
Immunohistochemical, Ultrastructural and Functional
Analysis of Axonal Regeneration through Peripheral
Nerve Grafts Containing Schwann Cells Expressing BDNF,
CNTF or NT3
Maria João Godinho1, Lip Teh2, Margaret A. Pollett1, Douglas Goodman3, Stuart I. Hodgetts1,

Iain Sweetman1¤a, Mark Walters2, Joost Verhaagen4, Giles W. Plant1¤b, Alan R. Harvey1*

1 School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia, 2 Cranio-Maxillo-Facial Unit, Princess

Margaret Hospital for Children, Perth, Western Australia, Australia, 3 School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia,

Australia, 4 Netherlands Institute for Neuroscience, Amsterdam, The Netherlands

Abstract

We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified
peripheral nerve (PN) grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths
repopulated ex vivo with Schwann cells (SCs) modified to express brain-derived neurotrophic factor (BDNF), a secretable
form of ciliary neurotrophic factor (CNTF), or neurotrophin-3 (NT3). Grafts were used to repair unilateral 1 cm defects in rat
peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular
grafts and grafts with unmodified SCs. The number of regenerated bIII-Tubulin positive axons was similar in all grafts with
the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in
acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition,
NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi-
and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the
fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3
grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed
that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was
significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective
expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number
and type of regenerating axons, myelination, and locomotor function.
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Introduction

Peripheral nerve (PN) injuries are often microsurgically repaired

by coaptation of transected nerve stumps. However if the nerve

defect is too large, due to nerve stump retraction or following

pruning to remove necrotic tissue, a bridging graft is needed to

restore continuity. Autologous nerve grafts are the preferred

option, commonly harvested from sensory sural nerves [1,2], yet

functional recovery can be suboptimal, perhaps due to neuronal

loss, deterioration of distal nerve stump, or failure to recruit

Schwann cells (SCs) of the appropriate phenotype [3–6].

Moreover, harvesting autografts may result in functional impair-

ment and neuroma formation at the donor site. Use of allograft or

xenograft material requires immunosuppression, and graft rejec-

tion results in axonal loss [7–9]. Alternative substrates include

muscles, tendons and veins, although none have yet matched the

performance of autografts [10,11]. Bridges using synthetic

materials have the advantage of ease of fabrication and

availability, although they may not be optimal for repairing large

nerve defects and may induce inflammatory reactions [12].

An approach that may potentiate regeneration and minimize

adverse effects is to develop chimeric grafts composed of optimized

support structures, cell types and molecules [2,13,14]. For

example, because cells in PN tissues are the primary immunogenic
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component [9,15,16], and the essential PN structure and

organization is maintained after freeze-thawing, it is possible to

repopulate allogeneic acellular PN sheaths ex vivo with cultured,

congeneic SCs that support axonal regeneration in vivo [17,18].

Furthermore, after PN injury, neuronal survival and axonal

regrowth is enhanced by administration of neurotrophic factors

delivered systemically [10] or locally using osmotic pumps [19–

21]. Neurotrophic factors have also been delivered by direct

injection into the PN of viral vectors encoding these factors [22–

24] or in vivo injection of genetically modified SCs [25]. The

former technique results in transduction of diverse cell types,

including not only SCs but also fibroblasts and endothelial cells

[26,27].

Here we used an alternative method for local neurotrophic

delivery, shown previously to promote successfully the regrowth of

injured axons in the adult rat visual system [28,29]. Our aim was

to compare the effects of different neurotrophic factors on various

aspects of regeneration through PN bridging grafts. Purified adult

SCs were transduced ex vivo using lentiviral (LV) vectors to express

either brain-derived neurotrophic factor (BDNF), a secretable

form of ciliary neurotrophic factor (CNTF), or neurotrophin-3

(NT3). Genetically modified SCs were then injected into cell-free

PN sheaths and 24 hr later the reconstituted grafts inserted into a

unilateral 1 cm gap in adult rat peroneal nerves. This gap size

allows for direct comparison of the effects of each neurotrophic

factor on axonal regeneration and myelination, while minimising

the impact related to the length of the nerve defect itself [1]. For

comparison, uninjured peroneal nerves, autografts, acellular grafts,

and grafts containing unmodified SCs cultures were also

examined. In behavioral studies we compared walking patterns

prior to, and 1 and 8 weeks after surgery using the RatwalkH gait

analysis system, a software written and developed independently

but which analyzes parameters similar to those previously

described in the Catwalk system [30]. Graft morphologies were

compared 10 weeks post-transplantation, and the number and

type of regenerating axons were analyzed using immunohisto-

chemistry. The number, distribution and extent of myelination of

regenerate axons were also quantified in semi- and ultra-thin

sections.

Materials and Methods

SC cultures
Sciatic nerves from young adult male Fischer 344 rats were used

as the source for SCs, which were isolated and purified using

established protocols [31,32]. For each culture, 5 animals were

overdosed (sodium pentobarbitone, Lethabarb), their sciatic nerves

collected and placed in Liebovitz’s L-15 medium (Invitrogen).

Sciatic nerves were chosen for their high SC yield and because

they are a mixed nerve. This is important because there is

evidence that SCs ‘‘express distinct sensory and motor phenotypes

that are associated with the support of regeneration in a

phenotype-specific manner’’ [4]. Nerves were stripped of epineu-

rium, sectioned into 1–2 mm pieces and incubated at 37uC with

5% CO2 in culture dishes with D-10 media (Dulbecco’s Modified

Eagle’s Medium (DMEM) (Sigma) containing 10% foetal bovine

serum (FBS) (Sigma), 1% L-glutamine (Invitrogen) and 1%

penicillin/streptomycin (Invitrogen). Fibroblasts migrated out of

the PN explants, the latter transferred weekly and plated cells

discarded. After 3–4 weeks, explants were dissociated overnight

with 1.25 U/mL dispase (Boehringer Mannheim Biochemicals)

and 0.05% collagenase (Sigma) in DMEM with 15% FBS. SCs

cultures were expanded on poly-L-lysine (Sigma) coated dishes in

D-10 media containing 20 mg/mL bovine pituitary extract

(GibcoBRL) and 2 mM forskolin (Sigma).

Lentiviral vectors and SCs transduction
Genetic modification of SCs using LV was approved by the

Office of Gene Technology Regulator, Australia. The LV

constructs used for expression of neurotrophic factors were

previously characterized, and expression and release of neuro-

trophic factors in SCs and peripheral tissues confirmed, both in

vitro and in vivo [22,23,26,28,29]. In brief, cDNA encoding either a

rat CNTF fragment (which contained the signal sequence required

for the release of human growth hormone), BDNF or NT3, were

cloned into the LV transfer vector backbone pRRLsin-

PPThCMV-MCS-wpre and LV stocks produced by co-transfec-

tion of the vector, packaging and envelope plasmids into 293T

cells. Titers were between 108 and 109 transducing units/ml.

About 106 SCs were plated for 24 hr prior to transduction with

LV-BDNF, LV-CNTF or LV-NT3 at a multiplicity of infection of

50. After 24 hr, the D10 medium was refreshed and cells

incubated for 48 hr to allow for maximum transgene expression.

In a preliminary sciatic nerve graft experiment, LV encoding

green fluorescent protein (GFP) was used to verify SC viability and

sustained transgene expression after injection of transduced cells

into grafts and transplantation into a PN injury site.

Acellular nerve sheaths
To create acellular nerve sheaths, cells were eliminated by 5

consecutive cycles of 5 min immersion in liquid nitrogen and

5 min thawing at room temperature and storage at 280uC. The

freeze-thaw cycles killed the cells but maintained basal lamina

integrity, providing flexible nerve sheaths that can be effectively

repopulated with cultured cells [17,18]. Acellular sheaths were

prepared from either sciatic or peroneal nerves of adult male

Wistar rats and inserted into the corresponding nerve in Fischer

344 host rats.

Cellular reconstitution of genetically modified nerve
sheaths

Three days after transduction, cultured SCs were rinsed twice

with Ca2+ and Mg2+ free Hanks balanced salt solution (Sigma) and

detached from plates by incubation for 5 min at 37uC with 0.02%

EDTA (Invitrogen) and 0.05% trypsin (CSL), then inactivated

with D10. Cells were collected by centrifugation at 1000 rpm and

resuspended in D10 to a final concentration of 56104/ml [18].

Acellular nerve sheaths were placed in D10, trimmed to 1 cm

length and 1 ml of the SC suspension slowly injected via a glass

micropipette using a Hamilton syringe into both ends of each

nerve sheath, giving an approximate concentration of 105 SCs/

sheath. This number of cells has previously been shown to result in

complete colonization of the nerve sheaths [18,28,29]. To allow

further SC infiltration, a small amount of cell suspension was

placed around each nerve and further incubated for 24 hr.

Ethics Statement
Surgical procedures followed NHMRC guidelines and the study

was approved by the University of Western Australia Animal

Ethics Committee (approval RA3/100/471). Rats were obtained

from the Animal Resource Centre, WA, and housed under

standard conditions with a 12 hr light/dark cycle and ad libidum

access to food and water. All surgical procedures were performed

under anaesthesia and animals received antibiotic treatment

(Benacillin, 200 ml/100 g) to reduce the risk of infections and an
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analgesic (Temgesic, 20 mg/kg) to minimize post-operative

discomfort.

Host animals
Adult (8–10 weeks old) male Fischer 344 rats received a

unilateral 1 cm peripheral nerve cut, either on the sciatic nerve in

the preliminary study, in which we assessed SC survival and the

continued expression of transgenes at 8 weeks following trans-

plantation, or on the peroneal nerve in the main study. The 1 cm

gap was then repaired using different types of chimeric nerve

grafts. Experimental groups received acellular nerve sheaths

repopulated with SCs genetically modified with LV to over

express BDNF, CNTF or NT3, while control groups received

acellular nerve sheaths with unmodified SCs, acellular nerve

sheaths without any cells, or autografts. The normal control group

included uninjured rats that were processed to obtain intact

peroneal nerve material. In a preliminary experiment, 3 rats

received acellular sciatic nerve sheaths repopulated with SCs

transduced with LV-GFP to verify long-term transduction. Given

that SCs rapidly migrate in and out of PN to grafts [33], labelling

of transplanted SCs with GFP made it possible to distinguish

donor from host SCs, allowing an assessment of their viability and

distribution after surgery.

Surgical injury model and tissue collection
Each host rat was anesthetized with an intra-peritoneal injection

(1 mL/kg body weight) of a mixture of equal volume of ketamine

(100 mg/mL) and xylazine (20 mg/mL). Either the sciatic

(preliminary study – to confirm SC viability and long-term

transgene expression after transplantation) or the peroneal nerve

(main study – to investigate the effects of overexpressing different

neurotrophic factors on axonal regeneration), in the left hind limb

was exposed and a 1 cm segment was removed. The nerve gap

was repaired with different types of grafts, all attached to host

nerve stumps using 10/0 nylon suture (Ethicon), and the injury

closed with 6/0 suture (Ethicon). Animals received Benacillin

(200 ml/100 g of body weight) intra-muscularly and Temgesic

(20 mg/kg body weight) subcutaneously as post-operative care.

Ten weeks after surgery (8 weeks in preliminary study) grafted

rats received a lethal dose of sodium pentobarbitone (Lethabarb,

325 mg/ml, intra-peritoneal). Fresh grafted nerves were collected,

gently straightened, attached to a wooden spatula and fixed in 4%

paraformaldehyde for 3 hr at 4uC, after which a 1 mm block was

taken from the distal end of 3 grafts from each group. These

samples were placed in 2% glutaraldehyde and processed for

electron microscopy, while remaining tissue was cryoprotected in

30% sucrose solution for 24 hr at 4uC. To analyze distinct nerve

regions, samples were divided into 5 blocks (Fig. 1A). Each block

was embedded in tissue freezing medium (Leica), snap frozen in

isopentane (2-methylbutane) and stored at 280uC. Frozen blocks

from the host proximal (Block A) and distal (Block E) nerve stumps

were sectioned at 16 mm thickness using a Leica CM3050 cryostat

into series of 7 slides, each with 8 cross-sections. A series of 12

slides was prepared by cutting grafts (Block C) into 10 mm thick

longitudinal sections, resulting in 7–12 sections per slide,

depending on the graft. Sections were collected onto gelatine

coated slides, air-dried and stored at 220uC.

Immunohistochemical staining of cryosections of nerves
Slides were placed in a humidified dark chamber at room

temperature with gentle agitation. Sections were rinsed with PBS

(365 min), blocked for 1 hr in PBS with 10% normal horse serum

and 0.2% Triton X-100, and incubated overnight in primary

antibodies. This incubation was done at 4uC for antibodies to

axonal neurofilaments (PanNF) (Invitrogen #18-0171Z, 1:500),

neuronal class III b-Tubulin (Covance #MMS-435P, 1:400), S100

(DAKO #Z0311, 1:500), myelin basic protein (MBP) (Abcam

#120.24040, 1:100), macrophages (ED1, Millipore MAB1435,

1:500), or laminin (Sigma #L9393, 1:400). Immunostaining was

done at room temperature for antibodies to calcitonin gene-related

peptide (CGRP) (AbDSerotec #1720-9007, 1:1000) to label axons

of primary peptidergic sensory neurons. Non-peptidergic sensory

axons were identified by histochemical reaction with fluorescently

labelled isolectin B4 (IB4) (Vector Laboratories, 1:100) [34]. Each

immunostaining run included a negative control without primary

antibody. After 365 min washes with PBS, appropriate secondary

antibody dilutions were added: goat anti-mouse Cy3 (Jackson

Immuno/research Labs #115-166-006, 1:500); goat anti-rabbit

Cy3 (Jackson Immuno/research Labs #111-166-006, 1:300);

donkey anti-goat Cy3 (Jackson Immuno/research Labs #705-

166-147, 1:1000); goat anti-rabbit FITC (Sigma F6005, 1:100);

and rabbit anti-goat FITC (sigma F7367, 1:100). Sections were

washed with PBS, mounted with citifluor or fluorescence

mounting medium (DAKO), and cover-slipped. Stained sections

were kept at 4uC.

Quantification of axonal numbers
Counts of bIII-Tubulin+ axons were made from cross-sections

of proximal and distal host nerve stumps. Sections were

photographed using a 106 objective and a QuantiFIRE camera

operated by PictureFrameTM software (Optronics). The outline of

each section was manually traced using Image-Pro Plus software

(MediaCybernetics) and axonal number quantified using a filter

algorithm plugged to the software [23]. The number of

regenerating axons was also quantified in longitudinal graft

sections immunohistochemically stained for bIII-Tubulin or

PanNF. In sections stained with bIII-Tubulin, 3 photographs

were taken and on each of them a line was placed to mark 1.2, 2.4

and 3.6 mm from the proximal end of the section. The number of

axons crossing these lines was counted and the section width was

measured. Sections stained with PanNF, IB4 and CGRP were

photographed only at the middle location of bIII-Tubulin analysis

(i.e. 2.4 mm from the proximal edge of the section), and axon

numbers and section width measured and quantified (Image-Pro

Express software, MediaCybernetics). Given that IB4 labels not

only small, nonpeptidergic, unmyelinated, sensory nociceptive

neurons and their axons [34] but also endothelial cells [35–37], the

marker PanNF was used to check that IB4 labelling was associated

with clearly defined axonal profiles.

Statistical analysis of axonal counts
Statistical analyses were carried out using PASW software

following Pallant guidelines [38]. Descriptive statistics were done

and mean values (M) and standard error of the mean (SEM) were

plotted. The size of each sample (n) is indicated, and corresponds

to the number of animals within each group. Parametric tests were

used preferentially and logarithmic or square root transformations

were applied to data in order to correct for non-normality.

Parametric tests included linear mixed models, with a fixed effect

of experimental group and block and a random effect of animal

within group and also including analysis of interactions between

variables [39], using a Sidak adjustment to account for multiple

comparisons, and one-way analysis of variance, followed by least

significant difference (LSD) test when significant differences were

found between groups. Non-parametric Kruskal-Wallis tests

followed by Dunn’s post-hoc analysis were performed with all

pairwise comparisons when significant differences were found

between groups, and median (Md) values calculated. For all tests,
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significance levels were set at p,0.05, although Bonferroni

corrections were applied whenever multiple tests were carried

out on the same data. Note that the specific statistical analyses

selected for each parameter are presented in legends to relevant

Figures and Tables, and are explained in detail in Statistical

Information S1.

Quantification of axons in semi-thin sections
From the distal end of Block C of 3 grafts in each group a 1 mm

block was collected and fixed in 2% glutaraldehyde. Further

processing, including bright field photography of semi-thin plastic

sections, was done by an independent technician and all

subsequent counts were done blind. Using Image-Pro Express

5.1 software, images were digitally zoomed and myelinated profiles

were counted within 4 areas of 4004 mm2 in each section. The

number of myelinated axons/mm2 was calculated and assessed

using one-way analysis of variance. The number of samples and

the power of each statistical test are indicated in the results. In

addition, in a semi-thin section from three nerves in each of the

SCs, BDNF, CNTF and NT3 graft groups, the diameter of

fascicles was measured and compared using ANOVA and

Bonferroni post-hoc test.

Analysis and quantification in ultrathin sections
Electron micrographs were collected in 5 different locations on

each ultra-thin section. Locations were selected in a systematic but

random manner and files identified by a code so that the origin of

each sample was not known. From each location, one set of

micrographs was used to quantify all myelinated and unmyelin-

ated axons within an area of 325 mm2, as well as the number of

unmyelinated axons in Remak bundles. Only those axons that

were entirely within the image were quantified. Ratios between

unmyelinated and myelinated axons were calculated. Another set

of micrographs was used to measure the area and diameter of

axons and fibers, the latter including the myelin sheath. The

difference between the total area of each fiber and the area of the

axon provided the myelin area. The diameter of each myelinated

axon was divided by the diameter of the entire fiber to calculate

the G-ratio. All data were first analyzed to determine M, SEM,

variance and range of distribution with minimum and maximum

values, and percentile distributions including Md. Data were then

compared using Kruskal-Wallis tests followed by a Dunn’s post-

hoc tests with all pairwise comparisons (significance level, p,0.05).

Frequency plots were used to display all data, except G-ratios,

which were plotted against axonal diameter.

Figure 1. Tissue sampling protocol and RatwalkH schematic. (A) Each grafted nerve was divided into blocks: proximal host nerve stump (Block
A), proximal suture (Block B), graft itself (Block C), distal suture (Block D), and distal host nerve stump (Block E). Either cross sections (circles) from
Blocks A and E or longitudinal sections (rectangles) from Block C were collected for immunohistochemistry. Additionally, a block was taken from the
distal end of 3 grafts from each group to collect semi- and ultra-thin cross-sections for electron microscopy (EM). (B, C) Functional recovery was
assessed using the RatwalkH [side view of the setup (B)], consisting of a glass walking platform [front view (C)] attached to a box containing a
fluorescence bulb from which the light escapes only through a narrow slit into the glass. Light is scattered from the glass at each point of contact
with the animals’ paws. Walks were recorded and analyzed using the RatwalkH software (images B and C modified from 30).
doi:10.1371/journal.pone.0069987.g001
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Analysis of locomotor function
Functional recovery was assessed using the RatwalkH method-

ology, a computerized gait analysis system similar in principle to

other systems [30,40], that quantifies several locomotor parame-

ters (Fig. 1 B, C). Initially animals were allowed to familiarize with

the setup during 3 training sessions, after which videos of animals

walking along a glass platform were recorded 2 days before

surgery, to establish baseline values, and then 1 and 8 weeks after

surgery. Analysis of the recordings was done blinded to the group

to which the animal belonged. Each recording was loaded into the

RatwalkH software, cropped to eliminate redundant frames,

usually at the beginning and end of the recording where no paws

could be seen, and in each frame of the cropped video all paw

prints were manually identified and labelled. Data was saved as a

composite file and the software quantified several gait parameters.

Details on the statistical analyses are explained in Statistical

Information S1.

Given that the RatwalkH was originally developed to evaluate

gait recovery following spinal cord injuries we used it in a

preliminary study (data not shown) to assess which of the output

parameters were more suitable for the evaluation of locomotor

function after PN injuries. Two parameters are presented here: (i)

stance width, which considers the mean distance between the right

and left forelimb (rf-lf) and between the right and left hindlimb (rh-

lh); (ii) step length, which is the measurement between ipsilateral

limbs, that is, the mean distance between placements of the rf in

relation to the rh and the mean distance between placements of

the lf in relation to the lh. Analysis included recordings from 4

animals from groups with neurotrophic factor-delivering grafts

(BDNF, CNTF and NT3) and the SC group as control. Distances

between limbs in all graphs are expressed in pixels. Data were

averaged for each group and analyzed using a multivariate

analysis of variance, including Box’s M Test of Equality of

Covariance Matrices (using p = 0.001) and Levene’s Test of

Equality of Error Variances (using p = 0.05) to check that

experimental data satisfied required assumptions for the analysis,

with LSD post-hoc tests performed to specifically identify

significant differences.

Results

Transgene expression and survival of transplanted SCs
Using an LV-GFP construct we first showed sustained transgene

expression in many SCs for up to 8 weeks after transplantation of

reconstituted PN grafts into injured sciatic nerve (Fig. 2A). Double-

labelling of sections with S100 confirmed the identity of grafted

GFP cells (white arrows in Fig. 2B–D). GFP negative SCs were

also seen, many presumably host SCs that had migrated into the

grafts [33]. Thus as described previously [18,28], LV-modified SC

remained viable in the grafts for many weeks and can be used as

vehicles to provide sustained delivery of transgene-derived factors

within transplanted chimeric PN [28,29].

Axonal quantification in cross-sections of proximal and
distal host nerve stumps

In the main study, primary SC cultures were transduced with

LV-BDNF, LV-CNTF or LV-NT3 and seeded into acellular

nerve sheaths to bridge a 1 cm peroneal nerve defect. This size

gap permits an analysis of the relative impact of each neurotrophic

factor on axonal regeneration and myelination, and reduces any

confounding effect related to the length of the nerve defect itself

[1]. Grafted nerves were collected after 10 weeks, and along with

normal nerves and other control groups, divided into 5 blocks for

immunohistochemical analysis (Fig. 1A). Axons were highly

disorganized close to host-graft suture areas (Blocks B and D)

and impossible to count, hence we focused on the central portion

of each graft (Block C), and the proximal (Block A) and distal

(Block E) host nerve stumps, because they reflect the number of

neurons surviving injury and the number of axons potentially

reinnervating target tissues, respectively. Cross-sectional areas

from Block A (normal nerves or proximal host nerve stump) did

not differ between groups. However there were significant

differences between section areas in Block E (normal nerves or

distal host nerve stump) (Fig. 3A–E), the nerve area of NT3 grafts

being significantly larger than the areas of normal nerves, and

acellular and CNTF grafts.

bIII-Tubulin+ axons in cross-sections of proximal (Block A) and

distal (Block E) host nerve stumps and normal PN were counted

and the density of axons/mm2 estimated. There was a significant

interaction between groups and blocks (p,0.0005), meaning that

one variable has an effect on the other; specifically, there was a

significant effect associated with blocks (p,0.005), but no effect

associated with experimental groups. In all grafted nerves there

was a decrease in the average density of bIII-Tubulin+ fibers

between Blocks A and E (Fig. 3F). Moreover, while there were no

significant differences between groups in Block A, in Block E

pairwise comparisons revealed a considerably lower density of

axons in NT3 compared to normal PN.

For each group, the density of bIII-Tubulin+ axons/mm2 in

Block A (proximal stump) was divided by the number in Block E

(distal stump) to obtain a ratio between the two locations. Values

greater than one reflect a higher density of axons proximal versus

distal. As expected, the ratio in normal nerves was close to one.

However, there were disparities in graft groups, and the average

normal nerve ratio differed significantly from the ratios in all graft

groups apart from the unmodified SC group. Moreover, the Block

A/E ratio in NT3 grafts was significantly greater than in acellular,

SC and CNTF groups, consistent with the increased area of the

distal host peroneal stumps in NT3 grafted animals (Fig. 3G).

Figure 2. Survival of Schwann cells in reconstituted peripheral
nerve grafts. (A) Low power view showing GFP and S100 positive
cellular profiles in a section from the middle of a SC-GFP graft. Higher
power views demonstrate: (B) continued GFP transgene expression in
grafted SCs; (C) cells positively immunostained with the SC marker S100;
(D) arrowed GFP and S100 double labelled cells in a combined image.
Scale bars: A = 50 mm; B–D = 20 mm.
doi:10.1371/journal.pone.0069987.g002
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Axonal quantification with bIII-Tubulin in longitudinal
sections of grafts

Longitudinal sections from normal PN and Block C (exclusively

graft tissue, Fig. 1) were immunostained with bIII-Tubulin and the

graft width measured at 3 separate locations in each section,

proximal to distal from the CNS (Fig. 4A). Within each group

there was no difference in section width along the length of the

grafts, but section width differed significantly between groups

(Kruskall-Wallis, p,0.0005). BDNF grafts were significantly wider

than normal nerves, and sections of NT3 grafts wider than sections

taken from normal nerves, autograft, acellular, SCs and CNTF

grafts. In each section, the number of immunostained bIII-

Tubulin+ axons/mm (see Fig. 5B,C) was counted at each location

(Fig. 4B). There was no interaction between group and distance,

indicating that these variables were not affecting each other, but

there was an effect of both group (p = 0.020) and distance

(p = 0.018). Namely, there were significantly more bIII-Tubulin+

axons/mm in the autograft compared to CNTF group, and there

were significant differences in the number of bIII-Tubulin+ axons/

mm in proximal versus both middle and distal locations, usually

with fewer axons counted proximally.

A qualitative inspection of sections immunostained for the

macrophage/monocyte marker ED1 revealed very few cells in

normal PN (Fig. 4C), but increased aggregations of ED1 positive

profiles in grafts (Fig. 4D–G), particularly in acellular (Fig. 4D) and

CNTF (Fig. 4F) grafts. Again, compared to normal PN (Fig. 4H),

there was increased expression of laminin in all grafts (Fig. 4I–L),

especially noticeable in acellular grafts (Fig. 4J) and grafts initially

seeded with NT3 expressing SCs (Fig. 4L). The fascicular nature of

laminin immunostaining was a characteristic feature of NT3

grafts.

Axonal regeneration in grafts assessed using PanNF, IB4

and CGRP antibodies
PanNF. Graft sections adjacent to those processed for bIII-

Tubulin were immunostained using a PanNF antibody. In normal

PN, as expected, staining patterns with either antibody appeared

similar (Fig. 5A and 5D). However this was not the case in grafts.

Staining in bIII-Tubulin immunoreacted sections was compara-

tively more homogenous, and long thick axons were intensely

stained (Fig. 5B and 5C), whereas in PanNF immunoreacted

sections the axons were more diffuse and appeared to be more

randomly organized (Fig. 5E and 5F). PanNF+ profiles/mm were

counted at the same location used for bIII-Tubulin quantification

and compared with the number of bIII-Tubulin+ axons/mm using

a linear mixed model including the interaction between group and

axonal marker as a fixed effect. Both group and antibody had

significant effects (respectively, p = 0.015 and p = 0.001). Pairwise

comparisons revealed that the difference in axon counts between

bIII-Tubulin and PanNF antibodies in normal PN differed

significantly from the difference between these antibodies in all

other groups, except autografts. Compared to PanNF there were

significantly more bIII-Tubulin+ axons/mm in acellular, SC and

NT3 grafts (Fig. 5G).

IB4. To further characterize the type of regenerate axons

within grafts, longitudinal sections were immunostained with IB4,

a marker for small, nonpeptidergic, unmyelinated, sensory

nociceptive neurons (Fig. 6A–C). Because this marker is also

reported to label endothelial cells [35–37], only longitudinally

oriented (and clearly not cellular) IB4
+ profiles that were seen in

close association with PanNF+ axons were counted. Counts were

made at similar locations to those selected for the previous bIII-

Tubulin and PanNF counts, revealing significant differences

between groups (p = 0.001). The lowest number of IB4
+ profiles

was seen in autografts (Fig. 6B) and in acellular grafts (not shown).

Subsequent post-hoc comparisons using LSD revealed significantly

more IB4
+ axons in normal PN than in acellular grafts, and more

axons in NT3 grafts than in any other group (Fig. 6C,D).

CGRP. Another series of longitudinal graft sections was

immunostained with a CGRP antibody in order to identify axons

of peptidergic, unmyelinated, nociceptive sensory neurons [23,41].

CGRP+ axons in normal and grafted nerves were counted at the

same location (middle of graft) as other axonal counts. There was

considerable variance and no significant difference between

groups was found, despite a trend to greater numbers of CGRP+

axons in sections of NT3 compared to other groups (Fig. 6E).

Fascicular organization of normal and grafted nerves
Semi-thin cross-sections from the distal end of each graft and

normal PN were collected for assessment of overall tissue

architecture and fascicular morphology. Normal nerves were

mostly homogenous, with many evenly distributed, large myelin-

ated axons and no clear fascicular demarcation (Fig. 7A). On the

other hand, grafted nerves (Fig. 7B–G) consistently contained

discernible fascicles and small axonal bundles. Both autografts

(Fig. 7B) and acellular grafts (Fig. 7C) had the most homogenous

appearance, with compact fascicles. However in grafts containing

unmodified SCs the fascicular organization was slightly more

obvious (Fig. 7D) and in all SC-neurotrophic factor grafts large

fascicles were clearly demarcated. This was obvious in grafts that

had been reconstituted with BDNF (Fig. 7E) and particularly

evident in grafts containing NT3 expressing SCs (Fig. 7G). The

minimum diameter fascicles in unmodified SCs and CNTF grafts

was not significantly different from each other (11.8 and 11.2 mm

respectively); however fascicles in BDNF and NT3 grafts were

significantly larger (Bonferroni, p,0.05, mean diameters of 17.8

and 19.0 mm respectively).

Morphology of Remak bundles
The organization of unmyelinated profiles into Remak bundles

[42–45] in grafted and normal PN was examined in electron

micrographs (Fig. 8). Normal peroneal nerves contained many

large myelinated axons as well as clearly demarcated Remak

bundles containing any number of very tightly grouped unmy-

elinated axons surrounded by a single SC (arrow in Fig. 8A, see

also Table 1). In normal PN, unmyelinated axons in each bundle

were relatively homogenous in size whereas in grafts the variation

was much greater and Remak bundles were less compact (arrow in

Fig. 8B and 8C). The large number of relatively large unmyelin-

Figure 3. bIII-Tubulin+ immunostaining in nerve cross-sections. (A–D) Cross-sections of normal nerve (A) and of distal host nerve stumps of
acellular (B), CNTF (C) and NT3 (D) grafts. (E) Cross-sectional areas of NT3 grafts were significantly larger (*) than areas of normal nerves and of
acellular and CNTF grafts. (F) The density of bIII-Tubulin+ axons/mm2 in all grafted nerves was significantly greater (*) in proximal (Block A) than in
distal (Block E) stumps, and greater (**) in the normal versus NT3 group in Block E. (G) The ratio of bIII-Tubulin+ axons/mm2 between nerve stumps
was significantly lower in normal nerves than in grafts (*), except those with unmodified SCs. The ratio in the NT3 group was significantly greater (**)
than in acellular, SCs and CNTF groups. Values represent M 6 SEM; p,0.0005 in E and G and p,0.05 in F. Further details on statistical analysis
provided as Statistical Information S1. Scale bar for A–D: 100 mm.
doi:10.1371/journal.pone.0069987.g003
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ated axons was noteworthy in BDNF and particularly in NT3

grafts, where some axons were larger than adjacent myelinated

axons (arrows in Fig. 8B and 8D).

Density of unmyelinated axons in Remak bundles
The number of axons in each Remak bundle was quantified

(Table 1). The highest mean was found in the acellular group and

the lowest in the BDNF group. In the latter group there was also

the lowest maximum number of unmyelinated axons in a Remak

Figure 4. Analysis of longitudinal graft sections. (A) Within the grafts themselves (Block C), longitudinal sections of BDNF grafts were
significantly wider (*) than normal nerves, and sections of NT3 grafts were significantly wider (**) than those of normal nerves, autograft, acellular, SCs
and CNTF grafts. (B) Overall, the number of bIII-Tubulin+ axons/mm in longitudinal sections differed between the proximal and other counting
distances (*), with sections of autografts containing significantly more axons (**) compared to CNTF grafts. Values represent M 6 SEM; p,0.025 in A
and p,0.05 in B. Further details on statistical analysis provided as Statistical Information S1. (C–G) ED1 immunostaining; C normal PN; D–G, acellular,
BDNF, CNTF and NT3 grafts respectively. (H–L) laminin immunostaining; F, normal PN; G–L, acellular, BDNF, CNTF and NT3 grafts respectively. Scale for
D–G = 200 mm, for C, H–L = 100 mm.
doi:10.1371/journal.pone.0069987.g004
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Figure 5. Representative examples of longitudinal sections of normal nerve (A and D), SCs (B and E) and NT3 (C and F) grafts
immunostained with bIII-Tubulin (A–C) or PanNF (D–F). Images are series of sections from the same nerve or graft. (G) The difference between
bIII-Tubulin+ and PanNF+ axons/mm in the normal group was significantly different from that observed in all groups except the autograft group (*).
The numbers of axons/mm identified by each axonal marker were significantly different (**) in the acellular, SCs and NT3 groups. Values represent M
6 SEM and p,0.05. Further details on statistical analysis provided as Statistical Information S1. Scale bar for A–F: 100 mm.
doi:10.1371/journal.pone.0069987.g005
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bundle, while the highest maximum was in the acellular group,

similar to the number in normal nerves. There were significant

differences between experimental groups (Kruskall-Wallis,

p,0.0005), and a Dunn’s post-hoc test revealed that the median

number of unmyelinated axons in Remak bundles was significantly

greater in acellular and autografts than in SCs, NT3 and BDNF

grafts. The numbers in BDNF were also significantly lower than in

normal PN and CNTF grafts. The frequency of axon numbers in

each bundle was expressed as a percentage of the total number of

counted bundles (Fig. 9). Strikingly, there were almost twice as

many Remak bundles in NT3 grafts (total of 157) than in normal

PN (total of 81) in similar quantified areas. Bundles containing

only a single axon were most common in normal PN and in SC,

BDNF and NT3 grafts.

Myelinated axons
In our pilot sciatic nerve graft study, LV-GFP transduced SCs

with typical adult morphologies were seen wrapping either one or

several regenerate PanNF+ axons at 8 weeks after transplantation

(Fig. 10A). In the main peroneal nerve graft experiment, SC

content was also confirmed in longitudinal sections of normal PN

and in grafts by immunostaining with the marker S100 (Fig. 10B–

D). Myelin content was assessed by co-immunostaining sections

with an MBP antibody. There was clear myelin staining associated

with SC profiles in normal nerves (Fig. 10B) and an even more

conspicuous amount of myelin in sections of autografts (Fig. 10C).

In contrast there was very little stained myelin in NT3 graft

sections (Fig. 10D).

Myelinated axons were counted in semi-thin cross-sections (see

Fig. 7), their density calculated and assessed with a one-way

analysis of variance. Post-hoc comparisons using LSD confirmed

the qualitative immunohistochemical survey in that autografts and

BDNF grafts contained significantly more myelinated axons/mm2

than normal nerves and SC grafts. In addition, autografts,

acellular and BDNF grafts contained more myelinated axons/

mm2 than CNTF and NT3 grafts (Fig. 10E). The density of

unmyelinated axons did not differ between groups (data not

shown), however the ratio of unmyelinated to myelinated axons

did differ significantly (Kruskall Wallis, p = 0.024)(Fig. 10F). In

particular, there was a lower ratio of unmyelinated to myelinated

axons in grafts containing BDNF compared to NT3 expressing

SCs, indicating that these two neurotrophins had opposing

influences on the myelination of regenerated peripheral axons.

Note that the unmyelinated to myelinated axon ratio in our

normal group is similar to the ratio previously reported for normal

cutaneous nerves [43].

G-ratios
The area of individual myelinated axons was larger in normal

PN compared to all graft groups (Table 2). Furthermore, the

average area of myelinated axons in autografts was significantly

greater than in BDNF and NT3 grafts. From the diameter of

myelinated axons and myelinated fibers, the latter including the

myelin sheath, the G-ratio was calculated (dividing the former by

the latter) (Fig. 11). The lower the G-ratio, the greater the

thickness of the myelin sheath around the axon, and generally

speaking, the smaller the axon caliber the lower the G-ratio [46].

Descriptive statistics showed that the highest mean and median G-

ratio was in autografts, followed by acellular, SCs, BDNF and

NT3 grafts, all of which had higher means and medians than

Figure 6. Examples of longitudinal sections of normal (A), autograft (B) and NT3 graft (C) stained with PanNF (red) and IB4 (green).
(D) Quantification revealed significantly greater numbers of IB4

+ axons in normal nerves compared to acellular grafts (*) and in NT3 grafts compared
to all other experimental groups (**). (E) The number of CGRP+ axons was not significantly different between experimental groups. Values represent
M 6 SEM of n = 3; p,0.05. Further details on statistical analysis provided as Statistical Information S1. Scale bar for A–C: 100 mm.
doi:10.1371/journal.pone.0069987.g006
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normal PN. CNTF grafts contained axons with the lowest average

G-ratio amongst all experimental groups (Table 3). G-ratios

differed between groups (Kruskall-Wallis, p,0.0005), and a

Dunn’s post-hoc test revealed that the G-ratio was significantly

lower in normal PN compared to both acellular and autografts. In

the latter, the G-ratio was higher than in any neurotrophic factor

group, and values in the CNTF group were lower than in the SC

group.

Behavioral gait analysis
To assess the impact of neurotrophic factors on functional

recovery, the RatwalkH system was used to analyze gait

parameters in four PN graft groups: SCs, BDNF, CNTF, NT3.

This software was developed for assessing recovery of function

after spinal cord injuries, thus a pilot study was conducted using

animals with sciatic nerve injury to determine which walking

parameters might be the most informative in evaluating recovery

after PN injury. Consistent with a previous study [47], a significant

difference in the mean distance of step length was detected on the

injured side (data not shown), and accordingly it was one of the

parameters selected for analysis in this experiment. Others [48],

reported that the distance between hindlimbs is reduced after

sciatic nerve injury, and there is also abnormal foot rotation [49],

thus stance width was also selected for analysis. In each animal,

stance width and step length were analyzed prior to surgery (PS),

and one (W1) and eight (W8) weeks after PN transplantation

(Fig. 12). Rats were randomly ascribed to different experimental

graft groups before surgery. These normal, PS animals displayed

variation in stance width and step length, such that a comparison

of these parameters between groups failed to reveal significant

differences for either forelimb stance width, or step length on the

left side.

Stance width, the mean distance between the two forelimbs (rf-

lf) or between the two hindlimb (rh-lh), increased significantly from

PS to W1 (p = 0.038) and W8 (p = 0.007) in hindlimbs (rh-lh) of

animals from the CNTF group. In the NT3 group, stance width of

hindlimbs (rh-lh) was significantly greater in W8 than in both W1

(p = 0.034) and PS (p = 0.009).

Step length is the distance between ipsilateral limbs, comprising

the mean distance between right forelimb (rf) and right hindlimb

(rh), or the mean distance between left forelimb (lf) and left

hindlimb (lh). In the NT3 group the step length on the left, grafted

side (lf-lh) increased significantly from PS to W8 (p = 0.01). There

Figure 7. Fascicular architecture in grafts. Semi-thin sections of a
normal nerve (A), an autograft (B), and acellular (C), SCs (D), BDNF (E),
CNTF (F) and NT3 (G) grafts. Note the pronounced fascicular
organization in SC reconstituted grafts, especially in E and G. Scale
bar for A–G: 50 mm.
doi:10.1371/journal.pone.0069987.g007

Figure 8. Unmyelinated axons in Remak bundles. These axons
(black arrows) are shown in representative electron micrographs of
normal nerve (A), BDNF (B), CNTF (C) and NT3 (D) grafts. Scale bar for A–
D: 2.5 mm.
doi:10.1371/journal.pone.0069987.g008

Table 1. Number of axons in each Remak bundle.

Normal Autograft Acellular SC BDNF CNTF NT3

Mean 3.53 3.47 4.52 2.31 1.86 2.81 2.36

SEM 0.397 0.249 0.389 0.192 0.130 0.203 0.161

Variance 12.8 5.5 14.7 3.9 1.5 4.2 4.0

Minimum 1 1 1 1 1 1 1

Maximum 17 11 18 10 7 12 13

1st quartile 1 2 2 1 1 1 1

Median 2 3 3 1 1 2 2

3rd quartile 4.5 4 6 3 2 3 3

Descriptive statistics of the number of unmyelinated axons in Remak bundles,
including mean and standard error of mean (SEM), variance and range of data
distribution represented by minimum and maximum number of axons, and
percentiles distribution, namely first, second (median) and third quartile. There
were significant differences between experimental groups in the median
number of unmyelinated axons in Remak bundles (p,0.0005), with significantly
higher numbers in autografts and acellular grafts than in NT3, SCs and BDNF
grafts. Moreover, the number of unmyelinated axons in the latter was also
significantly lower than in normal nerves and in CNTF grafts. Further details on
statistical analysis provided as Statistical Information S1.
doi:10.1371/journal.pone.0069987.t001
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was a trend associated with the step length on the left side (lf-lh) in

rats from the CNTF group, which almost reached significance

(p = 0.058).

Discussion

Using a new approach combining ex vivo gene therapy of SCs

with transplantation we examined whether neurotrophic factors

delivered via LV-modified SCs in reconstituted PN grafts is a

useful strategy to enhance PN regeneration. In the present series of

experiments we examined the impact of neurotrophic delivery on

graft morphology, axonal regeneration, myelination and function-

al recovery after unilateral peroneal nerve injury. The three factors

chosen (BDNF, CNTF and NT3) have all previously been shown

to be important in various aspects of PN regeneration [50–57].

Using LV-GFP constructs it was found that over 90% of SCs

Figure 9. Occurrence and number of axons in Remak bundles, with pooling of counts between 10–15 and 15–20 axons in bundles.
doi:10.1371/journal.pone.0069987.g009
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continued to express GFP in vitro 48 h after transfection [28], and

here we confirmed in vivo that GFP-expressing SCs colonized the

entire length of grafts and remained viable for at least 8 weeks

post-transplantation. It is important to note that, using some of

these same vectors, previous in vitro and in vivo work has shown

sustained expression of mRNA for growth factor transgenes, and

neurotrophic factors continue to be expressed and secreted by LV-

transduced SCs in vitro and in PN in vivo [22,23,28,29].

Figure 10. Myelination of regenerating axons within grafts. (A) In the pilot sciatic nerve experiment, cross-sections from the middle of GFP-SC
grafts showed profiles with typical SC morphology (green) surrounding axons labelled with PanNF (red). (B–D) In the main peroneal graft experiment,
comparison of longitudinal sections immunostained with S100 (green) and MBP (red) showed that normal nerves (B) had less myelin than autografts
(C) and more myelin than NT3 grafts (D). (E) Quantification of semi-thin sections revealed that the number of myelinated axons/mm2 in normal nerves
and SCs grafts was significantly lower (*) than in autografts and BDNF grafts, and the numbers in the latter two and in acellular grafts were
significantly greater (**) than in CNTF and NT3 grafts. (F) The ratio of unmyelinated to myelinated axons in the BDNF group was significantly less than
in the NT3 group. Values represent M 6 SEM of n = 3; p,0.05. Further details on statistical analysis provided as Statistical Information S1. Scale bars:
10 mm in A; 100 mm for B–D.
doi:10.1371/journal.pone.0069987.g010
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Figure 11. G-ratios of myelinated fibers in each experimental group (120 fibers measured in each group). Note the greater number of
large diameter axons in normal nerve and in autografts, the G-ratio in the latter being the highest of all experimental groups and significantly higher
than in the normal, BDNF, CNTF and NT3 groups. The G-ratio values were also significantly lower in normal nerves compared to acellular grafts and
significantly higher in SC compared to CNTF grafts (see also Table 3). Further details on statistical analysis provided as Statistical Information S1.
doi:10.1371/journal.pone.0069987.g011

Neurotrophic Factors and Peripheral Nerve Repair

PLOS ONE | www.plosone.org 14 August 2013 | Volume 8 | Issue 8 | e69987



Most graft types supported axonal regrowth at similar densities,

although CNTF grafts possessed the fewest axons. NT3 grafts were

notable in containing a high density of IB4 and CGRP labelled

sensory axons when compared to other graft types, including

autografts. In terms of morphology, fascicles of axons were

especially evident in grafts containing SCs expressing BDNF or

NT3. The proportion of myelinated axons was highest in BDNF

grafts and lowest in NT3 grafts. Consistent with the morphological

data, functional analysis of stance width and step length revealed

changes in the locomotor performance of rats in the CNTF and

especially NT3 groups. Such changes were associated with the

operated left hindlimb and were not observed in the control SC

group. An overview of the effects of the tested neurotrophic factors

on each of the assessed regenerative parameters is presented in the

summary Table (Table 4) and will be further discussed below.

Regeneration in PN grafts containing LV-modified
Schwann cells

Host nerve stumps distal to NT3 grafts were the widest and the

density of bIII-Tubulin+ axons/mm2 was lowest in this group.

Factors that may have influenced the cross-sectional area of distal

host nerve stumps include axonal number, extent of myelination,

immune and glial cell infiltration and/or proliferation, and

amount of extracellular matrix. Within most grafts there were

significantly less axons counted proximally versus distally, perhaps

due to local sprouting and/or axons becoming entangled within

grafts as they approached the distal suture area. NT3 grafts

themselves were wider than normal peroneal nerve and other graft

types, in accordance with reported effects of this neurotrophin on

increased proliferation [58], migration [59] and survival [60] of

SCs in grafts. Injury-induced NT3 levels increase in the sciatic

nerve up to a month after ventral root avulsion and reimplantation

[61], thus expression of NT3 by SCs within reconstituted grafts

may have enhanced local axonal sprouting, known to occur during

regeneration [3,57]. NT3 grafts also possessed high laminin

immunoreactivity and at EM level showed signs of increased

extracellular matrix deposition, especially evident between, and

surrounding, the large fascicular bundles (eg Fig. 7G). In counts

from longitudinal sections, CNTF grafts contained the least

number of axons, a surprising outcome given that this neuro-

trophic factor is thought to play an important role after PN injury

[62,63]. Interestingly, these grafts contained a large number of

ED1 positive macrophages/monocytes, consistent with previous

reports that CNTF is a chemotactic agent for these cells [64,65].

In some graft groups there were intriguing differences in axonal

counts in near adjacent longitudinal sections immunostained for

either bIII-Tubulin or PanNF. Counts of PanNF and bIII-Tubulin

stained profiles/mm were similar in normal nerves, however there

were consistently fewer PanNF+ fibers within grafts. The

neurofilament proteins identified by PanNF are related to axonal

caliber, with increases in axonal diameter generally correlating

with increased neurofilament content [66]. This makes PanNF a

marker particularly suitable for identifying axons of large caliber.

After axotomy the slow transport of neurofilaments along axons is

associated with a smaller caliber of regenerated axons, which could

explain the reduction in the number of PanNF+ profiles in all

grafts. bIII-Tubulin expression selectively increases during axonal

regrowth and is added near the tip of regenerating axons [67–70],

thus making bIII-Tubulin a more general marker for regenerating

axons, irrespective of their caliber. It is therefore of interest that

axonal counts using bIII-Tubulin immmunohistochemistry were

significantly greater in acellular, untransduced SC and NT3 grafts,

perhaps indicative of a greater proportion of small caliber

regenerating sprouts in these particular grafts.

IB4 and CGRP counts
The number of axons positive for IB4 was greatest in NT3

grafts. IB4
+ sensory neurons are small nonpeptidergic nociceptors

with unmyelinated axons, responsive to glial cell-derived neuro-

trophic factor (GDNF) but not nerve growth factor (NGF) [71],

and express tyrosine kinase RET and subunits of the GDNF

receptor family [72]. They have been reported to be vulnerable to

injury and have poor regenerative capacity [34,73]. In adults,

NT3 and GDNF rescue specific subpopulations of DRG neurons

[74,75], but to our knowledge IB4
+ neurons do not express trkC

receptors [76]. In vitro, NT3 has little effect on neurite expression

from cultured IB4
+ adult sensory neurons and may even have

growth-inhibitory effects [76]. Further work is needed to

determine if the observed effects of NT3 in our in vivo model are

indirect, perhaps acting via host cells that colonize the grafts.

CGRP is found in peptidergic, unmyelinated, nociceptive,

sensory neurons, expressing substance P [23,41], and has also

been reported to be present in motor neurons [77]. DRG

neurons expressing CGRP are responsive to CNTF, GDNF and

NGF, and express trkA and p75 receptors [72], and the peptide

is up-regulated after PN injury [78]. The highest numbers of

CGRP+ axons was found in NT3 grafts and the lowest in BDNF

grafts. Again, the mechanisms underlying these effects are

Table 2. Area of individual myelinated axons.

Normal Autograft Acellular SC BDNF CNTF NT3

Mean 9.5 3.6 2.1 2.0 1.9 1.9 1.6

SEM 0.633 0.406 0.209 0.175 0.233 0.202 0.163

Variance 48.1 19.8 5.2 3.7 6.5 4.9 3.2

Minimum 0.65 0.14 0.19 0.16 0.16 0.14 0.20

Maximum 33.00 25.90 12.90 12.20 18.80 13.70 10.96

1st quartile 4.15 0.78 0.68 0.76 0.63 0.67 0.49

Median 8.12 1.94 1.30 1.36 1.18 1.31 1.03

3rd quartile 13.15 4.66 2.67 2.51 2.18 2.46 2.00

Descriptive statistics of areas of myelinated axons, including mean and standard
error of mean (SEM), variance and range of the distribution represented by
minimum and maximum, and percentile distribution, namely first, second
(median) and third quartile.
doi:10.1371/journal.pone.0069987.t002

Table 3. G ratios.

Normal Autograft Acellular SC BDNF CNTF NT3

Mean 0.44 0.52 0.49 0.48 0.46 0.43 0.46

SEM 0.007 0.011 0.01 0.01 0.012 0.01 0.01

Variance 0.006 0.014 0.013 0.012 0.017 0.011 0.013

Minimum 0.268 0.20 0.191 0.214 0.20 0.18 0.25

Maximum 0.681 0.75 0.689 0.757 0.73 0.66 0.80

1st quartile 0.40 0.44 0.40 0.40 0.37 0.36 0.38

Median 0.45 0.52 0.50 0.46 0.45 0.42 0.45

3rd quartile 0.50 0.60 0.58 0.56 0.57 0.50 0.55

Descriptive statistics of G-ratios in each group including mean and standard
error of mean (SEM), variance and range of the distribution with minimum and
maximum values, as well as percentile distribution, including first, second
(median) and third quartile. Further details on statistical analysis provided as
Statistical Information S1.
doi:10.1371/journal.pone.0069987.t003
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unclear, although in vitro, BDNF has been reported to inhibit

neurite outgrowth from cultured adult sensory neuron popula-

tions [76].

Fascicular architecture and Remak bundles
Interestingly, unlike normal PN, a clear fascicular organization

was evident in grafts, particularly those containing SCs expressing

Figure 12. Locomotor function of rats from SC, BDNF, CNTF and NT3 groups prior to surgery (PS), and at one (W1) and eight (W8)
weeks after surgery, was analyzed from digitized recordings using the RatwalkH software. Two quantitative parameters generated by
this software were analyzed: stance width (A–D) and step length (E–H). There were significant differences in both parameters in distances involving
the injured left hindlimbs. Namely, the stance width of hindlimbs (rh-lh) in the CNTF group significantly increased from PS (* in C) to W1 and W8, and
in the NT3 group it was significantly greater in W8 (* in D) than in both W1 and PS. Regarding the step length on the left (lf-lh), in the NT3 group there
was a significant increase (* in H) from PS to W8. There were no significant differences in either the SC or BDNF groups on the two gait parameters
analyzed. Values represent M 6 SEM of n = 4; p,0.05.
doi:10.1371/journal.pone.0069987.g012
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BDNF or NT3. Demarcation of fascicles appeared to result from

intra- and inter-fascicular deposition of collagen and from loosely

organized Remak bundles. All graft types were more heteroge-

neous in structure than normal PN, perhaps due to greater

amounts of extracellular matrix, but also the relative absence of

myelin may allow for greater plasticity within regenerated nerves

[44].

In normal PN, unmyelinated axons were closely wrapped by a

Remak SC, but in grafts the bundles were less compact and

contained variable numbers of unmyelinated profiles, the highest

average number in acellular grafts and the lowest in BDNF grafts.

However in the latter and in NT3 grafts there were numerous

relatively large unmyelinated axons, suggesting that besides axon

caliber [79] these factors play an important role in regulating

myelination during regeneration. Axonal areas were comparative-

ly small in BDNF grafts, nonetheless most axons were myelinated.

Indeed, BDNF grafts contained a greater density of myelinated

axons compared to normal PN and they contained the lowest

median ratio between unmyelinated and myelinated axons,

consistent with an enhanced myelination profile after BDNF

delivery [53,55,80]. Mice lacking BDNF possess fewer myelinated

axons [81], and BDNF antibodies reduce the number and density

of myelinated fibers after sciatic nerve injury [52].

Myelination
NT3 grafts contained an average unmyelinated to myelinated

axon ratio of 8:1. Unmyelinated axon numbers per bundle were

relatively low, however the overall density of Remak bundles was

greatest in these grafts. The presence of large diameter but

unmyelinated axons in each Remak bundle, together with the

smaller proportion of myelinated axons, supports the view that

NT3 inhibits SC myelination [82,83]. Grafts containing CNTF

expressing SCs also had low myelinated axon densities, however

the mean area of myelin per axon was greater in the CNTF group

compared to axons in BDNF grafts, indicating different effects on

myelination from each of these factors. G-ratios in BDNF grafts

were greater than in normal PN, suggesting that BDNF enhanced

myelination by increasing the number of axons that were

myelinated, not necessarily by increasing the amount of myelin

around a given axon. On the other hand, myelinated axons in

CNTF grafts had a relatively small average G-ratio. Given that

axonal areas were significant smaller in CNTF grafts compared to

normal PN, these data indicate that the relative thickness of myelin

around each axon had increased, consistent with a role for CNTF

in PNS myelination [55,84].

Functional analysis
We tested overall locomotor function after grafts to the mixed

peroneal nerve because, after PN injuries in rodents, assessment of

functional recovery is difficult, particularly when measuring

discrete and specific somatosensory properties, due to the need

for repetitive and accurate stimulation of the same skin region,

overlapping innervation fields [85] and because the fields change

after nerve injury [86]. Walking patterns were analyzed using the

RatwalkH system, which is similar to the Catwalk system and

allows the objective and quantitative assessment of dynamic and

static gait parameters [30,87–89]. Stance width was wider between

hindlimbs than between forelimbs, even before the injury.

However in the group with CNTF grafts hindlimb stance width

was increased at 1 and 8 weeks after injury, and in the NT3 group

the distance between hindlimbs was significantly increased at 8

weeks. At the latter time the step length between left forelimb and

injured left hindlimb was also greater in the NT3 group. Others

have reported increased step length on the injured side after

peroneal nerve crush [47], although in the earlier study step length

distance returned to normal after 22 days, whereas here an altered

gait was still a feature of NT3 grafted rats 8 weeks post-injury,

probably due to differences in the type of injury.

Table 4. Summary of data.

BDNF CNTF NT3

Graft morphology Section width Significantly wider than
normal nerves

Wider than
normal nerves

Widest of all and significantly
wider than others

Fascicles Clearly apparent Apparent Clearly apparent

Remak bundles Fewer than in other NTF grafts Highest number

Axonal regeneration bIII-Tubulin Fewer than in all
other grafts

Lowest number of axons/
mm2

PanNF Low number

IB4 Low number Highest number

CGRP Low number Highest number

Myelination Unmyelinated axons Lowest number and lower
than normal nerves

Myelinated axons More than in normal nerves
or other NTF grafts

Low density but with
high mean area of myelin

Fewer than in normal nerves
and any other grafts

Ratio of unmyelinated to
myelinated

Lowest, and significantly
lower than NT3

Highest, and significantly
higher than BDNF

G-ratio High Lowest of all groups High

Functional recovery Stance width of hindlimbs Significantly increased
from PS to W1 and W8

Significantly greater at W8
than PS and W1

Step length on the left Significant increase from PS
to W8

General overview of tested neurotrophic factors (NTF), which were BDNF, CNTF and NT3, on the various regenerative parameters examined, namely, grafts morphology,
axonal regeneration, myelination and functional recovery. The latter included three time-points: pre-surgery (PS), one week (W1) and eight weeks (W8) after surgery.
doi:10.1371/journal.pone.0069987.t004
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NGF and associated receptors are generally thought to be

important in neuropathic pain responses after PN injury [90,91],

although recent work has suggested that NT3 may also play a role

in hypersensitivity and pain, associated with the sprouting of

sensory nerves after skin injury [92]. There was a significant

increase in the number of (nociceptive) IB4+ axons in our NT3

grafts and we noted in these rats that the paw-prints from the

injured left hindlimb were often light and barely distinguishable,

suggestive of decreased pressure in the left hindlimb. After repair

of peroneal defects, autotomy was only infrequently observed and

did not vary between graft groups, suggesting no severe changes in

sensory responsiveness; nonetheless any altered mechanosensitivity

in the injured left hindlimb could have contributed to the changes

in stance and step length seen during locomotion.

In conclusion, our novel method of using LV-engineered SCs in

chimeric bridging grafts to deliver targeted neurotrophic support

to regenerating axons after PN injury has revealed that each factor

has a spectrum of effects on the overall regenerative process. There

were differences in graft morphology, extent of myelination and

type of axon regenerating through the grafts. Functional

differences were also apparent. Given that SC phenotype differs

in motor versus sensory nerves [4], and different axonal

populations have different neurotrophic requirements, this new

approach using genetically modified SCs in reconstituted bridges

may permit more selective and effective stimulation of sub-

populations of motor or sensory neurons after defined injury to a

particular PN or branch of the nerve.
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