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Abstract.—We review Bayesian approaches to model testing in general and to the assessment of topological hypotheses in
particular. We show that the standard way of setting up Bayes factor tests of the monophyly of a group, or the placement of a
sample sequence in a known reference tree, can be misleading. The reason for this is related to the well-known dependency
of Bayes factors on model-specific priors. Specifically, when testing tree hypotheses it is important that each hypothesis is
associated with an appropriate tree space in the prior. This can be achieved by using appropriately constrained searches
or by filtering trees in the posterior sample, but in a more elaborate way than typically implemented. If it is difficult to
find the appropriate tree sets to be contrasted, then the posterior model odds may be more informative than the Bayes
factor. We illustrate the recommended techniques using an empirical test case addressing the issue of whether two genera
of diving beetles (Coleoptera: Dytiscidae), Suphrodytes and Hydroporus, should be synonymized. Our refined Bayes factor
tests, in contrast to standard analyses, show that there is strong support for Suphrodytes nesting inside Hydroporus, and the
genera are therefore synonymized. [Bayes factor; Coleoptera; Dytiscidae; marginal likelihood; model testing; posterior odds;
reversible-jump MCMC; stepping-stone sampling.]

Testing hypotheses about the structure of trees is
one of the most fundamental tasks in phylogenetic
systematics. It helps answer questions such as: Does an
unknown sample X belong to a known reference group
A? Can two taxa A and B be maintained as separate
or is one nested inside the other? Is clade A more
closely related to clade B than to clade C? Is taxon A
monophyletic?

Bayesian statistics includes several tools for comparing
and testing models, and they have been applied to
the testing of tree hypotheses in a number of recent
papers (e.g., Lavoué et al. 2007; Marek and Bond 2007;
Parker et al. 2007; Azuma et al. 2008; Rabeling et al.
2008; Yamanoue et al. 2008; Pavlicev et al. 2009; Tank
and Olmstead 2009; Zakharov et al. 2009; Makowsky
et al. 2010; Yang et al. 2010; Kelly et al. 2011; Knight
et al. 2011; Schweizer et al. 2011; Drummond et al. 2012;
Miller and Bergsten 2012). However, it is quite difficult
to formulate relevant hypotheses about tree structure,
and Bayes factor tests, as commonly applied in the
literature, can be quite misleading. The purpose of this
article is to discuss the Bayesian techniques for testing
tree hypotheses, point out potential pitfalls, and provide
general recommendations for empiricists. We illustrate
both the pitfalls and the recommended techniques in a
test of whether two genera of diving beetles (Coleoptera:
Dytiscidae), Suphrodytes Gozis and Hydroporus Clairville,
can be maintained as separate genera or should be
synonymized.

THEORY

Bayesian Model Testing
We will assume that the reader is familiar with

the basics of Bayesian phylogenetic inference (see, e.g.,

Holder and Lewis 2003; Yang 2006; Ronquist and
Deans 2010). For an introduction to statistical testing of
phylogenetic models in general, see Sullivan and Joyce
(2005). The theory of Bayesian model testing was worked
out primarily by Jeffreys (1935, 1961). An excellent
summary of the early work on Bayesian model testing is
provided by Kass and Raftery (1995), who also laid the
foundation for much of the modern work in the field.

In Bayesian inference we are interested in the posterior
probability of model parameters (�) given some observed
data (D) and a model (M). The posterior probability
f (�|D,M) is obtained from the prior probability f (�|M)
of the parameter values, and the probability of the data
given the parameter values and the model f (D|�,M) (also
called the “likelihood”), by Bayes’ theorem

f (�|D,M)= f (�|M)f (D|�,M)
∫

f (�|M)f (D|�,M)d�
= f (�|M)f (D|�,M)

f (D|M)
.

The normalizing constant in Bayes’ theorem, f (D|M),
is the marginal likelihood of the data. It is also the
predictive probability of the data: the probability of
seeing the observed data calculated from the model before
the data are taken into account (Kass and Raftery 1995).
Sometimes it is called the marginal [model] likelihood
or the integrated [model] likelihood; we will refer to it
simply as the model likelihood.

It is this model likelihood, which is used in Bayesian
model comparison. Assume we have two models, M1
and M2. If we specified the prior probabilities of the
two models, f (M1) and f (M2), we could calculate the
posterior odds of the models as

f (M1|D)
f (M2|D)

= f (M1)
f (M2)

× f (D|M1)
f (D|M2)

.
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TABLE 1. Interpretation of the Bayes factor for hypothesis testing
after Kass and Raftery (1995)

Bayes factor 2×loge BF Interpretation

1–3 0–2 Not worth more than a bare mention
3–20 2–6 Positive
20–150 6–10 Strong
>150 >10 Very strong

The last ratio is the ratio of the model likelihoods, also
known as the Bayes factor. We could thus specify the
same equation in words as

posterior model odds=prior model odds×Bayes factor.

Both posterior model odds and Bayes factors are used
to compare models in Bayesian inference. When two
or more models are considered in the same analysis, it
is natural to focus on the marginal probabilities of the
models, f (M1 |D ), in the posterior of the supermodel
analysis. This is how you would approach inference
about any other discrete parameter in the analysis. The
posterior model odds are simply the ratio between the
marginal model probabilities.

A possible disadvantage of posterior model odds is
that they depend on the prior on models. We can get
rid of this dependency by focusing on the Bayes factor.
Even the Bayes factor, however, is sensitive to the priors
on model-specific parameters (as opposed to the prior
probabilities of the models themselves). For instance,
if one model is a special case of the other, then the
Bayes factor is dependent on how focused the prior is on
the larger parameter space (Kass and Raftery 1995 and
references cited therein). It is an analogous effect that
can cause problems with Bayes factor tests of topological
hypotheses, as we will discover.

One way of understanding the Bayes factor is that it
measures the strength of the data in changing the prior
model odds. Alternatively, because the model likelihood
is the predictive probability of the data, we can also view
the Bayes factor as measuring the relative success of the
models in predicting the data (Kass and Raftery 1995).
The Bayes factor is closely related to the likelihood ratio
statistic: change the integrated likelihoods to maximized
likelihood and you essentially have the latter. Unlike the
likelihood ratio statistic, however, Bayes factors can be
used on any pair of models, regardless of whether or not
they are nested. The former statistic is based on a chi-
square distribution, taking the number of parameters
into account through the degrees of freedom. Bayes
factors, in contrast, have a natural way of penalizing
overfitting, “a fully automatic Occam’s razor” (Kass and
Raftery 1995).

Based on the similarity to the likelihood ratio statistic,
general guidelines to the interpretation of Bayes factors
were suggested by Kass and Raftery (1995). Specifically,
they indicated that a Bayes factor larger than 3 should
be interpreted as significant positive evidence in favor of
the better model. A scale similar to the likelihood ratio

statistic is obtained by taking twice the logarithm of the
Bayes factor; on this scale, the critical value is 2 (Table 1).

Computational Challenges
There are two main approaches to estimating posterior

model odds and Bayes factors. The first one is to
use a single Markov chain Monte Carlo (MCMC)
analysis to estimate the posterior model probabilities
(for phylogenetic examples, see Suchard et al. 2001, 2005;
Huelsenbeck et al. 2004). If the models have a different
number of dimensions, or include different parameters,
then one has to implement reversible-jump MCMC,
which is technically demanding. It can also be difficult
to obtain good mixing across complex model spaces.
Despite the difficulties, this is often the best approach for
estimating moderate to large model probabilities. Small
model probabilities, however, are difficult to estimate
precisely. This means that more extreme posterior model
odds are difficult to assess reliably. If the aim is to
estimate Bayes factors, and the analysis uses prior
model odds that are strongly biased, the results can
be severely compromised as will be shown below. A
possible solution is to modify the prior probabilities
of models until the models of interest receive similar
posterior probabilities. Bayes factors or posterior model
odds can then be computed by taking the modified
prior probabilities into account. Suchard et al. (2005)
developed this approach further, referring to it as “Bayes
factor titration”.

The other approach involves separate estimation of
each of the model likelihoods. This means running
a complete MCMC simulation on each model, so it
can only be successfully applied to a small number of
models. In addition, it is extremely difficult to estimate
the model likelihood, which is typically a sum and
integral over a large and complex parameter space. The
most commonly used estimator is the harmonic mean
estimator (HME) (Newton and Raftery 1994), which is
simply the harmonic mean of the likelihoods of the
MCMC output. The HME is sensitive to the inclusion
of rare values with large influence on the estimate,
and it tends to overestimate the model likelihood.
More accurate estimates of the model likelihood can be
obtained by thermodynamic integration (Lartillot and
Philippe 2006), also known as path sampling (Baele et al.
2012), or the so-called stepping-stone method (Fan et al.
2011; Xie et al. 2011) albeit at a significantly increased
computational cost.

Bayesian Tests of Tree Hypotheses
In Bayesian phylogenetic inference, the tree is often

viewed as a discrete parameter, which can take on many
different values, one for each tree topology. However,
mapping parameters associated with nodes or branches,
such as branch lengths, from one tree to another is not
straightforward. In some sense, all nodes and branches
of two distinct tree topologies are different regardless of
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how similar the topologies are or how many bipartitions
they share.

Inspired by this, some workers consider each topology
as a separate model (e.g., Suchard et al. 2001, 2005; Yang
2006) instead of treating the topology as an ordinary
discrete model parameter. This leads to the view that
a typical Bayesian phylogenetic analysis is a case of
reversible-jump MCMC across topology model space.
This is the view we will adopt here. If we only consider
fully resolved trees, then the dimension of each model is
the same but the node and branch length parameters are
not identical. Thus, each jump between models amounts
to discarding some parameters (dimensions) and adding
in an equal number of other parameters (dimensions).

From an ordinary Bayesian phylogenetic analysis,
then, we get the marginal posterior probabilities of the
topology models. To get the posterior model odds for
two distinct topologies, we simply divide the frequency
of one tree with the frequency of the other in our sample
of the posterior.

In inference of non-clock trees, it is standard procedure
to associate each distinct topology with the same prior
probability, in which case the posterior odds are the
same as the Bayes factor. For clock trees, the standard
models (birth–death, coalescent, uniform) typically put
equal prior probability on unique labeled histories rather
than on unique topologies. To calculate the Bayes factor
for two distinct rooted topologies then, one has to take
into account that they may be compatible with different
numbers of labeled histories (Felsenstein 2004). For a
simple example, consider a four-taxon clock tree. There
are two histories compatible with a symmetric topology,
depending on which speciation event happened first.
In contrast, there is only one possible sequence of
speciation events in an asymmetric, comb-like topology.
If the prior puts equal probability on all speciation
histories, then symmetric topologies are twice as likely
as asymmetric ones. To obtain Bayes factors from a
posterior sample of trees under these conditions, simply
divide the frequency of symmetric topologies with two
to correct for the topology bias in the prior, and then
use the ratio between the corrected frequencies. Except
for this correction, topological hypothesis tests on clock
trees behave essentially the same as tests on non-clock
trees.

An important problem is that topology space is huge
for even moderate numbers of taxa, and the posterior
probabilities of an individual topology is likely to be
small and difficult to estimate accurately. Even the
best topologies may individually have low posterior
probability in a large analysis. It is arguably easier
to estimate the posterior probabilities of classes of
trees than it is to assess the probability of individual
topologies.

Focusing on classes of trees leads to other problems,
however (for a discussion of similar problems from a
different perspective, see Wheeler and Pickett 2008).
When using Bayes factors, for instance, the hypotheses
of interest are often associated with very different
numbers of topologies (see below). In fact, the vastness

of tree space often produces such extreme prior odds
in standard analyses that it becomes hopeless in many
cases to estimate Bayes factors from the posterior model
odds. For instance, the prior odds might be so biased
in favor of a particular clade being monophyletic that
it would take an enormously large MCMC sample to
show that the posterior odds are higher than the prior
odds. One possibility is then to restructure the prior by
introducing partition-associated probability factors and
then do Bayes factor titration (Suchard et al. 2005; see
also Ronquist et al. 2004).

A more serious problem, however, is to identify
the relevant classes of trees to be contrasted. This is
surprisingly difficult and can lead to counter-intuitive
results, especially when using Bayes factors. In fact,
we argue here that the Bayes factor test of topological
hypotheses used today by most phylogeneticists (in the
following referred to as “standard Bayes factor tests”)
should be abandoned in favor of more appropriate
techniques. The problem is related to the sensitivity
of Bayes factors to model-specific priors, and will be
illustrated here with two hypothetical examples.

Consider first the problem of determining whether or
not a sample sequence X belongs to a known group A, a
problem analysed by Suchard et al. (2005). Assume for
simplicity that the monophyly of A (without considering
X) is overwhelmingly supported by the data. Further
assume that there is no evidence allowing us to place
X; all placements of X in the tree results in the same
likelihood. Under these circumstances, the Bayes factor
should be 1, that is, there should be no evidence for or
against the hypothesis that X belongs to A compared to
the hypothesis that X does not belong to A.

The standard approach explored by Suchard et al.
(2005) would be to test the hypothesis that X+A form
a monophyletic group (H1) against the hypothesis that
they do not (H0). This will likely produce misleading
results, as we will see in the following. In the tree without
X, let a be the number of taxa in A, and n the number of
taxa in total. If A is a non-trivial group in the tree without
X, then we have a≤n−2 (group A excludes at least two
taxa). Further, let B(n) be the number of unrooted, fully
resolved trees for n taxa. If the prior associates each tree
with the same prior probability, the prior odds for H1
against H0 would be

B(n−a+1)B(a+2)/B(n+1)
1−B(n−a+1)B(a+2)/B(n+1)

.

For large n, the denominator is close to 1, so this ratio is
very nearly equal to

B(n−a+1)B(a+2)
B(n+1)

.

In the posterior, we expect all or almost all trees to have
A as monophyletic. Given that this is true, and that X
can be placed with equal probability on every branch
in the tree, the posterior odds of X being placed inside
A whereas it being placed outside is simply the ratio
between the number of branches in A and the number
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of branches outside A,

2a−2
2(n−a)−1

.

Since the Bayes factor is the posterior odds divided by
the prior odds, we obtain the Bayes factor as

B(n+1)(2a−2)
B(n−a+1)B(a+2)(2(n−a)−1)

.

This is guaranteed to be a large number, especially for
large n, suggesting that there is significant support for
H0. In other words, the Bayes factor is misleading. The
reason for this counter-intuitive result is that the Bayes
factor reflects both the strength of evidence in favor of
placing X in A, and the evidence in favor of monophyly of A
regardless of the position of X. Given the way the problem
is formulated, we should take strong evidence for the
monophyly of A for granted, and account for that in the
hypothesis test.

Because such background information is often
reflected in the posterior, the posterior odds can be more
informative than Bayes factors calculated in the standard
way. For instance, in this particular case, the posterior
odds for X grouping with A would be

2a−2
2(n−a)−1

.

This will not deviate much from 1, so the posterior odds
will suggest that there is little evidence for placing X
inside A. However, the odds will be exactly equal to 1
only when there are as many tree tips inside as outside
of A (a=n−a, and assuming that placement as sister to
A is indecisive).

To calculate a meaningful Bayes factor for this
problem, we need to restrict our attention to trees that
have A monophyletic after pruning of X. In the best
case, all the trees in the posterior sample from an
unconstrained analysis will satisfy this constraint, in
which case the posterior tree sample can be used directly
for the calculation of Bayes factors. If only some trees in
the posterior sample violate the constraint, we can filter
them out, for instance using a backbone constraint in
PAUP, and then use the remaining trees for hypothesis
testing. One can also run an MCMC analysis using
a backbone constraint forcing A to be monophyletic
regardless of the position of X, as permitted, for example,
in the most recent version of MrBayes (Ronquist et al.
2012), and then use this tree sample for model testing.

An alternative, but likely less accurate method, is
to estimate the model likelihood separately for the
two hypotheses. One would then run an analysis with
A constrained to be monophyletic without X. The
other analysis would have A+X constrained to be
monophyletic, and A without X constrained not to be
monophyletic. The latter constraint is important if X
being the sister of A is not considered part of the tree
set relevant for H1.

If we restrict our attention to the backbone trees with
A monophyletic, then the prior odds for X being placed

inside A would be
2a−2

2(n−a)−1
.

This is the same as the posterior odds, and thus gives
the expected Bayes factor of 1. Essentially, what we
have done is to take the background information that
A (with or without X) is likely to be monophyletic into
account in the topology prior, making the Bayes factor
test informative rather than misleading. This illustrates
how sensitive Bayes factor tests of topology hypotheses
are to the specification of the topology prior, unlike
posterior model odds. Unfortunately, the standard flat
prior on topologies (or histories) is rarely appropriate
for Bayes factor tests of topological hypotheses.

For a second example of the problems with standard
Bayes factor tests of topological hypotheses, consider
the very common question of whether a group A is
monophyletic. Also here it is easy to get contradictory
results if one does not consider the relevant tree classes
carefully. This can be illustrated with a simple example
(Fig. 1). Assume that A consists of two subgroups, A1
and A2, which are both overwhelmingly supported as
monophyletic, while there is no evidence concerning the
relationships in the rest of the tree. The hypothesis test
should then tell us that there is no evidence for or against
the hypothesis that A is monophyletic.

We first consider the standard hypothesis test where
we contrast A being monophyletic (H1) with A not being
monophyletic (H0). As before, we have a taxa in A1 +A2,
n taxa in the tree in total and a≤n−2. The prior odds for
A being monophyletic are very nearly

B(n−a+1)B(a+1)
B(n)

,

which is a very small number if n is large. If we consider
the tree outside of A1 and A2, there will be n−a+2 tips
in it (two tips representing A1 and A2, respectively).
There will be B(n−a+2) equally well-supported trees,
only B(n−a+1) of which will have A monophyletic. The
posterior odds for A being monophyletic will then be

1
2(n−a+1)−3

,

since we know in general that B(n+1)= (2n−3)B(n).
This gives a Bayes factor of

B(n)
B(n−a+1)B(a+1)(2(n−a+1)−3)

= B(n)
B(n−a+2)B(a+1)

,

which is guaranteed to be a large number for large
n. Again, the standard Bayes factor test is misleading,
and just using the posterior odds as a guide is more
informative. Even better is to take the monophyly of A1
and A2 into account in both H1 and H0, in which case we
get the expected Bayes factor of 1 (Fig. 1).

What if there is also structure in the outgroup? Let
the outgroup consist of two groups B1 and B2 with a
total of b species. Furthermore, assume that there is
no information about the structure of the tree except
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FIGURE 1. Schematic illustration of the Bayes factor test of the hypothesis that A is a monophyletic group (H1) against the hypothesis that it is
not (H0). We assume that A consists of two strongly supported subclades, A1 and A2, but that the rest of the tree is unresolved such that there is
no evidence that A1 and A2 together form a monophyletic group. The Bayes factor compares the average height of the posterior over the prior
tree space of each hypothesis. When using a standard H0, the signal is spread over a large tree space, and the test suggests that H1 is strongly
supported. If we use an informed prior for H0 by restricting the tree space to those trees that have A1 and A2 monophyletic, then the Bayes
factor correctly identifies that there is no support for or against H1 over H0, as the average height is the same. A posterior odds test compares
the total probability mass under each hypothesis (the area under the posterior distribution), and is therefore not as strongly influenced by the
size of the tree space as the Bayes factor.

that A1, A2, B1, and B2 are each strongly supported as
monophyletic. The prior odds for A being monophyletic
are the same but the posterior odds are going to be much
higher (less extreme) because there are more constraints
on outgroup relationships. It could be as high as 1/3, if
n=a+b. Specifically, the Bayes factor is going to be

B(n)
B(n−a+1)B(a+1)(2(n−a−b+3)−3)

.

Thus, the effect is to make the Bayes factor larger,
resulting in the standard test being even more
misleading.

We now turn our attention to a specific empirical case
that illustrates the difficulties described above. In the
discussion, we return to how these observations can be
used to provide general recommendations for Bayesian
tests of tree hypotheses.

Empirical Example
The Northern Hemisphere genus Hydroporus is with

its over 180 known valid species dominating the tribe
Hydroporini. Most species of the genus inhabit boreal
and arctic wetlands where they form an important part
of the fauna as predators of zooplankton and benthic
insect larvae, especially in the shallower parts of more
temporary waters. The delimitation of the genus relative
to a number of other smaller genera of the tribe remains
problematic, as well as the recognition of subgenera
within the genus, at present abandoned in favor of a
less formal classification into 29 species groups (Nilsson
2001). Recent trends in the delimitation of Hydroporus
include both splitting, like the recognition of Hydrocolus
Roughley and Larson as a separate genus, as well as

lumping such as the synonymization of Hydrotarsus
Falkenström with Hydroporus (Ribera et al. 2003).

Here we primarily want to test the monophyly of
Hydroporus relative to the Palearctic genus Suphrodytes,
with its traditionally recognized single species recently
split into two (Bergsten et al. 2012). Suphrodytes
was introduced by Gozis (1914) as a subgenus of
Hydroporus, including the single species Hydroporus
dorsalis (Fabricius). Later authors largely accepted the
new subgenus but gradually added a number of
other northern large-bodied Hydroporus species to the
group (Zimmermann 1931; Guignot 1932, 1947; Balfour-
Browne 1938; Zaitzev 1953). This association was later
abandoned by Angus (1985), who stressed the isolated
position of dorsalis, adding to characters from the
prosternal process also characters from the female
genital tract, and changed the status of Suphrodytes
to a monobasic genus. This view was to be accepted
by most subsequent authors publishing on European
Hydroporini (Nieukerken 1992; Nilsson and Holmen
1995; Nilsson 2001, 2003).

More recently, the molecular phylogenetic analysis
of Ribera et al. (2003, 2008) and Hernando et al.
(2012) suggested that Suphrodytes dorsalis was nested
within Hydroporus, providing evidence in favor of
a synonymization of Suphrodytes with Hydroporus.
However, Ribera et al. (2003) and Hernando et al. (2012)
only used mitochondrial markers and support for the
conclusion was weak or algorithm dependent and hence
no formal change to the classification was made by
either. (Ribera et al.’s , 2008) analysis used both nuclear
and mitochondrial genes but focused on the higher-
level relationships within the family Dytiscidae and
the sample was too sparse at the species group level
to make any definite conclusions regarding Suphrodytes
and Hydroporus. Only four of the 29 species groups of
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Hydroporus were represented in that study. As taxonomic
sampling is imperative for accurate phylogenetic
estimation (Zwickl and Hillis 2002; Heath et al. 2008)
solving the Suphrodytes/Hydroporus controversy will
require a study focused on the Hydroporus group of
genera, a much broader sample of Hydroporus species
groups, both nuclear and mitochondrial genes and
explicit topological hypothesis testing.

Approach Taken Here
In this study we expand the four-gene dataset

of Ribera et al. (2008) to include representatives of
>75% of species groups in Hydroporus for the focused
question of the phylogenetic placement of Suphrodytes
in relation to Hydroporus. In a Bayesian hypothesis-
testing framework we use a recently improved method
of marginal likelihood estimation to explicitly test
competing topologies using the Bayes factor. We show
that the standard approach to calculating the Bayes
factor results in the opposite conclusion compared to our
preferred approach outlined above. We also calculate the
posterior model odds for the alternative hypotheses by
filtering the tree sample from the MCMC analysis, which
supports the conclusion of our preferred Bayes factor
approach. A common practice to estimate the marginal
likelihood of models is to use the harmonic mean of
the log likelihood from MCMC analyses (e.g., Nylander
et al. 2004; Miller et al. 2009; see original Newton and
Raftery 1994), conveniently part of the output of popular
software like MrBayes 3.1 (Ronquist and Huelsenbeck
2003). However it is known that the harmonic mean
is a poor estimator and substantially overestimates the
marginal likelihood of the model (Lartillot and Philippe
2006; Xie et al. 2011). Instead we used the stepping-stone
sampling method recently described by Xie et al. (2011),
which has been shown to be significantly more accurate
than the harmonic mean method.

MATERIALS AND METHODS

Taxon Sampling
We restricted the taxon sampling to the Hydroporus

group of genera as defined by Ribera et al. (2008) in
their Figure 3 labeled as node number 26 of well-
supported nodes. This included apart from Suphrodytes
and Hydroporus also Neoporus Guignot, Heterosternuta
Strand, Hydrocolus, and Sanfilippodytes Franciscolo. From
Ribera et al.’s analysis we consider it unambiguous that
Suphrodytes belong nowhere else outside this group of
genera and a test of its placement can be restricted to
this subgroup within Hydroporinae. As outgroups to
root the tree we used Andex insignis Sharp, Hyphydrus
ovatus (Linnaeus), Hovahydrus minutissimus (Régimbart),
Canthyporus hottentottus (Gemminger and Harold) and
Laccornellus copelatoides (Sharp) which were part of the
two closest clades to the Hydroporus group in Ribera
et al. (2008). Within Suphrodytes we sampled the two

existing species, S. dorsalis and Suphrodytes figuratus
(Gyllenhal) after a recent treatment showing the genus
is not monotypic as previously believed (Bergsten et al.
2012). Within Hydroporus we sampled representatives of
as many additional species groups as possible to the
ones included in Ribera et al. (2008), in particular some
of the large-bodied species historically associated with
Suphrodytes . This resulted in adding 19 new groups to
Ribera et al.’s four to a total of 23 of the 29 presently
recognized species groups being represented in the final
data matrix (Appendix).

DNA Extraction, PCR, and Sequencing
For most species DNA was extracted from the head

and prothorax in 96-well Wizard SV plates following
the manufacturer’s instructions (Promega). A few
additional species were extracted from one hindleg with
a GeneMole automated extraction robot (Mole Genetics
AS). We targeted two nuclear (18 s and H3) and two
mitochondrial (CO1 and 16s) genes for the analysis
using the primers listed in Supplmentary Table S1
(doi:10.5061/dryad.s631d). For H3, 16 s, and 18 s we used
Ready-ToGo™ PCR beads (Amersham Biosciences) in
a 25 ul reaction volume with a 0.4 uM concentration of
each primer and 2 ul of DNA (unknown concentration).
Cycling conditions started with a 5 min denaturation
step at 95◦C followed by 40 cycles of 30 s at 95◦C, 30 s at
50◦C, and 60 s at 72◦C, followed by a final extention step
of 8 min at 72◦C. Most CO1 sequences were amplified
with Bioline Taq instead of beads but with the same
primer and DNA concentration. Cycling condition for
CO1 was 94◦ for 2 min, 35–40 cycles of 94◦ for 30 s, 51◦–
53◦ for 60 s and 70◦ for 90 s–120 s, and a final extension
of 70◦ for 10 min. Most PCR products were purified with
Exonuclease I and FastAP (Fermentas) in the proportion
1:4, and sequenced with a BigDye™ Terminator ver.
3.1 Cycle Sequencing Kit (Applied Biosystems), cleaned
with a DyeEx 96 kit (Qiagen) and run on an ABI Prism
3100 Genetic Analyzer (Applied Biosystems). Some
CO1 products were cleaned with a 96-well Millipore
multiscreen plate and sequenced in both directions using
a BigDye™ Terminator ver. 2.1, and analysed on an ABI
3730 automated sequencer.

Analyses and Hypothesis Testing
Sequence chromatograms were edited, trimmed of the

primer ends and exported as fasta files in Sequencher
v. 4.8 (Gene Codes Corporation). New DNA sequences
are submitted to Genbank under the accession codes
JX434757- JX434840 (Appendix). Sequences were aligned
in Clustal X v. 2.0.12 (Larkin et al. 2007) with default
gap opening and gap extension penalties (15 and 6.66,
respectively). The alignments of the length-variable
ribosomal genes were compared with using Mafft v.
6.850 (Katoh and Toh 2008) (E-INS-i, L-INS-I, and
G-INS-i, all with 10 iterations) but differences were
minimal (1 bp in length, 0.003 and 0.022 difference in
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posterior probability branch support for the placement
of Suphrodytes in single-gene analyses of 16 s and 18 s,
respectively) and the clustal alignments were used for
all four genes. The parallel mpi version of MrBayes
version 3.2 (build 457) (Altekar et al. 2004; Ronquist
et al. 2012) was used to infer a phylogenetic hypothesis
from the combined four-gene dataset. We specified a
partitioned model based on genes and codon positions.
For each partition we specified a model a priori allowing
for the estimation of base frequencies, the proportion
of invariable sites and allowed for rate-variation across
sites with a gamma distribution. However, the core of the
model, the substitution rate matrix, was not specified
a priori. Instead we used reversible-jump MCMC to
integrate over the pool of all 203 possible reversible 4×4
nucleotide models. The method was first described by
Huelsenbeck et al. (2004) and has been implemented in
the latest version of MrBayes 3.2 (Ronquist et al. 2012).
All parameters were unlinked across partitions except
topology and branch length, and each partition also
had separate relative rate multipliers. Other prior and
proposal settings were left as default. Ten million MCMC
generations were sampled every 1000th step and the first
25% were discarded as burn-in. We ran four independent
runs each with one cold and one heated chain (T =0.2)
and pooled the samples after burn-in was removed.
Mixing and convergence was monitored through the
statistics provided in the program. The tree was rooted
between the ingroup and outgroups as specified a priori
unless non-monophyly of the ingroup prevented such a
rooting.

We specified two hypotheses to be tested against
each other. Traditional classification treats Hydroporus
and Suphrodytes as two separate and valid genera and
this constitutes our null-hypothesis H0: Hydroporus is
monophyletic exclusive of Suphrodytes. The alternative
hypothesis H1 specifies a paraphyletic Hydroporus with
Suphrodytes nested within Hydroporus, something that
has been suspected because of weak morphological
synapomorphies of Hydroporus and also indicated
by some molecular data, albeit poorly sampled for
Hydroporus (e.g., Ribera et al. 2008), or algorithm
dependent and based on mitochondrial data (Hernando
et al. 2012). We used the two approaches to Bayesian
hypothesis testing as described above: Bayes factor and
posterior model odds. The posterior probability for
H0 and H1 was calculated by filtering the posterior
tree sample in PAUP* v. 4.0a125 (Swofford 2002) and
calculating the frequency of trees congruent with
respective hypothesis. We do this both for the tree sample
from an unconstrained analysis and for the tree sample
from a backbone-constrained analysis where Hydroporus
is constrained to be monophyletic with respect to other
Hydroporini (both ingroup and outgroup taxa) but
Suphrodytes is allowed to “float” without constraints. The
latter approach focuses the hypothesis testing to only
involve Suphrodytes in relation to Hydroporus without
the interference of other Hydroporini-taxa in relation to
Hydroporus. For the Bayes factor test we contrast what we
call the standard approach with our preferred approach

and show that it changes the outcome of the test. In
the standard test we calculate the marginal likelihood
of H0 by using an absolute monophyly constraint on
Hydroporus as an informed topology prior, whereas
the marginal likelihood of H1 was calculated from an
unconstrained analysis with an uninformative prior
across topology space. This is the approach taken in
many empirical studies (e.g., Lavoué et al. 2007; Marek
and Bond 2007; Parker et al. 2007; Azuma et al. 2008;
Yamanoue et al. 2008; Pavlicev et al. 2009; Tank and
Olmstead 2009; Makowsky et al. 2010; Yang et al. 2010;
Knight et al. 2011). In our preferred Bayes factor test
we calculate the marginal likelihood of the alternative
hypotheses after specifying equally informed priors
(constraints) on the topology (Fig. 2).

To calculate the marginal likelihood of models we used
the stepping-stone sampling method of Xie et al. (2011),
which is now implemented in MrBayes 3.2 (Ronquist
et al. 2012). We used a value (0.4) for the �-shape
parameter of the beta distribution within the range Xie
et al. (2011) found optimal and 204,000 MCMC steps were
sampled every 100th generation for each of 48 ß-values
between 1 (posterior) and 0 (prior) after an initial 204,000
generations were discarded as burn-in. The contribution
to the marginal likelihood from each step is estimated
from a sample-size of 2040. The same setting was used for
four independent runs for each model to be tested, each
with one cold and one heated chain, and the arithmetic
mean across runs of the estimated marginal likelihood
for each model was used to calculate the Bayes factor.
For all analyses, the chains and runs were distributed
across eight cores of two 2.8 GHz Quad-Core Intel Xeon
processors.

RESULTS

DNA extraction, PCR and sequencing was successful
for all 21 taxa and four genes added to the dataset
resulting in no complete gene gaps in the alignment.
The combined datamatrix consisted of 2111 aligned
nucleotides of which 553 varied and 1558 were constant
(Supplementary Table S2). The separate runs of the
Bayesian analyses converged unproblematically to an
average deviation of split frequencies of <0.005, and the
post burn-in, merged, runs resulted in the fully resolved
topology shown in Figure 3. The tree could be rooted
between ingroup (posterior probability, pp=0.99) and
outgroups as specified a priori. In the ingroup, Hydrocolus
came out as sister to the remaining genera, but this must
be seen as a tentative hypothesis as the support was just
on the margin (pp=0.51) to be recovered in the majority-
rule consensus of the sampled trees. At this low level
of support the recovered resolution is often sensitive to
model specification. Hydrocolus apart, Heterosternuta+
Neoporus+Sanfilippodytes formed a strongly supported
monophyletic group (pp=0.99) sister to Hydroporus+
Suphrodytes. Hydroporus and Suphrodytes were also
highly supported as monophyletic (pp=0.98). Within
that clade, Hydroporus came out as paraphyletic due
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FIGURE 2. Comparison of standard (a–b) and preferred (c–d) Bayesian hypothesis testing for the empirical example. Standard: When the
H0 hypothesis a) of a paraphyletic Hydroporus is tested as unconstrained against the alternative H1 hypothesis b) constrained to comply with
a monophyletic Hydroporus, the latter is strongly preferred by the Bayes factor (2×loge BF=88.96 in favor of H1). However, this is largely due
to strong signal for the two subclades within Hydroporus. Preferred: When the H0 hypothesis c) of a paraphyletic Hydroporus is associated with
an informed topology prior comparable to that of H1 d), the Bayes factor instead prefers H0 (2×loge BF=7.82 in favor of H0). This is also the
hypothesis with the largest posterior probability.

to Suphrodytes being nested inside with a posterior
probability of 0.87. Hydroporus was divided into two well-
supported monophyletic groups, here labeled Clade I
and II. Clade I (pp=0.98) included the following species
groups: angustatus, fuscipennis, longulus, memnonius,
neglectus, nigrita, puberulus, striola, tesselatus and tristis.
Clade II (pp=1.0) included the appalachius, axillaris,
columbianus, erythrocephalus, lapponum, nigellus, niger,
notabilis, obscurus, rufifrons, sinuatipennis, subpubescens,
and transpunctatus species groups. Suphrodytes came out
as sister group to Clade II with rather strong support
(pp=0.87). In the backbone-constrained analysis where
Hydroporus was constrained to be monophyletic in
relation to all taxa except “floating” Suphrodytes,
the support for Suphrodytes+Hydroporus increased
marginally to 1.0 and Suphrodytes+Hydroporus Clade II
to 0.88.

Filtering the merged, post-burn-in, sample of trees
for trees consistent with each hypothesis resulted in a
posterior model odds of H1 versus H0 of 0.947/0.0334
for the unconstrained analysis and 0.9662/0.0338 for the
backbone-constrained analysis (Table 2). According to
the posterior model odds there was hence about 28 times
higher probability for the hypothesis H1 of a paraphyletic
Hydroporus without Suphrodytes to the hypothesis H0 of
a monophyletic Hydroporus.

The stepping-stone MCMC sampling converged
successfully among the four independent runs for
all 48 ß-values with an average deviation of split
frequencies always <0.03. The standard Bayes factor

test estimated the marginal likelihood for H1 from an
unconstrained analysis and for H0 under the topological
constraint of Hydroporus monophyly. The estimation of
the marginal log likelihood was −13,366.34 for the null
hypothesis and −13,410.82 for the unconstrained H1
hypothesis (Table 3). The test statistic 2×loge BF=88.96
which, according to the scale of interpretation (Table 1),
gives very strong support in favor of the constrained
hypothesis (H0) forcing Hydroporus to be monophyletic,
despite the fact that this model has a much lower
posterior probability (Table 2). In contrast, the preferred
Bayes factor test where the two hypotheses are tested
under equally informed priors on topology space,
gives strong support (2×loge BF=7.82) in favor of the
alternative hypothesis (H1) where Suphrodytes is nested
within Hydroporus. Note that in a test with an ambiguous
prior constraint on topology where H0 is calculated
only under constraint H(=Hydroporus monophyletic)
and H1 is calculated only under constraint HS(=
Hydroporus+Suphrodytes monophyletic), allowing a
nested position of Suphrodytes but not excluding a sister-
group relationship, the Bayes factor support for H1 is
reduced from strong to positive (Table 4; 2×loge BF=
4.42). Despite a large number of free parameters, given
the combination of eight data partitions and reversible-
jump MCMC across 203 substitution models for each,
the consistent estimate of the marginal likelihood
under various constraints across the four independent
runs indicate that this was not a problem for the
approximation (Table 4). Following the best supported
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FIGURE 3. Phylogeny based on the combined four-gene matrix from the unconstrained Bayesian analysis and rooted between outgroups and
ingroups as defined a priori. Numbers refer to posterior probability clade support values.

hypothesis in our preferred Bayes factor test and from the
posterior model odds, we reinstall Suphrodytes as a junior
synonym of Hydroporus, following Zimmermann (1931),
in order to make Hydroporus monophyletic, resulting in
the reinstalled combinations H. dorsalis (Fabricius 1787)
and Hydroporus figuratus (Gyllenhal 1826).

DISCUSSION

The main point of this article is that Bayes factor tests
of topological hypotheses are extremely sensitive to the
tree space associated with each hypothesis in the prior.
One needs to carefully consider the relevant tree classes
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TABLE 2. Posterior probability of hypotheses based on an
unconstrained analysis and a backbone-constrained analysis where
Hydroporus is constrained monophyletic in relation to the outgroups
but Suphrodytes is allowed to “float”

Constraints H0 H1 H2 H3

Unconstrained 0.03339 0.86825 0.08666 0.9469
(30,004) (1018) (26,050) (2601) (28,411)
Backbone 0.03376 0.88025 0.08582 0.9662
(30,004) (1013) (26,410) (2576) (28,991)

Notes: H0 =Hydroporus monophyletic to the exclusion of Suphrodytes;
H1 = Suphrodytes+Hydroporus Clade II monophyletic; H2 =Suphrodytes
+Hydroporus Clade I monophyletic; H3 =Suphrodytes nested within
Hydroporus. In parenthesis the total number of trees filtered out from
the total (30,004) that supports the hypothesis.

TABLE 3. Estimations of the marginal likelihood using four
independent stepping-stone sampling runs (SS) of three constrained
hypotheses with an equally informed prior on topology, and of an
unconstrained analysis (UC)

SS
runs

Marg. Log
Lik. H0

Marg. Log
Lik. H1

Marg. Log
Lik. H2

Marg. Log
Lik. UC

2×loge B10
H1 versus

H0

2×loge B10
UC versus

H0

1 −13,366.60 −13,364.61 −13,364.61 −13,411.57
2 −13,368.18 −13,362.88 −13,364.75 −13,410.21
3 −13,366.39 −13,361.74 −13,365.65 −13,410.75
4 −13,365.59 −13,362.19 −13,365.36 −13,411.32
Mean −13,366.34 −13,362.43 −13,365.00 −13,410.82 −7.82 88.96

TABLE 4. Mean and standard deviation from four independent
stepping-stone sampling estimations of the marginal likelihood under
different constraints and unconstrained (UC)

Constraints Marg. Log Lik. St. Dev. (4 runs)

UC −13,410.82 0.6078
H −13,391.51 0.3093
HS −13,389.30 1.9914
HS, H1, H2, S −13,363.21 1.0238
H, HS, H1, H2, S −13,366.34 1.0845
H2S, HS, H1, H2, S −13,362.43 1.2604
H1S, HS, H1, H2, S −13,365.00 0.4941
H, H1, H2 −13,370.77 1.8202

Note: For explanation of constraints see Figure 2.

to be contrasted or one will risk obtaining misleading
results regardless of how accurately the Bayes factor is
estimated. Specifically, the risk is that one spreads out
the prior probability on too many trees for one of the
hypotheses, such that the Bayes factor will almost surely
favor the other hypothesis regardless of the data signal.

To avoid this pitfall, empiricists need to consider more
refined hypothesis tests that take irrelevant background
signal into account. Generally speaking, if there is strong
support for clades surrounding the part of the tree of
interest in the hypothesis test, then the support for those
clades should be accommodated in the Bayes factor
test by introducing appropriate constraints or applying
relevant tree filters to modify the prior on tree space.

If the support is more diffuse, it may be better to focus
on posterior model odds than to rely on Bayes factors
calculated using the standard approach.

A special case concerns the rejection of hypotheses
of monophyly. Our examples suggest that the standard
Bayes factor test is always biased toward acceptance of
the monophyly hypothesis. Thus, it appears that one
can safely use a standard Bayes factor test to reject
a hypothesis of monophyly, but it is typically going
to be an extremely conservative test. The conservative
nature of the test can be seen in our empirical example
(Fig. 2a,b): an attempt to reject the hypothesis of
a monophyletic Hydroporus fails under the standard
approach. In contrast, setting five equivalent topology
constraints for the two hypotheses to be tested (Fig. 2c,d),
yields an equally informed prior on tree space and
the outcome of the Bayes factor test is reversed—the
monophyly of Hydroporus can be rejected. This internal
resolution of Hydroporus and the position of Suphrodytes
are also in agreement with previous studies (Ribera
et al. 2003, 2008; Hernando et al. 2012). The sister
clade of Suphrodytes (Clade II) includes the large-bodied
northern species, for example H. lapponum, H. notabilis
and H. submuticus, with which Suphrodytes historically
have been associated (Zimmermann 1931; Guignot 1932;
Zaitzev 1953).

Could the outcome of the Bayes factor test have been
reversed if the posterior probability node support for
a paraphyletic Hydroporus had been 1.0 instead of 0.87
in the unconstrained analysis? If, hypothetically, the
posterior probability for one hypothesis is exactly 1, the
probability of the other hypothesis would be exactly 0,
and the posterior odds ratio would be infinite. However,
in reality the support for a hypothesis is never exactly 1
or exactly 0. All topological hypotheses have at least an
infinitesimal posterior probability, and the reason “1.0”
is a common node value in empirical studies is only
due to the finite MCMC sample-size, MCMC error and
rounding of numbers. Since the Bayes factor is the ratio
of the posterior odds to the prior odds, and the posterior
odds is never infinite, there is always at least a theoretical
possibility that a biased-enough prior odds can lead to
the above situation.

Estimating Bayes factors or posterior model odds for
tree hypothesis testing is not straightforward. The most
accurate approach is usually to focus on the posterior
sample of an unconstrained analysis. With appropriate
filtering, such a sample can often be used directly to
estimate posterior model odds or the more refined Bayes
factors proposed here. There are essentially two cases
where one needs to consider more elaborate methods,
such as stepping-stone sampling (Xie et al. 2011)
or thermodynamic integration (Lartillot and Philippe
2006). First, when the posterior probability of at least
one topological hypothesis is so small that it cannot
be estimated accurately from the posterior tree sample.
Second, when the focus is on Bayes factors and the
prior odds are so strongly skewed that even accurately
estimated model probabilities are not going to produce
reliable Bayes factor estimates. In the latter case, Bayes
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factor titration may be a more attractive alternative to
stepping-stone sampling or thermodynamic integration
(Suchard et al. 2005). However, as shown both with
our hypothetical and empirical examples, an accurate
estimation of Bayes factor is no guarantee against
misleading conclusions if the model-specific priors are
not carefully considered. Restricting the tree space with
an informed prior for one hypothesis but not the other,
as is commonly done, will strongly bias the Bayes factor
test in favor of the hypothesis under the constrained
analysis. Although the improved methods for estimating
the marginal likelihood with accuracy set the stage for
more accurate model testing (Xie et al. 2001; Lartillot and
Philippe 2006), the dependency of Bayes factor on model-
specific priors remain the same. This was well explained
by Kass and Raftery (1995), but phylogeneticists have
so far failed to recognize the implications for tests of
topology hypotheses.

In conclusion, we argue that phylogeneticists should
abandon the standard Bayes factor tests that are
commonly used today to test topological hypotheses.
Instead, they should take the irrelevant background
signal about topological structure into account in the
Bayes factor test. If this is not possible, then it is better to
focus on posterior model odds than on Bayes factors

APPENDIX

Data on specimens used in the analyses and Genbank accession numbers. Accession numbers in bold are new
sequences, remaining sequences are from Ribera et al. (2008) or Bergsten et al. (2012).

calculated in the standard way, which are almost surely
misleading.
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Datamatrix and tree files are available in TreeBase
(http://purl.org/phylo/treebase/phylows/study/TB2:
S13927).
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ID Cat. No. Genus Species Species gr. 16S CO1 18S H3

Ingroup
BMNH 744009 Suphrodytes dorsalis JX221577 JX221617 JX221591 JX221693
BMNH 744010 Suphrodytes figuratus JX221578 JX221618 JX221592 JX221694
BMNH 722881 Hydroporus kraatzii longulus gr. JX434757 JX434799 JX434778 JX434820
BMNH 725985 Hydroporus rufifrons rufifrons gr. JX434758 JX434800 JX434779 JX434821
BMNH 725987 Hydroporus tristis tristis gr. JX434759 JX434801 JX434780 JX434822
BMNH 800416 Hydroporus niger niger gr. JX434760 JX434802 JX434781 JX434823
BMNH 800432 Hydroporus axillaris axillaris gr. JX434761 JX434803 JX434782 JX434824
BMNH 800437 Hydroporus longiusculus subpubescens gr. JX434762 JX434804 JX434783 JX434825
BMNH 800458 Hydroporus notabilis notabilis gr. JX434763 JX434805 JX434784 JX434826
BMNH 800761 Hydroporus carri transpunctatus gr. JX434764 JX434806 JX434785 JX434827
BMNH 800780 Hydroporus appalachius appalachius gr. JX434765 JX434807 JX434786 JX434828
BMNH 800785 Hydroporus puberulus puberulus gr. JX434766 JX434808 JX434787 JX434829
BMNH 800806 Hydroporus mannerheimi lapponum gr. JX434767 JX434809 JX434788 JX434830
BMNH 800846 Hydroporus neglectus neglectus gr. JX434768 JX434810 JX434789 JX434831
BMNH 801288 Hydroporus nigrita nigrita gr. JX434769 JX434811 JX434790 JX434832
BMNH 801293 Hydroporus tessellatus tesselatus gr. JX434770 JX434812 JX434791 JX434833
BMNH 801298 Hydroporus memnonius memnonius gr. JX434771 JX434813 JX434792 JX434834
BMNH 801303 Hydroporus obscurus obscurus gr. JX434772 JX434814 JX434793 JX434835
BMNH 824791 Hydroporus fortis columbianus gr. JX434773 JX434815 JX434794 JX434836
BMNH 824798 Hydroporus sinuatipes sinuatipes gr. JX434774 JX434816 JX434795 JX434837
BMNH 824800 Hydroporus erythrocephalus erythrocephalus gr. JX434775 JX434817 JX434796 JX434838
NHRS-JLKB000000528 Hydroporus lapponum lapponum gr. JX434776 JX434818 JX434797 JX434839
NHRS-JLKB000000678 Hydroporus submuticus nigellus gr. JX434777 JX434819 JX434798 JX434840
BMNH 681719 Hydroporus nigellus nigellus gr. AY365277 AY365311 AJ850515 EF670195
BMNH 681248 Hydroporus pilosus fuscipennis gr. AF518274 AF518305 AJ318733 EF670196
BMNH 681250 Hydroporus pubescens fuscipennis gr. EF419327 AF309300 AJ318734 EF056566
BMNH 681249 Hydroporus scalesianus angustatus gr. AF518278 AF518309 AJ850516 EF670197
BMNH 681239 Hydroporus vagepictus striola gr. AF518281 AF518312 AJ850517 EF670198

(continued)

http://purl.org/phylo/treebase/phylows/study/TB2:S13927
http://purl.org/phylo/treebase/phylows/study/TB2:S13927
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ID Cat. No. Genus Species Species gr. 16S CO1 18S H3

Outgroups
BMNH 693521 Hydrocolus sahlbergi AJ850379 AJ850629 AJ850518 EF670199
BMNH 681287 Heterosternuta pulcher AF518252 AF518282 AJ318732 EF670194
BMNH 681544 Neoporus arizonicus AJ850380 AJ850630 AJ850519 EF670193
BMNH 681288 Neoporus undulatus AJ850381 AJ850631 AJ318741 EF670200
BMNH 681625 Sanfilippodytes terminalis AJ850426 AJ850673 AJ850552 EF670202
MNCN AI9 Andex insignis EF056665 EF059805 EF056633 EF056550
MNCN-AI126 Hovahydrus minutissimus EF056677 EF056606 EF056642 EF056563
BMNH 681225 Hyphydrus ovatus EF056688 EF056618 EF056651 EF056576
BMNH 681839 Canthyporus hottentotus AJ850333 AJ850585 AJ850457 EF670118
BMNH 681331 Laccornellus copelatoides AY334131 AY334247 AJ318738 EF056578

ID Cat. No. Legit Country Locality

Ingroup
BMNH 744009 J. Geijer Sweden Öland, Kalmar Län, Mörbylånga, Algustrum, Jordtorp grustag. 27

August 2005
BMNH 744010 J. Geijer Sweden Öland, Kalmar Län, Borgolm, Högsrum, Vitlerkärret. 19 July 2005
BMNH 722881 G. N. Foster France Isère, Ruisseau des Fontinettes. 17 July 2005
BMNH 725985 AN. Nilsson Sweden Ångermanland, Torrböle, 23 May 2005
BMNH 725987 AN. Nilsson Sweden Ångermanland, Torrböle, 23 May 2005
BMNH 800416 J. Bergsten United States New York, Richford, SE of Ithaca. 11 September 2002
BMNH 800432 J. Bergsten United States California, Eldorado Co., American river, campground by Silver lake.

20 September 2002
BMNH 800437 J. Bergsten United States California, Alpine Co., Hope Valley, Blue Lakes road, West Fork,

Carson River. 21 September 2002
BMNH 800458 J. Bergsten Canada Alberta, Meanook biological station, W4mer. Twp65 Rge23 Sec.12NW.

3 September 2002
BMNH 800761 J. Bergsten Canada Alberta, Hwy.11 approx. 5 km E. of border to Banff National Park. 7

September 2002
BMNH 800780 J. Bergsten Canada Alberta, W4mer. Twp67 Rge24 Sec.34SE, 2 September 2002
BMNH 800785 J. Bergsten Canada Alberta, W4mer. Twp65 Rge25 Sec.1SE. 3 September 2002
BMNH 800806 J. Bergsten Canada Alberta, Hwy. 11, just E. of Big Horn. 7 September 2002
BMNH 800846 J. Bergsten Sweden Västerbotten, Hörnefors. 31 July 2007
BMNH 801288 D. Bilton United Kingdom Cornwall, The Lizard Pool 1 at Kynanace Cove. 1 July 2005
BMNH 801293 D. Bilton United Kingdom Cornwall, stream beside B3300 above bridge, 20 June 2005
BMNH 801298 D. Bilton United Kingdom Cornwall, The Lizard Pool 2 at Kynanace Cove. 1 July 2005
BMNH 801303 J. Bergsten Sweden Västerbotten, Umeå, Sörfors, Umeälven. 26 August 2007
BMNH 824791 J. Bergsten United States California Sierra Co., Sierra Valley, Hwy 89 & 49. 21 September 2002
BMNH 824798 J. Bergsten United States California, Modoc Co., Hwy 299 approx. 5 km E. of Cedarville. 22

September 2002
BMNH 824800 D. Bilton United Kingdom Cornwall, The Lizard, Hayle Kimbro pool. 1 July 2005
NHRS-JLKB000000528 AN. Nilsson Sweden Torne Lappmark, Abisko, myre E. of B Njakajaure, 28 June 2010
NHRS-JLKB000000678 AN. Nilsson Sweden Västerbotten, Vindeln, Strycksele, 29 May 2010
BMNH 681719 B. Andren Sweden S. Ha. Onsala, Kustgöl, 1100 m VSV Rorvik, 3 November 2000
BMNH 681248 D.T. Bilton Tenerife Anaga, Roque Chinobre, December 1997
BMNH 681250 I. Ribera Spain Burgos
BMNH 681249 I. Ribera England Dorset, Wareham, Morden bog, 5 July 1998
BMNH 681239 I. Ribera Portugal Sa. Da Estrela, Torre, lagoon 25 July 1998
BMNH 693521 A.N. Nilsson Sweden Prov. Västerbotten, Åmsele, 3 August 1999
BMNH 681287 Y. Alarie Canada Ontario
BMNH 681544 Y. Alarie United States New Mexico, September 2000
BMNH 681288 Y. Alarie Canada Ontario
BMNH 681625 I. Ribera & A. Cieslak United States 16 US California Mendocino co. / Rd. 1 Manchester / pond S City / 23

June 2000
Outgroups

MNCN AI9 G. Challet South Africa North Cape, Stream at top of Studer Pass, 22 August 2004
MNCN-AI126 M. Balke Madagascar Andasibe, Station Forestiere, orchid garden, 979 m, xi./xii.2004, MD

037
BMNH 681225 I. Ribera United Kingdom Sommerset Levels, Catcott Heath, 4 July 1998
BMNH 681839 I. Ribera & A. Cieslak South Africa 17, W Cape, Limiet Berge, Tributary r. Wit, rd. R301 24 km NE

Wellington. 25 March 2001
BMNH 681331 I. Ribera Chile 16, X Reg. 6 km W La Unión, Pond in rd. to Hueicolla, 29 January 1999
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