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Abstract

Purpose: Local recurrence is the major manifestation of treatment failure in patients with operable laryngeal carcinoma.
Established clinicopathological factors cannot sufficiently predict patients that are likely to recur after treatment. Additional
tools are therefore required to accurately identify patients at high risk for recurrence. This study attempts to identify and
independently validate gene expression models, prognostic of disease-free survival (DFS) in operable laryngeal cancer.

Materials and Methods: Using Affymetrix U133A Genechips, we profiled fresh-frozen tumor tissues from 66 patients with
laryngeal cancer treated locally with surgery. We applied Cox regression proportional hazards modeling to identify
multigene predictors of recurrence. Gene models were then validated in two independent cohorts of 54 and 187 patients
(fresh-frozen and formalin-fixed tissue validation sets, respectively).

Results: We focused on genes univariately associated with DFS (p,0.01) in the training set. Among several models
comprising different numbers of genes, a 30-probe set model demonstrated optimal performance in both the training (log-
rank, p,0.001) and 1st validation (p = 0.010) sets. Specifically, in the 1st validation set, median DFS as predicted by the 30-
probe set model, was 34 and 80 months for high- and low-risk patients, respectively. Hazard ratio (HR) for recurrence in the
high-risk group was 3.87 (95% CI 1.28–11.73, Wald’s p = 0.017). Testing the expression of selected genes from the above
model in the 2nd validation set, with qPCR, revealed significant associations of single markers, such as ACE2, FLOT1 and
PRKD1, with patient DFS. High PRKD1 remained an unfavorable prognostic marker upon multivariate analysis (HR = 2.00,
95% CI 1.28–3.14, p = 0.002) along with positive nodal status.

Conclusions: We have established and validated gene models that can successfully stratify patients with laryngeal cancer,
based on their risk for recurrence. It seems worthy to prospectively validate PRKD1 expression as a laryngeal cancer
prognostic marker, for routine clinical applications.
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Introduction

Laryngeal cancer is the eleventh most common type of cancer in

men worldwide. Every year 52,000 cases are newly diagnosed in

Europe and 10,000 in the United States [1,2]. Despite the latest

advances in diagnostic and therapeutic techniques, the majority of

patients still recur after treatment [3]. Established clinicopatholog-

ical factors cannot sufficiently predict patients that will recur.

Additional factors are therefore required to accurately identify

patients with poor prognosis. Expression profiling has been

successfully used in the stratification of cancer patients with

unfavorable prognosis [4,5,6,7]. Previous studies in head and neck

cancer patients have linked gene expression profiles to nodal status

[8,9,10], distant metastases [11,12] and disease-free survival

[13,14,15,16]. While these studies provided great insight into the

molecular complexity of head and neck cancer they did not identify

a robust gene profile. The clinical use of these models has been

limited by the large number of genes, the small-sized datasets and

the lack of reproducibility and independent validation. Moreover,

none of these studies focused exclusively on laryngeal cancer.
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In the present study, we sought to identify genes prognostic of

recurrence in patients with primary laryngeal cancer. The end-

point of our analyses was disease-free survival (DFS). We profiled

tumor samples from two separate cohorts of patients using global

gene expression profiling. Using the first cohort as a training set,

we identified several prognostic gene models, which were then

validated in the second cohort of patients. In order to further

validate our results, we profiled selected genes of our models for

relative expression with quantitative real time-polymerase chain

reaction (qRT-PCR) in an independent cohort of patients.

Materials and Methods

Study population
Our study comprised of 307 patients diagnosed with primary

squamous cell laryngeal cancinoma (training set: 66, 1st validation

set: 54 and 2nd validation set: 187 patients), with median follow-up

of 52, 33 and 89 months, respectively. All patients underwent

surgical removal of the tumor at the Otorhinolaryngology

Department of the AHEPA Hospital in Thessaloniki, Greece,

between 1985 and 2008. Postoperative administration of radiation

therapy was decided by the treating physician and most often was

given to patients with positive tumor margins, patients with T4

tumors or those with T1/T2 supraglottic tumors for whom a

prophylactic elective lymphadenectomy was not done. None of the

patients received systemic therapy as part of their initial treatment.

This is the current standard of care in many European countries

[17], however this may not be the case in other countries, like the

US, where the main focus is the preservation of the larynx with

concurrent chemoradiotherapy, preceded in select cases by

induction chemotherapy [18]. Follow-up included physical exam-

ination, every three months for the first three years and every six

months thereafter. Imaging examinations were performed, as

indicated by symptoms and physical examination. Detailed

demographics and clinical characteristics for the patients with

valid gene data are listed in Table 1, while individual patient data

are shown as in Table S1.

Tumor specimens
Fresh-frozen tumor tissue samples, from patients comprising the

training and 1st validation sets, were prospectively collected at the

time of surgery, from 2004 to 2008, were immediately frozen in

liquid nitrogen and stored in 280uC until processing. Formalin-

fixed paraffin-embedded (FFPE) tumor tissue samples, from

patients comprising the 2nd validation set, were retrospectively

collected (patients treated between 1985 and 2008). The latter

were fixed in formalin for at least 6 hours before being embedded

in paraffin. Laryngeal tumors were histologically assessed and

verified in all cases, including the fresh-frozen tissue samples.

Ethics Statement
Fresh-frozen and FFPE tumor tissue samples were collected

according to protocols approved by the Institutional Review Board

of the ‘‘AHEPA’’ Hospital and the Bioethics Committee of the

Aristotle University of Thessaloniki, School of Medicine. Written

informed consent for the scientific use of biological material was

obtained from all patients comprising the training and 1st

validation sets and from the patients of the 2nd validation set

treated after 2004. Waiver of consent was obtained from the

Bioethics Committee for patients treated before 2004 and for

whom FFPE tumor tissue samples needed to be retrospectively

collected. All clinical investigations related to the present study

have been conducted according to the principles expressed in the

Declaration of Helsinki.

RNA isolation from fresh-frozen tissue and global gene
expression profiling

RNA isolation from fresh frozen tumor specimens was

performed using the RNeasy protocol (Qiagen, Hilden, Germany),

as previously described [19]. RNA quantity was determined by

measuring UV absorbance at 260 and 280 nm, while RNA quality

was assessed using an Agilent 2100 Bioanalyzer RNA 6000

LabChip kit (Agilent Technologies, Palo Alto, CA). RNA was

reverse transcribed, labeled and hybridized to Affymetrix (Santa

Clara, CA) HG-U133A arrays, as previously described [19].

Experiments concerning the training and 1st validation sets were

carried out separately, at different time points, at Siemens

Healthcare Diagnostic Products (Cologne, Germany). The gene

expression data have been deposited in the National Center for

Biotechnology Information Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) and are available through the

GEO Series accession number GSE27020. The following link has been

created to allow review of GSE27020: http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token = dxcdxksauqicizy&acc = GSE27020

RNA isolation from FFPE tumor tissue samples and qRT-
PCR

All investigations involving FFPE tissue samples were performed

at the Laboratory of Molecular Oncology, Hellenic Foundation

for Cancer Research, Aristotle University of Thessaloniki School

of Medicine. To validate the prognostic value of genes derived

from our microarray analysis, we used a separate cohort of

patients with available tumor tissue material. This sample group

included 187 FFPE tissue samples that were macrodissected upon

previous histological evaluation to contain .50% tumor cells.

RNA was isolated after complete overnight tissue lysis using

Trizol-LS (Life Technologies, Paisley, UK), as previously de-

scribed [20] and was reverse transcribed with Superscript III (Life

Technologies), according to the manufacturer’s instructions.

cDNAs were normalized at 25 ng/ul and stored at 220uC until

use. mRNA expression was investigated with FAM-labeled

TaqManH Gene Expression Assays in duplex reactions involving

a primer-limited VIC-labeled reference assay for glucuronidase

beta (GUSB, assay # Hs00939627_m1), as an endogenous

template control. GUSB was preferred over usually applied

endogenous controls because no pseudogenes have, as yet, been

reported for this gene. Additionally, it has been identified as one

among the best preserved mRNA targets in FFPE tissues [21].

qPCR mRNA target selection included evaluation of the 30

probes of the U133A signature for gene duplicates, gene

characteristics (valid gene identities, type of gene, recorded splice

variants that would not be distinguished by the probe on the array

or by the qPCR assay), as well as a parametric p-value of ,0.05 for

fold-change in gene expression. Out of the 30 U133A probes, 23

remained valid for qRT-PCR application (Table 2). For these 23

targets, we searched for pre-made TaqManH Gene Expression

Assays (Applied Biosystems) that would match the target sequences

detected by the corresponding probes in the U133A array. It was

possible to retrieve 16 such assays (Table 2). Duplex 10 ul

reactions were run in duplicates, each containing 50 ng of

template, in an ABI PRISM 7900HT system (Applied Biosys-

tems/Life Technologies) on a 384-well block under default

conditions involving 45 amplification cycles, along with a reference

RNA sample (TaqManH Control Total RNA, cat. no 4307281,

Applied Biosystems) and no-template controls. The reference

RNA was used as a positive plate control and for the evaluation of

assay performance among runs (inter-run validation). Two of the

16 selected assays yielded deltaRQ values of .1.5 among different
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runs and, hence, failed inter-run validation and were not further

evaluated (Table 2).

Cycle thresholds (CT, corresponding to Cq in MIQE

guidelines) for each target and for the endogenous reference

were automatically obtained at default conditions and relative

quantification (RQ) was calculated in a linear mode [22] by

subtracting (45–avg deltaCT), whereby 45 was the total

amplification cycle number and avg dCT = average [(CT

target)2(CT GUSB)] for duplicates. Eligibility criteria for

further sample evaluation included GUSB CT values of ,38

for each reaction and deltaRQ for each duplicate (intra-run

variation) of ,0.8. For 3 assays no amplification curves were

obtained for the FFPE and the reference mRNA samples, while

for an additional assay high intra-run RQ value differences were

observed in 87% of samples (Table 2). Based on the above

filtering steps for assay and sample eligibility, it was finally

possible to evaluate RQ results for 10 genes only.

By applying the above criteria for sample eligibility, the

following number of informative samples was obtained per mRNA

target (informative assays only): ACE2, 159; DHTKD1 171;

FLOT1, 178; MAP4K1, 169; NEK2, 156; SFRS8, 184; PRKD1,

162; TBC1D4, 165; TGOLN2, 183 and YTHDC2, 176.

Statistical analysis
Prognostic gene expression models were developed exclusively

in the training set. DFS was measured from the time of diagnosis

until verified disease progression or death. Alive patients without

verified disease progression were censored at the date of last

contact. Genes selected had to be univariately associated with DFS

(p,0.01, Cox proportional hazard model). The algorithm fits

proportional hazards models to relate DFS to each gene, one gene

at a time, and provides a p value for each gene, testing the

hypothesis that DFS is independent of the expression level of the

particular gene. Genes found to be associated with DFS in the

Table 1. Patient Demographics and Clinical Characteristics for the Training and Validation Sets.

Training Set 1st Validation Set 2nd Validation Set P-value* P-value**

N = 59 N = 50 N = 149

Age

Median (range) 62 (41–88) 64 (41–82) 62 (42–80) 0.245 0.877

n (%) n (%) n (%)

Gender 0.372 0.276

Female 4 (6.8) 1 (2.0) 5 (3.4)

Male 55 (93.2) 49 (98.0) 144 (96.6)

Smoking 1.000 0.450

No 1 (1.7) 0 (0) 8 (5.4)

Yes 58 (98.3) 52 (100.0) 141 (94.6)

Alcohol 0.341 0.127

No/Mild 25 (42.4) 26 (52.0) 81 (54.4)

Moderate/Heavy 34 (57.6) 24 (48.0) 68 (45.6)

Stage 0.009 0.260

1 1 (1.7) 11 (22.0) 9 (6.0)

2 10 (16.9) 8 (16.0) 19 (12.8)

3 22 (37.3) 14 (28.0) 66 (44.3)

4 26 (44.1) 17 (34.0) 49 (32.9)

Unknown - - 6 (4.0)

Grade 0.381 0.778

1 19 (32.2) 23 (46.0) 53 (35.6)

2 28 (47.5) 21 (42.0) 61 (40.9)

3 10 (16.9) 6 (12.0) 25 (16.8)

Unknown 2 (3.4) - 10 (6.7)

Radiation therapy 0.54 0.006

No 23 (39.0) 20 (40.0) 105 (70.5)

Yes 25 (42.4) 29 (58.0) 44 (29.5)

Unknown 11 (18.6) 1 (2.0) 0 (0.0)

Recurrence 0.037 ,0.001

No 46 (78.0) 29 (58.0) 65 (43.6)

Yes 13 (22.0) 21 (42.0) 84 (56.4)

*denotes comparisons between Training vs 1st Validation set.
**denotes comparison between Training vs 2nd Validation set.
doi:10.1371/journal.pone.0070429.t001
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training set were then ranked based on their absolute hazard ratio

value, provided by the algorithm. Prognostic gene models,

comprising different numbers of top ranking genes, were

developed using the supervised principal component survival

algorithm [23]. The algorithm computes principal components

and performs Cox proportional hazard regression analysis to

calculate a regression coefficient (weight) for each principal

component. A supervised principal component model is developed

to provide a prognostic index for each patient of the study. A

high prognostic index corresponds to a high value of hazard of

recurrence. To evaluate the predictive value of this method, we

used Leave-One-Out-Cross-Validation, where each case is

omitted and the entire analysis is performed using the rest of

the samples. In order to directly apply these models to the 1st

validation set, we normalized the training and the 1st validation

sets, using the empirical Bayes (EB) method [24]. The method

uses an algorithm designed to adjust for the non-biological

experimental variation (‘‘batch effect’’) between different

datasets. It reduces inter-laboratory variation, as well as

technical differences due to the utilization of different platforms

and methodological approaches. After normalization, we

directly applied the gene models to the 1st validation set without

any modifications.

Kaplan-Meier curves and log-rank tests were used to estimate

and compare the survival distributions in patients at high- and

low-risk of recurrence. All reported p values are two-sided. Cox

proportional hazard analysis was used for univariate analysis and

multivariate adjustment for known prognostic factors. Statistical

analysis was performed using the BRB-ArrayTools developed by

Dr. Richard Simon and the BRB-ArrayTools Development Team

and the SPSS statistical package, version 18.0, (IBM Corporation,

Armonk, NY).

We used the unsupervised ‘‘Subclass Mapping’’ (Submap)

method [25] to evaluate the molecular correspondence of patients

with favorable and unfavorable prognosis between the training set

and the 1st validation set. This method bi-directionally assesses the

association of predefined subtypes in multiple independent

datasets, despite their technical variation. The algorithm provides

the calculation of a p value to demonstrate the likelihood of

molecular similarity between the different subclasses, it is

implemented in the GenePattern software (Version 3.0, Broad

Institute, Cambridge, MA) and can be accessed at http://www.

broad.mit.edu/genepattern/

Gene set analysis (GSA) was utilized to detect gene network

deregulation characteristic of groups of patients with good or poor

prognosis [26]. Using publicly available data, we then predicted

oncogenic pathway activation status in each patient of the training

and 1st validation sets. We applied gene expression models,

previously developed and validated in vitro, to estimate the

probability of pathway activation in each sample [27]. Finally,

using Bayesian probit regression models we assigned to each

patient a probability of pathway activation.

Results

Identification and validation of prognostic classifiers
using gene expression profiling

The flowchart of our study is shown in Figure 1 (consort

diagram). We analyzed primary laryngeal tumors from 66

patients (training set) and 54 patients (1st validation set) using

global gene expression profiling. After evaluating the quality of

the microarray data, we excluded 7 and 4 technical outliers

from the two sets, respectively. For some of the genes,

expression was evaluated using two different probe sets.

Prognostic probe set models were identified exclusively in the

training set. After excluding one fourth of the least variant

genes, we focused on genes associated with DFS (Wald’s

p,0.01). We then ranked the 253 probe sets found to be

significantly associated with DFS, based on their Cox regression

coefficient. We identified several prognostic probe set models

consisting of as many as 250 to as few as 20 probe sets, which

performed equally well in the training set.

Subsequently, we applied these multigene predictors directly to

the 1st validation set. The 30-probe set model performed the best

in the validation set (the model with the fewest genes demonstrat-

ing the highest statistical difference in DFS between high- and low-

risk patients). Median DFS for the groups of patients with

unfavorable and favorable prognosis, as predicted by the 30-probe

set model, was 34 and 80 months, respectively (log-rank,

p = 0.010). The hazard ratio (HR) for recurrence in the high-risk

group versus the low-risk group was 3.87 (95% CI 1.28–11.73,

Wald’s p = 0.017). Kaplan-Meier curves for all probe set models in

the training and 1st validation sets can be found in File S1.

Concordance between the risk assignments both in the training

and 1st validation sets based on the different classifiers was high,

81–87% (Cramer V test = 0.62 to 0.75).

Figure 1. Consort diagram.
doi:10.1371/journal.pone.0070429.g001
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Annotations of all 30 probe sets included in our model are

shown in Table 3, while a graphical representation of the gene

expression patterns of the 30-probe set model in the high- and low-

risk patients is shown in Figure 2a. We observed that in this model,

two genes (ACE2 and MAP4K1) were represented by two probe

sets. In order to avoid the effect of weighting these two genes twice

as much compared to each of the other individual probe sets,

representing a single gene, we retested our model in the training

and 1st validation sets using a single probe set for each gene. In the

training set, statistical significance in 28-gene model remained

identical (log-rank test, p,0.001, Figure 3a) with the one

based on the 30-probe set model. Median DFS in the 1st

validation set, as predicted by the 28-gene model, was 34 and

80 months, respectively (log-rank, p = 0.029, Figure 3b). The

hazard ratio (HR) for recurrence in the high-risk group versus

the low-risk group was 4.38 (95% CI 1.06–7.01, Wald’s

p = 0.036).

To further validate the prognostic significance of these profiles,

we applied our 28-gene model to a publicly available cohort of

patients with early stage laryngeal cancer [28]. Due to technical

variation between the two datasets, 23 out of the 28 genes of our

model were used to stratify patients based on their risk for

recurrence. Despite the technical and biologic limitations (different

platforms, different number of genes, early vs all-stage disease) our

model maintained its prognostic significance. Median DFS for the

groups of patients with unfavorable and favorable prognosis, as

predicted by the 23-gene model, was 118 and 161 months,

respectively (log-rank, p = 0.011, Figure S1). The HR for

recurrence in the high-risk group versus the low-risk group was

4.37 (95% CI 1.24–15.34, Wald’s p = 0.022).

Molecular homology of patients with favorable and
unfavorable prognosis in the training and 1st validation
sets

Our 28-gene profile appears to not solely be a collection of

prognostic genes but to actually capture the underlying biology of

the tumors. To demonstrate the molecular homogeneity of high-

risk tumors, we used subclass mapping (Submap), a method that

assesses molecular similarity of predefined groups belonging to

different datasets. We indeed illustrated that groups of patients

with poor and good prognosis in the training set share the same

biological patterns with the respective groups in the validation set,

Table 3. 30-probe set model annotations.

Probe set Name Symbol

202773_s_at splicing factor, arginine/serine-rich 8 (suppressor-of-white-apricot homolog, Drosophila) SFRS8

203387_s_at TBC1 domain family, member 4 TBC1D4

203834_s_at trans-golgi network protein 2 TGOLN2

205303_at potassium inwardly-rectifying channel, subfamily J, member 8 KCNJ8

205836_s_at YTH domain containing 2 YTHDC2

205880_at protein kinase D1 PRKD1

206194_at homeobox C6 HOXC6

206617_s_at renin binding protein RENBP

208748_s_at flotillin 1 FLOT1

209916_at dehydrogenase E1 and transketolase domain containing 1 DHTKD1

210257_x_at cullin 4B CUL4B

211080_s_at NIMA (never in mitosis gene a)-related kinase 2 NEK2

213590_at solute carrier family 16, member 5 (monocarboxylic acid transporter 6) SLC16A5

213615_at lysophosphatidylcholine acyltransferase 3 LPCAT3

213906_at v-myb myeloblastosis viral oncogene homolog (avian)-like 1 MYBL1

214219_x_at mitogen-activated protein kinase kinase kinase kinase 1 MAP4K1

214339_s_at mitogen-activated protein kinase kinase kinase kinase 1 MAP4K1

214561_at leukocyte immunoglobulin-like receptor pseudogene 2 LILRP2

214885_at MYST histone acetyltransferase 1 MYST1

215371_at mediator complex subunit 27 MED27

215616_s_at jumonji domain containing 2B JMJD2B

216848_at NA NA

217543_s_at membrane-bound transcription factor peptidase, site 1 MBTPS1

219103_at ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 ASAP3

219464_at carbonic anhydrase XIV CA14

219719_at HIG1 domain family, member 1B HIGD1B

219962_at angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 ACE2

222090_at hypothetical protein LOC100134713 LOC100134713

222257_s_at angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 ACE2

38043_at family with sequence similarity 3, member A FAM3A

doi:10.1371/journal.pone.0070429.t003
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above and beyond the expression of specific genes. Charts

displaying good ‘‘molecular match’’ of the high- and low-risk

patients are shown in Figure 2b.

Independent prognostic significance of the 28-gene
model

We were interested in demonstrating the independent prognos-

tic significance of our multigene predictor. We included in the

analysis stage and grade, the only known prognostic factors, for

which data were available for the patients of our study. We

have also included radiation therapy, since it is known to

significantly reduce local recurrence. In multivariate analysis,

our 28-gene model maintained borderline prognostic significance

in the 1st validation set. HR for recurrence in the high-risk group

was 2.67 (95% CI 0.99–7.22, Wald’s p = 0.05) (details are shown in

Table 4).

Figure 2. Graphical representation of the 30-probe set model expression patterns (a) and Submap results (b). Graphical representation
of the 30-probe set model expression patterns in patients with favorable and unfavorable prognosis is shown in panel a. Red color denotes
overexpression and green color underexpression of the respective genes. Molecular similarity of patients with favorable and unfavorable prognosis in
the training and 1st validation sets, using Submap, is shown in panel b. The bar below indicates the relationship between color and Bonferonni
corrected p values. Red color represents high confidence for molecular homogeneity between the respective groups, while blue color represents lack
of confidence thereof.
doi:10.1371/journal.pone.0070429.g002

Figure 3. Kaplan-Meier survival estimates based on the 28-gene model risk predictions. Kaplan-Meier survival estimates for high- and
low-risk patients based on the 28-gene model risk predictions in the training set (a) and 1st validation set (b).
doi:10.1371/journal.pone.0070429.g003
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Pathway analysis in the high- and low-risk groups
In order to gain some additional insight into the biological

processes in patients with favorable and unfavorable prognosis, we

performed Gene Set Analysis (GSA). We explored gene networks

and biological themes, as described by the Kyoto Encyclopedia of

Genes and Genomes (KEGG) Pathway Database. We indeed

identified a wide range of pathways, differentially expressed

between the two groups of patients (GSA Goeman’s global test p

values,0.01). We focused on pathways deregulated both in the

training and in the 1st validation sets. Table 5 presents selected

pathways of interest, while the full list of pathways can be found as

in Table S2. Several of these pathways have previously been

shown to play an important role in head and neck cancer

progression. Interestingly, we observed that genes of the focal

adhesion (FA) pathway [29], shown to be prognostic in our

dataset, as well as in head and neck cancer, successfully stratified

our patients based on their risk of recurrence (details in Figure 4).

Oncogenic pathway activation patterns in individual
patients

In addition to the aforementioned pathway analysis results that

derived from evaluating groups of patients, we sought to explore

pathway activation in individual patients. We used previously

developed and validated ‘‘in vitro’’ gene expression ‘‘read-outs’’ to

identify activation of known oncogenic pathways in each patient of

the training and 1st validation sets. We investigated the Src, Ras,

b-catenin and E2F3 pathways, which have previously been shown

to be associated with survival in other types of cancer [27].

Interestingly, we demonstrated that patients with poor prognosis

more often had tumors characterized by Ras pathway activation,

odds ratio (OR) = 2.92 (95% CI 1.33–6.39, Wald’s p,0.01), while

patients with good prognosis more often had tumors exhibiting Src

and b-catenin pathway activation, OR = 4.54 (95% CI 1.64–

12.50, p = 0.003) and 2.63 (95% CI 1.16 to 5.88, p = 0.03),

respectively. In addition, we performed Cox proportional hazards

survival regression and observed that the Ras pathway activation

was found to be associated with poor prognosis, HR = 2.55 (95%

Table 4. Univariate and multivariate analyses.

Univariate
p value

Hazard Ratio
(HR) 95% CI

Multivariate
p value

Hazard Ratio
(HR) 95% CI

Lower Upper Lower Upper

Prognostic signature _* _* _* _* _* _* _* _*

Training set Stage 0.45 1.33 0.64 2.77 0.67 0.75 0.20 2.82

Grade 0.31 1.49 0.69 3.22 0.66 1.24 0.48 3.18

Radiation therapy 0.16 2.61 0.69 9.86 0.43 1.84 0.40 8.53

1st validation set Prognostic signature 0.04 2.73 1.07 7.01 0.05 2.67 0.99 7.22

Stage 0.89 0.97 0.64 1.48 0.91 0.97 0.56 1.67

Grade 0.75 0.9 0.45 1.78 0.52 0.77 0.35 1.69

Radiation therapy 0.25 1.82 0.65 5.07 0.36 1.69 0.55 5.17

*Coefficients did not converge and no models could be fitted.
doi:10.1371/journal.pone.0070429.t004

Table 5. Gene set analysis in patients with poor and good prognosis in the training and 1st validation sets.

GENE SET ANALYSIS (GSA) TRAINING SET 1st VALIDATION SET

Pathways - Gene Networks Goeman’s global test p-value Goeman’s global test p-value

TGF-beta signaling pathway 0.0001 0.0003

VEGF signaling pathway 0.0002 0.0008

ECM-receptor interaction 0.0019 0.0009

Wnt signaling pathway ,0.0001 0.0011

mTOR signaling pathway 0.0012 0.0028

Hedgehog signaling pathway 0.0008 0.0031

Phosphatidylinositol signaling system 0.0044 0.0008

Insulin signaling pathway ,0.0001 0.0001

Focal adhesion 0.0008 0.0008

Nicotinate and nicotinamide metabolism ,0.0001 0.0002

Regulation of actin cytoskeleton 0.0001 0.0005

Selected pathways of interest, statistically significantly deregulated in patients with good prognosis compared to patients with poor prognosis, both in the training and
1st validation sets are shown.
doi:10.1371/journal.pone.0070429.t005
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CI 1.19–5.45, p = 0.020). The Src, b-catenin and E2F3 pathways

did not appear to be associated with DFS in patients with

laryngeal cancer. Corresponding Kaplan-Meier curves are shown

in Figure 5. Finally, we performed multivariate analysis, including

the 28-gene model and the Ras pathway and found that the

predictor maintained its independent prognostic significance

(Wald’s p = 0.001), as did the oncogenic pathway (Table 6).

qPCR validation of a subset of genes from the 28-gene
predictor

The aforementioned analyses were performed using fresh-

frozen tissue samples. However, this approach has certain

methodological limitations when it comes to daily clinical practice.

Thus, we attempted to validate our multigene predictor using

qPCR on FFPE tumor tissue samples, a more easily applicable

methodology. As described in the Materials and Methods section,

however, it was possible to reliably investigate in our FFPE sample

series the expression of only 10 of the 28 genes in the original

predictor. The descriptive characteristics of RQ values obtained

from the informative samples per assay are described in Table 7

(means, medians, SD, min, max). At first, we attempted to cluster

continuous RQ values for all these genes. However, hierarchical

clustering did not yield results comparable to the 28-gene

predictor in a meaningful way, with the majority of high and

low RQ values clustered in the opposite direction (Figures 6a and

b). This was of no surprise, because we only examined 1/3 of the

genes probed in the array signature, while fold-change in the

expression of these genes was very narrow and could easily be

reversed with a different method (qPCR vs. array hybridization) or

a different type of material (FFPE vs. fresh-frozen tissues). Detailed

analytical and statistical approaches for the behavior of each

qPCR assay vs. the array probe in matched FFPE vs. fresh-frozen

samples would be needed for the clarification of this discrepancy,

however such an in-depth analysis was beyond the scope of the

present study. Therefore, we next applied pre-determined profiling

for the investigation of possible effects of the genes tested with

qPCR on patient DFS. For this purpose, we transformed

continuous RQ values into binary parameters (high/low expres-

sion). Based on the narrow fold-change of gene expression between

the good and bad prognosis groups in the 28-gene predictor, we

used median RQ values to classify high and low expression for the

10 evaluable genes. Log-rank testing for these genes as single

markers yielded associations with outcome similar to those

observed for the corresponding genes in the U133A signature

(high/low patterns comparable with up- and down-regulation of

gene expression, respectively, for 6 of the 10 genes), some of which

were significant (PRKD1) or showed a trend for significance

(ACE2, FLOT1) (Table 8). Hierarchical clustering of continuous

RQ values for the latter three genes yielded two groups of patients

Figure 4. Focal Adhesion pathway. Kaplan-Meier disease-free
survival estimates for high- and low-risk patients, as defined by the
focal adhesion pathway genes (log-rank, p,0.005).
doi:10.1371/journal.pone.0070429.g004

Figure 5. Kaplan-Meier curves showing the effect of combined
ACE2, FLOT1 and PRKD1 expression on patient DFS. RQ values
have been combined as binary variables to obtain 3-scale profiles
according to array data. Markers as indicated. Blue and red curves
match the expected prognostic patterns obtained in the 28-gene model
for the particular genes. Grey curves: unclassified patients (intermediate
scale).
doi:10.1371/journal.pone.0070429.g005
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with significantly different DFS (Figures 6c and d). The expected

gene expression pattern was present in the correct context with

outcome, but was absent in the majority of cases.

Application of the good prognosis high/low gene expression

patterns to the binary transformed RQ values revealed no single

tumor with the expected pattern for all 10 genes. However,

profiling of the three significant genes only revealed a strong

association with patient outcome (univariate COX regression,

overall Wald’s p = 0.012). In particular, tumors expressing ACE2

high, FLOT1 and PRKD1 low (expected good prognosis profile

according to the 30-gene predictor, n = 20) were indeed associated

with a significantly longer DFS, as compared to tumors expressing

ACE2 low, FLOT1 and PRKD1 high (expected bad prognosis

profile, n = 21) (good vs. bad profile, HR = 0.24, 95% CI 0.09–

0.63, Wald’s p = 0.003). As with hierarchical clustering for the

three genes, the majority of tumors (n = 108) did not fit into the

above profiles and were of intermediate prognosis with a trend to

perform better than the tumors expressing the bad profile

(intermediate vs. bad HR = 0.58, 95% CI 0.33–1.03, Wald’s

p = 0.063). Similar results were obtained upon profiling PRKD1

with ACE2 (univariate Cox, overall Wald’s p = 0.006; expected

good vs. bad profile HR = 0.35, 95% CI 0.18–0.68, p = 0.002), and

PRKD1 with FLOT1 (univariate Cox, overall Wald’s p = 0.013;

expected good vs. bad profile HR = 0.39, 95% CI 0.21–0.73,

Wald’s p = 0.003) (Figure 5, Table 8). A more detailed sub-

classification of tumors according to more combinations of high/

low for the above genes did not yield significant associations with

outcome.

With respect to clinicopathological parameters, no association

was observed for age, alcohol consumption, smoking habits,

histological grade, stage, or lymph node status, with ACE2,

FLOT1 and PRKD1 mRNA as single binary variables, as clusters,

or as pre-determined profiles. High ACE2 expression was

observed more often in tumors without lymph node involvement

(66 out of 137 [48.2%]), as compared to tumors with positive

lymph nodes (5 out of 22 [22.7%], Fisher’s exact test p = 0.036). In

comparison, the unfavorable prognosis cluster with continuous

RQ values for the three genes was more often found in tumors

with positive (14 out of 19 [73.7%]) than in tumors with negative

lymph nodes (55 out of 130 [42.3%], Wald’s p = 0.013).

Binary ACE2, FLOT1, PRKD1 variables, ACE2/FLOT1/

PRKD1, ACE2/PRKD1 and FLOT1/PRKD1 profiles, as well as

ACE2/FLOT1/PRKD1 clusters were also tested for their effect

on patient outcome in multivariate models, along with age, alcohol

consumption, smoking status, lymph node status, extent of surgery

and post-operative radiation. High PRKD1 mRNA expression as

a single marker (HR = 2.00, 95% CI 1.28–3.14, Wald’s p = 0.002)

and positive lymph node status (HR = 4.00, 95% CI 2.22–7.37,

Wald’s p,0.001) independently predicted for unfavorable DFS,

while patients that had undergone total laryngectomy had

decreased risk for relapse (HR = 0.55, 95% CI 0.31–0.95, Wald’s

p = 0.036), as compared to all other surgical approaches.

Discussion

Our group has previously identified prognostic gene models in

patients with early stage (T1N0M0, T2N0M0) laryngeal cancer

[28] by using Illumina expression profiling (Illumina, CA) in 56

FFPE tissue samples. While this former study provided promising

information on the genetic profile of early stage laryngeal cancer,

herein we sought to expand our research to operable laryngeal

cancer beyond stage. The present study employed a different

platform for expression profiling (Affymetrix) and two independent

validation sets. We observed that the prognostic profiles from our

previous work do not share the same genes with the profiles

presented here. However, the present 28-gene prognostic profile

successfully stratified patients of the previously published early

stage laryngeal cancer cohort with respect to disease-free survival

(Figure S1). We believe therefore, that even though these profiles

comprise of different genes, they capture the underlying biology of

the tumors, which correlates with their aggressive behavior.

Such a prognostic signature in laryngeal cancer patients has

important clinical implications. Patients with unfavorable progno-

sis, as identified by our multigene predictor, might gain great

Table 6. Univariate and multivariate analyses - Ras pathway.

Univariate p value Hazard Ratio (HR) 95% CI Multivariate p value Hazard Ratio (HR) 95% CI

Lower Upper Lower Upper

28-gene model ,0.001 4.58 2.06 10.19 0.001 4.16 1.86 9.32

Ras pathway 0.020 2.55 1.91 5.45 0.036 2.26 1.06 4.85

doi:10.1371/journal.pone.0070429.t006

Table 7. Gene expression characteristics for the 10 evaluable mRNA targets investigated with qPCR in 187 FFPE samples.

ACE2 DHTKD1 FLOT1 MAP4K1 NEK2 SFRS8 PRKD1 TBC1D4 TGOLN2 YTHDC2

N (informative) 159 171 178 169 156 184 162 165 183 176

% (informative samples) 85.03 91.44 95.19 90.37 83.42 98.4 86.63 88.24 97.86 94.12

Mean 38.8 46.3 47.03 45.63 39.37 47.62 44.25 44.68 46.95 46.11

Median 36 46.48 47.01 45.76 39.38 47.54 44.58 44.97 46.85 46.21

Std. Deviation 4.09 1.68 0.86 1.79 3.44 0.51 2.12 2.21 0.63 1.33

Minimum 32.26 36 44.81 36 33.49 46.02 36 35.27 45.4 36

Maximum 53.75 50.16 49.26 52.06 47.08 49.41 47.88 49.36 50.21 49.43

doi:10.1371/journal.pone.0070429.t007
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benefit from aggressive adjuvant treatment, while patients with

favorable prognosis could be spared the side effects of what would

appear to be an unnecessary treatment. Large-scale, prospective

studies are needed however, to shed additional light into this

matter and validate our findings.

Treatment efficacy of established therapeutic modalities could

be further improved by novel therapeutic approaches. In an

attempt to provide hypotheses on tumor progression, as well as

novel therapeutic concepts, we explored the molecular biology

of laryngeal tumors. First, using Submap, we illustrated that

high- and low-risk tumors in the training set are molecularly

homogeneous to their respective groups in the validation set.

Then, using large-scale gene expression analysis, we demon-

strated that tumors of high-risk patients are characterized by

deregulation of several pathways of interest. Many of these gene

networks have already been identified to be prognostic in

cancer. Specifically, deregulation of the TGF-beta [30,31],

VEGF [32,33,34], mTOR [35], Wnt [36], Hedgehog [37,38]

and insulin [39] signaling pathways has been found to be

associated with aggressive disease in squamous cell carcinomas.

Based on these data, the Hellenic Cooperative Oncology Group

(HeCOG) proceeded with evaluating the prognostic value of the

VEGF [40], EGFR [41] and insulin [42] signaling pathways in

laryngeal cancer. Prospective validation of the prognostic role of

the aforementioned pathways will promote the accurate

identification of patients at high risk for recurrence who may

necessitate a more aggressive treatment.

A number of studies also suggest that many of the genes playing

a key role in these pathways may serve as novel therapeutic targets.

For instance, in vivo studies in mice, targeting the mTOR [43]

and IGF [44] molecules, have shown promising results for head

and neck cancer treatment. Finally, it is important to outline the

presence of the ‘‘Focal Adhesion’’ pathway in the gene set analysis

results both in the training and 1st validation sets [29]. Thurlow et

al have previously demonstrated the prognostic significance of this

network, in patients with head and neck cancer.

To further explore networks in laryngeal cancer, we sought to

examine pathway activation status in each individual patient of

our study. The Ras pathway appeared to be more frequently

activated in tumors from high-risk patients. More importantly,

Figure 6. Independent validation of selected genes from the 28-gene model. Hierarchical clustering of RQ values from the genes tested in
the 2nd validation set (FFPE samples). In panels a and b, RQ values of the 10 applicable genes were evaluated. Two major clusters were identified (a)
that were shown to have a significant effect on patient DFS (b). Cluster 1 was associated with a better prognosis compared to cluster 2. However, the
majority of these genes were clustered in the opposite direction than that expected from the 28-gene classifier. In panels c and d, clustering of the 3
genes with individually significant associations yielded 2 patient groups with distinct outcome; in comparison to the original 28-gene classifier,
correct patterns of gene expression were present in the corresponding good and bad prognosis groups. Red and green colors in panels a and c
denote high and low expression, respectively.
doi:10.1371/journal.pone.0070429.g006

Multigene Predictors of Recurrence in Laryngeal Ca

PLOS ONE | www.plosone.org 11 August 2013 | Volume 8 | Issue 8 | e70429



T
a

b
le

8
.

In
d

iv
id

u
al

an
d

p
ro

fi
le

d
g

e
n

e
e

xp
re

ss
io

n
e

ff
e

ct
s

o
n

D
FS

.

N
p

a
ti

e
n

ts
M

e
d

ia
n

(m
o

)
S

D
9

5
%

C
I,

lo
w

9
5

%
C

I,
h

ig
h

L
o

g
-r

a
n

k
p

G
e

n
e

e
x

p
re

ss
io

n
in

th
e

g
o

o
d

p
ro

g
n

o
si

s
si

g
n

a
tu

re
(3

0
-g

e
n

e
p

re
d

ic
to

r)
C

o
n

co
rd

a
n

ce
(t

re
n

d
)

w
it

h
th

e
3

0
-

g
e

n
e

p
re

d
ic

to
r

p
a

tt
e

rn

A
C

E
2

1
5

9
0

.0
7

0
U

p
-r

e
g

u
la

te
d

Y
ES

lo
w

7
1

5
6

.5
2

2
3

.2
3

1
0

.9
9

1
0

2
.0

6

h
ig

h
8

8
9

7
.8

7
7

.3
6

8
3

.4
4

1
1

2
.3

0

D
H

T
K

D
1

1
7

1
0

.4
3

6
U

p
-r

e
g

u
la

te
d

N
O

lo
w

8
5

9
4

.4
6

1
5

.7
5

6
3

.6
0

1
2

5
.3

2

h
ig

h
8

6
8

3
.7

7
1

1
.8

6
6

0
.5

2
1

0
7

.0
2

F
L

O
T

1
1

7
8

0
.0

6
8

D
o

w
n

-r
e

g
u

la
te

d
Y

ES

lo
w

8
9

1
0

0
.3

0
1

2
.5

5
7

5
.6

9
1

2
4

.9
0

h
ig

h
8

9
8

0
.4

6
2

6
.0

1
2

9
.4

8
1

3
1

.4
4

M
A

P
4

K
1

1
6

9
0

.2
5

2
U

p
-r

e
g

u
la

te
d

Y
ES

lo
w

8
6

7
4

.1
1

2
3

.7
5

2
7

.5
5

1
2

0
.6

7

h
ig

h
8

3
9

1
.8

0
9

.1
2

7
3

.9
2

1
0

9
.6

9

N
E

K
2

1
5

6
0

.3
6

6
D

o
w

n
-r

e
g

u
la

te
d

Y
ES

lo
w

7
8

9
4

.4
3

7
.4

8
7

9
.7

6
1

0
9

.1
0

h
ig

h
7

8
6

9
.1

5
1

8
.6

8
3

2
.5

3
1

0
5

.7
6

P
R

K
D

1
1

6
2

0
.0

1
2

D
o

w
n

-r
e

g
u

la
te

d
Y

ES

lo
w

8
1

9
4

.4
6

7
.7

5
7

9
.2

8
1

0
9

.6
4

h
ig

h
8

1
6

9
.1

5
2

7
.4

2
1

5
.4

1
1

2
2

.8
9

S
F

R
S

8
1

8
4

0
.4

0
0

U
p

-r
e

g
u

la
te

d
N

O

lo
w

9
2

9
1

.1
5

1
7

.8
2

5
6

.2
1

1
2

6
.0

8

h
ig

h
9

2
8

7
.3

4
1

1
.7

7
6

4
.2

7
1

1
0

.4
1

T
B

C
1

D
1

6
5

0
.1

9
3

U
p

-r
e

g
u

la
te

d
N

O

lo
w

8
2

9
1

.1
5

1
5

.6
7

6
0

.4
4

1
2

1
.8

5

h
ig

h
8

2
7

4
.1

1
1

3
.9

2
4

6
.8

2
1

0
1

.4
0

T
G

O
L

N
2

1
8

3
0

.3
6

0
D

o
w

n
-r

e
g

u
la

te
d

Y
ES

lo
w

9
1

9
1

.1
5

1
5

.0
7

6
1

.6
1

1
2

0
.6

9

h
ig

h
9

2
8

2
.8

2
2

0
.6

7
4

2
.3

0
1

2
3

.3
4

Y
T

H
D

C
2

1
7

6
0

.1
4

9
U

p
-r

e
g

u
la

te
d

N
O

lo
w

8
8

9
7

.8
7

1
5

.6
4

6
7

.2
2

1
2

8
.5

1

h
ig

h
8

8
8

0
.4

6
1

9
.8

7
4

1
.5

1
1

1
9

.4
1

A
C

E
2

/F
L

O
T

1
/P

R
K

D
1

1
4

9
0

.0
0

9
N

/A

in
te

rm
e

d
ia

te
p

ro
fi

le
1

0
8

(7
2

.5
%

)
8

3
.7

7
1

5
.3

2
5

3
.7

5
1

1
3

.7
9

h
ig

h
/l

o
w

/l
o

w
2

0
1

4
1

.8
4

4
9

.2
0

4
5

.4
1

2
3

8
.2

6
Y

ES
,

g
o

o
d

p
ro

g
n

o
si

s

lo
w

/h
ig

h
/h

ig
h

2
1

1
3

.9
3

8
.3

3
0

.0
0

3
0

.2
6

Y
ES

,
b

ad
p

ro
g

n
o

si
s

F
L

O
T

1
/P

R
K

D
1

1
6

1
0

.0
0

6
N

/A

Multigene Predictors of Recurrence in Laryngeal Ca

PLOS ONE | www.plosone.org 12 August 2013 | Volume 8 | Issue 8 | e70429



there was a significant survival difference between patients with

Ras pathway activation and those without. It has already been

suggested that the Ras pathway plays a growth promoting role in

head and neck cancer [45]. These data indicate that members of

the Ras pathway may be valuable targets for chemotherapeutic

interventions in laryngeal cancer.

In the present study, the identification and independent

validation of multigene predictors was performed using fresh-

frozen tumors from patients with resectable laryngeal cancer.

However, gene expression profiling using microarray technology

has several limitations that have as yet hampered its introduction

into daily clinical practice. These include the need for fresh-frozen

tissue, the lack of reproducibility and external validation, the

complexity of microarray data analysis and cost. In an effort to

transcribe our prognostic signature into clinically applicable

markers, we tested genes from this classifier on a series of routinely

processed FFPE samples from laryngeal cancer patients with

similar disease characteristics at presentation. However, in order

to evaluate the effectiveness of this validation step, as it is presented

here, we need to consider that the 2nd validation set differed from

the other two study groups in the type of tissue material used and

the method applied for gene expression profiling. FFPE RNA

quantification results may differ in comparison to those from

frozen tissues [15,46], while microarray expression signatures are

usually filtered down to a few genes for qPCR applications [47]. As

a result, it is challenging to reproduce the significance obtained

with array classifiers. For example, Mirisola et al developed a 4-

gene classifier out of 213 genes distinguishing laryngeal carcino-

mas with and without relapse, but managed to reproduce only one

of these gene markers with qPCR [15]. Herein, we applied very

strict criteria for the selection of PCR targets in order to obtain

profiles that would reliably reflect the ones included in the original

U133 model. It should also be noted that, in comparison to the

training and 1st validation cohorts, patients in the 2nd validation

cohort experienced a higher incidence of recurrence. With all the

above restrictions and reservations it was possible to validate profiles

for 3 of the 28 genes in the array predictor, i.e., ACE2, FLOT1 and

PRKD1. Despite the fact that 49–74% of tumors would fall into the

intermediate category of undetermined prognosis, combinations of

these markers might serve for distinguishing laryngeal cancer

patients who would remain disease-free for more than 10 years or

who would experience early relapse. Importantly, out of these three

genes, PRKD1 was revealed to be an independent predictor for

outcome. Hence, testing for PRKD1 expression only might, in fact,

be more efficient for predicting laryngeal cancer prognosis than

testing for all three genes. These are novel findings, since none of

ACE1, FLOT1 and PRKD1 have previously been investigated in

laryngeal or head and neck cancer, neither is it known whether these

genes are functional in the normal laryngeal epithelium. The latter

findings however, should be viewed as hypothesis generating rather

than definitive.

From the biological point of view, the expression patterns of

ACE2, FLOT1 and PRKD1 in association with good or bad

prognosis are largely in line with the proposed anti-growth and

anti-tumor roles for ACE2 [48,49]; with tumor promoting roles for

FLOT1 [50,51]; and, with pro-metastatic roles for PRKD1

[52,53,54]. It should be noted, however, that the differences

observed in the expression of ACE2, FLOT1 and PRKD1 in

favourable and unfavourable laryngeal carcinomas were not clear-

cut in the array predictor, which may reflect the lack of direct

genomic alterations within the corresponding gene sequences.

Determining RQ value cut-offs for prospective use remains a

challenge with all qPCR expression markers of this type. Based on

the present results, it seems worthy pursuing PRKD1 expression at
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the protein level with immunohistochemistry for routine practice,

provided that validated antibodies for this marker will become

commercially available.

One potential criticism of the analyses presented here is that

patients have been treated over a long period of time and that

treatment modalities might have changed over these years.

However, laryngeal cancer is a rare disease and it would be

difficult to acquire a large number of samples from patients treated

over a shorter period of time. Another limitation is that patients

included in this study have been treated in a singe institution. For

this reason, one might question the applicability of our multigene

predictors in diverse patient populations. Large-scale multicenter

studies are therefore necessary to confirm the applicability of our

prognostic models.

Moreover, all of our patients were treated with surgery, while

approximately 40% of the patients also received radiotherapy. Of

note, current treatment guidelines in many European countries

[17], in early stages of laryngeal cancer, include surgical resection

with or without adjuvant radiotherapy, which renders the findings

of the present study both timely and clinically relevant. It is

unclear however, whether patients with an unfavorable prognostic

profile would be better treated with chemoradiotherapy, as given

in other countries including the US [18], or other approaches.

Prospective studies are needed in order to clarify this issue.

Conclusions

To summarize, laryngeal cancer is a heterogeneous disease.

Patients with similar clinicopathological features may have a

different outcome. It is important therefore, to accurately identify

which patients with laryngeal cancer will recur, in order to use

more aggressive and effective modalities. Our model accurately

identified patients at high-risk for recurrence in the training set, as

well as, in two independent validation sets. This model does not

appear to solely be a collection of prognostic genes, but provides

insight into disease mechanisms and potential therapeutic targets.

The prognostic and biological significance of ACE2, FLOT1 and

especially PRKD1 merits prospective validation, in order for these

factors to possibly serve as independent prognostic markers for

recurrence in patients with surgically resected squamous-cell

carcinoma of the larynx.
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