 amino acids no longer inhibited
EGFP expression regardless of whether they were nuclear-
localizing or not (Figure 8B, lanes 6-9). Interestingly, unlike C-
d192, Y1-d192 possessing a deletion of C-terminal 12 amino
acids was still able to inhibit EGFP expression (Figure 8B, lane
5), implying that the mechanism for inhibition of IFN-induced
gene expression might be different between the C and Y1
proteins.

More interestingly, as for the Y1 mutants possessing triple
amino acid substitutions, their ability to inhibit EGFP
expression almost correlated with that to localize in the nucleus
(Figure 8C). Indeed, the nuclear-localizing Y1-RGE161A3 was
able to inhibit EGFP expression at a level comparable to the Y1
protein (Figure 8C, lane 8), but all of the non-nuclear-localizing
mutants failed to inhibit the expression with the exception of
Y1-WLR155A3 (Figure 8C, lanes 4, 6, and 7). Consistent with
the increased cytoplasmic fluorescence, the level of inhibitory
effect of Y1-TER152A3 on IFN-induced EGFP expression was
reduced compared to that observed in the cells expressing the
other nuclear-localizing Y1 proteins (Figure 8C, lane 5). In
addition, consistent with the recovered nuclear localization
observed in the Y1-T152R,TLI158A3-expressing cells, loss of
the ability of Y1-TLI158A3 to inhibit reporter EGFP expression
was also recovered by an additional T152R mutation (Figure
8C, lanes 8 and 9).

These results suggest that the ability of the Y1 protein to
localize in the nucleus may be relevant to that to inhibit IFN-
induced gene expression.

Discussion

P mRNA of most of the paramyxoviruses encode multiple
polypeptides: P as well as two major accessory proteins, C and
V, were translated from the intact and/or edited P mRNAs [1].
The best-characterized function of these accessory proteins is
to counteract host innate immunity. In this regard, SeV has the
most diverse functions [2]. The V protein has been shown to
inhibit retinoic acid-inducible gene | (RIG-1)-like receptor (RLR)-
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dependent signaling leading to the activation of interferon
regulatory factor-3 (IRF3) followed by IFN-B production through
physical interaction not only with one of the RLRs, melanoma
differentiation-associated gene 5 (MDAS5), but also with
interferon regulatory factor-3 (IRF-3) [28,31-33].

The C protein has also been reported to prevent the
induction of the host innate immune responses by interfering
with multiple steps of the pathways. Its best-known function is
the counteraction of the well-characterized IFN-a/f signaling
(Jak/STAT) pathway via inhibition of tyrosine phosphorylation
of STAT2 through interaction with STAT1 or by inducing
instability of STAT1 in certain types of cells, resulting in
suppression of ISG activation and subsequent establishment of
an antiviral state among the host cells [11,14,15,17]. In
addition, the C protein has been known to block also the IFN-y
signaling pathway by preventing interaction of gamma-
activated factor (GAF), a homodimer of phosphorylated STAT1,
and gamma-activated sequence (GAS) in the promoter of ISGs
in the nucleus [3,5,13,16].

The C protein seems to play roles not only in inhibition of the
IFN-signaling pathways but also in prevention of the RLR-
dependent IFN-inducing pathway. The C protein is reported to
have the ability to limit the generation of viral double-stranded
(ds) RNA [20,34]. This limitation is suggested to keep protein
kinase R (PKR) inactive, which is activated by the binding of
dsRNA and induce antiviral actions of the host cells [34].
Moreover, the C protein inhibits RLR-dependent activation of
IRF3 and induction of IFN-B by an unknown mechanism
[20,35].

In addition to counteracting host innate immunity, the C
protein plays multiple roles in the course of viral replication,
and has been shown to inhibit apoptosis induced by viral
infections, promote viral assembly and budding through
interaction with Alix/AIP1, and regulate polarized viral RNA
synthesis for efficient production of infectious viral particles
[4,6,20,23,24,36-40]. Perhaps reflecting such diverse
functions, the C protein is able to localize at various sites in the
cell, which might be the appropriate place to exert its functions.
In the SeV-infected cultured cells, the C protein was mainly
detected in the cytoplasm by immunofluorescence microscopy
[21,22]. However, in the case of a single protein expression
from cDNA, the C protein localized predominantly at the

August 2013 | Volume 8 | Issue 8 | e73740



(A)
EGFP -
C -

(B)
EGFP -
Y1 -

(C)
EGFP -
Y1 -

Nuclear Localization of SeV Y Proteins

pISRE-EGFP
IFN- o
N 0
> O 0 o
N — r— o
D g 2 B
O O O 0O -
- s oz o
3 4 5 6 7
e 1
--s
10 11 12 13 14
pISRE-EGFP
IFN- o
N O O O
t>\_J O W W ~ ©
L T $§ % 97
— N — — — — —
> > > > > > >
e == — aED oo oo
3 4 5 6 7 8 9
--. ‘
>

12 13 14 15 16 17 18

pISRE-EGFP
IFN-
on on
<C ‘;? << ™ 2 ™ <C
(2 BN T Yo B - N
< S © o0 © oo
x T o 2 g=2ec
S & 2 5 a5
¥ F T R R
> > = ¥ ¥ =

T

w
N
a1
(0}
~
[00]
©

s D e, D e g o

12 13 14 15 16 17 18

Figure 8. ISRE reporter assay in the presence of the C and Y mutants. 293T cells were co-transfected with a series of deletion
mutants of the C protein (A), deletion mutants of the Y1 protein (B), or the Y1 mutants possessing triple alanine substitutions (C)
together with a reporter plasmid, pISRE-EGFP. At 18 h p.i., cells were treated with IFN-a (1,000 IU/ml) for 8 h, and then expression
level of EGFP and the transfected C and Y1 proteins were analyzed by Western blotting using anti-GFP and anti-C antibodies.

doi: 10.1371/journal.pone.0073740.g008
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plasma membrane, since the N-terminal 23 amino acid region
has been shown to serve as membrane-targeting and
membrane-anchoring signals [19,23]. The localization of the C
protein at the plasma membrane has been reported to be
important for the IFN-independent phosphorylation of STAT1,
although the significance of this phosphorylation is unknown,
and for promoting budding of viral and virus-like particles by
recruiting cellular ESCRT machinery along with Alix to the site
of budding on the plasma membrane [19,23].

In this paper, we showed that the smaller Y1 protein, lacking
the N-terminal membrane-targeting and membrane-anchoring
signal region, was able to actively localize to the nucleus in a
Ran GTPase-dependent manner. The clustered basic amino
acids within the 149-157 region were critical for the nuclear
localizing function, consistent with the notion that the basic
residues are critical for the function of known NLSs, although
no potential NLS was found throughout the protein. Nuclear
localization of the Y1 protein seems to be relevant to its ability
to inhibit IFN-stimulated activation of ISGs, since these two
abilities almost paralleled each other with an exception for Y1-
WLR155A3, which retained the ability to inhibit the Jak/STAT
signaling pathway despite the loss of nuclear localization.
However, it might be impossible to connect a single region with
a single function of the C proteins, since it has been reported
that multiple amino acids widely spread in the C protein are
involved in its inhibitory effect against the IFN-signaling
pathway, although the C-terminal half is enough and the C-
terminal end of the C protein is essential for the function
[12,13,17,20].

Interestingly, the mechanism for inhibition of the IFN-
signaling pathway seems to be different between the C and Y1
proteins, since the C-terminal deletion of 12 amino acids
resulted in the loss of IFN-antagonizing ability for the C, but not
Y1, protein (Figure 8). It has been reported that the C-terminal
half (a.a. 85 -204) of the C protein is enough for the interaction
with STAT1 as well as inhibition of IFN-mediated induction of
ISGs and subsequent establishment of the antiviral state, and
thus, both the C and Y1 proteins retain all of these abilities
[12,13]. Blockade of the INF-a/B-signaling pathway might be
achieved by both interaction of the C protein with STAT1 in the
cytoplasm and that of the Y1 protein in the nucleus.

Conflicting with the above observations, there are other
reports using MEFs and 2fTGH cells, that the Y1 protein
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