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Abstract

Predicting physical and functional links between cellular components is a fundamental challenge 

of biology and network science. Yet, correlations, a ubiquitous input for biological link prediction, 

are affected by both direct and indirect effects, confounding our ability to identify true pairwise 

interactions. Here we exploit the fundamental properties of dynamical correlations in networks to 

develop a method to silence indirect effects. The method receives as input the observed 

correlations between node pairs and uses a matrix transformation to turn the correlation matrix 

into a highly discriminative silenced matrix, which enhances only the terms associated with direct 

causal links. Achieving perfect accuracy in model systems, we test the method against empirical 

data collected for the Escherichia coli regulatory interaction network, showing that it improves on 

the best preforming link prediction methods. Overall the silencing methodology helps translate the 

abundant correlation data into valuable local information, with applications ranging from link 

prediction to inferring the dynamical mechanisms governing biological networks.

The currently incomplete maps of molecular interactions between cellular components limit 

our understanding of the molecular mechanisms behind human disease1-6. Ultimately, high-

throughput mapping projects7-10 are expected to provide the accurate maps of interactomes 

necessary to systematically unlock disease mechanisms. Yet, as a complete interaction map 

is at least a decade away, we need to develop tools that allow us to infer the structure of 

cellular networks from empirically obtained biological data11,12. Many current tools 

designed to infer functional and physical interactions in the cell rely on the global response 

matrix,
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(1)

which captures the change in node i's activity in response to changes in node j's13. This 

matrix can be measured directly from gene knockout or overexpression experiments, or 

inferred indirectly using related measures such as Pearson or Spearman correlations14, 

mutual information15,16 or Granger causality17. Traditional methods for predicting 

links15,16,18,19 assume that the magnitude of Gij correlates with the likelihood of a direct 

functional or physical link between nodes i and j. Yet Gij cannot distinguish between direct 

and indirect relationships: a path i → k → j can result in a significant response measured 

between i and j, falsely suggesting the existence of a direct link between them (Fig. 1a-b).

Several methods correcting for such effects have been proposed: information theoretic 

approaches evaluate the association between nodes by measuring the entropy of their mutual 

activities, where a low entropy indicates a statistical dependence between the node 

activities16,18,20; probabilistic models, such as the graphical Gaussian model, allow one to 

evaluate the correlation between i and j, while controlling for the state of node k, and 

thereby provide a more indicative measure of direct linkage21-25; other models rely on 

assumptions pertaining to the network topology, such as the tendency of real networks to 

exhibit strong degree correlations26. The ultimate solution, however, should enable us to 

fully unwind the direct from the indirect effects, providing a measure which distinctly 

indicates the existence of direct links. Consequently, here we focus on the local response 

matrix

(2)

in which the contribution of indirect effects is eliminated. In contrast with (1), which allows 

for global changes in i and j's environment, here the “∂” indicates that Sij is defined to 

capture only local effects, namely the response of i to changes in j when all surrounding 

nodes except i and j remain unchanged. Hence Sij > 0 implies a direct link between i and j.

Here we derive a method for calculating the local response matrix (2) from experimentally 

accessible correlation measures, allowing us to mathematically discriminate direct from 

indirect links. We show that the resulting Sij matrix, in which the contribution of indirect 

paths is silenced, is more discriminative than the empirically obtained Gij matrix, enhancing 

our ability to extract direct links from experimentally collected correlation data.

Results

The silencing method

To extract Sij from the experimentally accessible Gij, we formally link (1) and (2) via
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(3)

Equation (3) is exact and the sum accounts for all network paths connecting i and j 

(Supplementary Note S.I.1 - 2). It is of limited use, however, as it requires us to solve N2 

coupled algebraic equations. In Supplementary Note S.I.1 we show that (3) can be 

reformulated as

(4)

where I is the identity matrix and  sets the off-diagonal terms of M to zero. To obtain 

an approximate solution for S we use that fact that typically, perturbations decay rapidly as 

they propagate through the network, so that the response observed between two nodes is 

dominated by the shortest path between them. This allows us to approximate  with 

 (Supplementary Note S.I.3), obtaining

(5)

Equation (5), our main result, provides Sij from the experimentally accessible Gij. It achieves 

this through a 'silencing effect’, in which direct response terms are preserved, while indirect 

responses are silenced. To understand this consider a specific term in Gij, documenting the 

response of node i to j's perturbation. As indicated by Eq. (3), this response is a consequence 

of all direct and indirect paths leading from j to i. As we document below, the 

transformation (5) detects the indirect paths and silences them, maintaining only the 

contribution of the direct paths (Fig. 1d-f).

Silencing in model systems

To demonstrate the predictive power of (5), we implemented Michaelis-Menten dynamics 

on a model network (Supplementary Note S.III), as commonly used to model 

generegulation27,28. We obtained Gij by perturbing the activity of each node and then 

calculated Sij using (5). Figure 2a shows the Gij and Sij terms associated with interacting 

(green) and non-interacting (orange) node pairs. Although Gij is higher for direct 

interactions, the overlap between the orange and the green symbols indicates a lack of a 

clear threshold q that separates direct and indirect interactions. In contrast, Sij displays a 

clear separation between direct and indirect interactions, accurately predicting each direct 

link. Indeed, the ROC curve derived from Gij (Fig. 2b, red) has an area of AUROC = 0.91, 

reflecting inherent limitations in separating direct from indirect interactions based on Gij 

only. In contrast for Sij we obtain AUROC = 0.997 (blue), where the true positive rate (TPR) 

reaches 100% with a false positive rate (FPR) of less than 10–3. Also, although for Gij 

precision increases gradually with the threshold q (Fig. 2c), for Sij precision jumps to one for 

q > 10–4. Hence, in our well controlled model system effectively any non-zero Sij 

corresponds to a direct link.
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The performance of (5) is due to the silencing effect: it leaves Gij unchanged if i and j are 

linked, while it systematically lowers all Gij not rooted in a direct interaction. To quantify 

this effect we measured the discrimination ratio ΔG = 〈Gij〉Dir/〈Gij〉Indir (ΔS = 〈Sij〉Dir/

〈Sij〉Indir) which captures the ratio between Gij (Sij) terms associated with direct links and 

those associated with indirect links (Fig. 1c and g). We find that Sij is much more 

discriminative than Gij owing to its silencing of indirect responses. To quantify this effect 

we measure the silencing

(6)

which captures the increased power of Sij to discriminate between direct and indirect links 

compared to Gij. In our model system we find that κ = 15, a silencing of more than an order 

of magnitude (Fig. 2d). Furthermore, the longer is the distance dij between two nodes, the 

larger is the silencing (Fig. 2e). As an illustration, consider a linear cascade in which 

changes in any node result in a finite response Gij by all other nodes (Fig. 2f). Equation (5) 

silences all indirect responses, while leaving the response of direct links effectively 

unchanged, offering a discriminative measure that enables a perfect reconstruction of the 

original network.

Predicting molecular interactions in E. coli

To test the predictive power of (5) on real data we used the E. coli datasets distributed by the 

DREAM5 network inference challenge19. The input data include a compendium of 

microarray experiments measuring the expression levels of 4,511 E. coli genes (141 of 

which are known transcription factors) under 805 different experimental conditions 

(Supplementary Note S.IV.1). We constructed three separate global response matrices Gij 

between the 141 transcription factors and their 4,511 potential target genes, based on (i) 

Pearson correlations; (ii) Spearman rank correlations; and (iii) mutual information, which 

are three commonly used methods for link detection (Supplementary Note S.IV.3). From 

each of the three Gij matrices we obtained Sij via (5), and compared the performance of Gij 

with the pertinent Sij. To validate our predictions we relied on the gold standard used in the 

DREAM5 challenge, consisting of 2,066 established gene regulatory interactions. 

Measuring AUROC from Gij and Sij, we find an improvement of 56% for Pearson 

correlations (Fig. 3a), 67% for Spearman rank correlations (Fig. 3b) and a smaller 

improvement of 6% for mutual information (Fig. 3c), e.g. allowing us to improve upon the 

top performing inference methods19.

We further tested the discrimination ratio, Δ, and the silencing, κ, for each of these methods, 

finding that indirect correlations are subject to an average of two-fold silencing in the 

transition from Gij to Sij (Fig. 3d). Silencing is especially crucial in the presence of the 

cascade and co-regulation motifs shown in Figures 3e-f, where most inference methods 

indicate a spurious link between X and Y owing to the indirect correlation mediated by node 

I. Indeed, the transformation (5) silences these indirect correlations by a factor of three or 

more for Pearson and Spearman correlations and by a smaller factor for mutual information, 
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overcoming one of the most common hurdles of inference methods, which tend to over-

represent triadic motifs19.

The effects of noise and uncertainty

As all experimental data is subject to noise, the global response matrix, Gij, is characterized 

by some degree of uncertainty. To test the performance of our methodology in the presence 

of noise, we repeated the numerical experiment of Figure 2, this time adding Gaussian noise 

to Gij, which allows us to calculate silencing as a function of increasing the signal to noise 

ratio θ (Fig. 4). As expected, silencing is unaffected by small values of θ, so that κ features a 

plateau below θ ≲ 0.1. For large θ, silencing decays as κ ~ θ–1, demonstrating that the 

performance of the method decreases slowly with increasing the signal to noise ratio. 

Indeed, as opposed to a rapid exponential decay, the observed slower power-law dependence 

indicates that the method is rather tolerant against noise. Silencing is lost only when the 

noise reaches the critical level θC ≈ 0.75, when the signal is almost completely overridden 

by noise, leading to κ = 1 (Supplementary Note S.V.1).

Hidden nodes offer another source of uncertainty. They represent the fact that in most cases 

we are unable to read the states of all nodes in the system29. To illustrate the effect of the 

hidden nodes on the performance of the silencing method, we consider the case of a simple 

cascade i → k → j, where the intermediate node k is hidden. In this scenario, Eq. (5) will not 

be able to silence the indirect i → j link because in the observable system the Gij term 

cannot be attributed to any indirect path. Hence, absent any other information about the 

system, it is mathematically impossible to infer the indirectness of Gij, as the removal of k 

isolated i from j30. This touches upon the fundamental mechanism of silencing: as illustrated 

in Figure 1 (and Supplementary Note S.I.2) the silencing transformation (5) exploits the 

flow of information through indirect paths. Consequently, if as a result of hidden nodes the 

network fragments into several components such that the node pair i and j become isolated 

from each other, then all indirect paths between them became hidden and the pertinent Gij 

term will not be silenced (Fig. 5a–b). Hence silencing is expected to fail only when the 

network breaks into many isolated components so that most node pairs become isolated. 

Fortunately, a fundamental property of complex networks is that with average degree 〈k〉 >> 

1, one needs to remove a large fraction of the nodes to fragment the underlying giant 

connected component31-34. Therefore we can build on percolation theory, which allows us to 

analytically predict how the size of the largest connected component changes with the 

random removal of a certain fraction of nodes35,36. The calculation shows that silencing is 

maintained as long as the fraction of hidden nodes is smaller than

(7)

where  (Supplementary Note S.V.2). This equation indicates that 

for large 〈k〉 the method will be reliable even if a large fraction of the nodes are hidden.

To test this prediction, we revisited the numerically obtained Gij analyzed in Figure 2 and 

measured the degree of silencing after randomly removing an increasing fraction of nodes. 
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In each case we also measured the ratio between isolated and connected node pairs (ρ). We 

find that, as predicted, the degree of silencing is driven mainly by ρ, approaching κ ≈ 1 (no 

silencing) when ρ ≥ 1, namely when the isolated pairs begin to dominate the network (Fig. 
5c). Here as 〈k〉 = 4, Eq. (7) predicts ηC ≈ 0.57, i.e. the method will fail only when almost 

60% of the nodes are hidden. Note that for biological networks 〈k〉 is expected to be in the 

range of37 〈k〉 ≲ 10, predicting ηC ≲ 0.8. Namely, one needs to lose access to 80% of the 

nodes for silencing to lose its effectiveness.

Discussion

With computational complexity , Eq. (5) is scalable and requires no assumptions 

about the network topology. By silencing indirect effects, it turns the raw correlation data 

into a predictive Sij matrix, dominated by direct interactions. It is especially suited to treat 

perturbation data, such as genetic perturbation experiments, in which case Gij describes the 

response of all genes (dxi) as a consequence of the perturbation of the source gene (dxj)38. In 

practice, however, Gij could be the result of a broader set of experimental realizations where 

other measures are used to evaluate the association between nodes, typically statistical 

measures such as Pearson or Spearman correlation coefficients. Still, our empirical results 

(Fig. 3) clearly show that the transformation (5) successfully applies to these empirically 

accessible measures as well. Hence silencing is largely insensitive to the specific process by 

which Gij was constructed.

The method's broad applicability is rooted in the fact that it does not depend on the value of 

each specific term in Gij, but rather on the global relationships between them. Indeed, the 

global structure of Gij reflects the patterns of propagation of the perturbations along the 

network. Equation (5) helps uncover these paths from the raw data, disentangling the direct 

from the indirect effects. These patterns of information flow are inherent to the underlying 

network structure, and should not depend on the specific experimental realization of (1). For 

instance, a cascade i → j → k will be characterized by a decreasing correlation propagating 

along the arrows, a large correlation between i and j and a weaker one between i and k. 

Although the magnitude of these correlations might depend on the size or the form of i's 

perturbation as well as on the statistical measure we used to evaluate them, the decay pattern 

required to infer the structure of the cascade is an inherent property of the network flow and 

can be successfully detected by the silencing method (Supplementary Note S.I.4).

The silencing transformation is derived from fundamental mathematical principles of 

dynamical correlations in networks. Hence it is expected to apply under rather general 

conditions. However, as Equation (5) indicates it requires that the input matrix, Gij, is 

invertible. This imposes some limitations when constructed from statistical correlation 

measures. For instance in the empirical results of Figure 3a we constructed Gij from Pearson 

correlations, using the states of 4,511 nodes measured under 805 experimental conditions. In 

general, if the number of experimental conditions is smaller than the number of nodes the 

resulting Pearson correlation matrix may be singular. In this case additional processing will 

be required before (5) could be applied. Here, following the DREAM5 protocol, we only 

focused on the correlations between the 141 known transcription factors and the rest of the 
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nodes, which lead to an invertible Gij (Supplementary Note S.IV). Other means to ensure 

Gij's invertibility are discussed in Supplementary Note S.IV.4.

Isolating indirect effects in correlation data, a fundamental challenge of network inference, 

is typically approached through local probabilistic tools12,14-18. In contrast, the success of 

the silencing method is rooted in its exploitation the global network topology39: it relies on 

the fundamental principles of network structure and dynamics to identify and silence the 

effects of indirect paths. The ability to extract Sij from Gij could also have implications for 

our understanding of network dynamics. Indeed, Gij is a global network measure, as its 

magnitude is determined by the numerous indirect paths connecting i and j. Hence, for a 

given dynamics, the Gij matrix will take a different form depending on the network 

topology, making it a poor predictor of the system's dynamics. By eliminating indirect 

effects, Sij measures the effect gene i would have on gene j had they been isolated from the 

rest of the network. It thus helps us quantify the dynamical mechanism that governs 

individual pairwise interactions, avoiding the convolution of dynamical and topological 

effects present in experimental data. For instance, consider a set of perturbation experiments 

providing Gij. The structure of Gij reflects the microscopic mechanisms that govern the 

pairwise interactions, e.g. genetic regulation and biochemical processes. It is difficult, 

however to extract this information from Gij since its terms are a convolution of many 

interactions, reflecting the many paths leading from i to j. The transition to Sij , via (5), 

allows us to treat each isolated interaction on its own, providing a direct observation into the 

microscopic interaction mechanism. Direct application of this fact could be the derivation of 

a rate equation that governs the system's dynamics from Gij, as well as predicting the 

universality class and the scaling laws governing the system's response to perturbations. 

Hence (5) helps translate the ever-growing amount of data on global correlations into 

valuable local information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank A. Sharma, F. Simini, J. Menche, S. Rabello, G. Ghoshal, Y.-Y Liu, T. Jia, M. Pósfai, C. Song, Y.-Y. 
Ahn, N. Blumm, D. Wang, Z. Qu, M. Schich, D. Ghiassian, S. Gil, P. Hövel, J. Gao, M. Kitsak, M. Martino, R. 
Sinatra, G. Tsekenis, L. Chi, B. Gabriel, Q. Jin and Y. Li for discussions, and S.S. Aleva, S. Morrison J. De Nicolo 
and A. Pawling for their support. This work was supported by the National Institute of Health, Center of Excellence 
of Genomic Science (CEGS), Grant number NIH CEGS 1P50HG4233; and the National Institute of Health, Award 
number 1U01HL108630-01; DARPA Grant Number 11645021; The DARPA Social Media in Strategic 
Communications project under agreement number W911NF-12-C-0028; the Network Science Collaborative 
Technology Alliance sponsored by the US Army Research Laboratory under Agreement Number W911NF-09- 
02-0053; the Office of Naval Research under Agreement Number N000141010968 and the Defense Threat 
Reduction Agency awards WMD BRBAA07-J-2-0035 and BRBAA08-Per4-C-2-0033.

References

1. Vendruscolo, M. Networks in Cell Biology. Buchanan, M.; Caldarelli, G.; De Los Rios, P.; Rao, F., 
editors. Cambridge University Press; 2010. 

2. Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008; 18:644–652. [PubMed: 
18381899] 

Barzel and Barabási Page 7

Nat Biotechnol. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Kann MG. Protein interactions and disease: Computational approaches to uncover the etiology of 
diseases. Briefings in Bioinformatics. 2007; 8:333–346. [PubMed: 17638813] 

4. Albert R. Scale-free networks in cell biology. Journal of Cell Science. 2005; 118:4947–57. 
[PubMed: 16254242] 

5. Barabási A-L, Oltvai ZN. Network biology: understanding the cell's functional organization. Nature 
Reviews Genetics. 2004; 5:101–113.

6. Vidal M, Cusick ME, Barabási A-L. Interactome networks and human disease. Cell. 2011; 144(6):
986–98. [PubMed: 21414488] 

7. Rual JF, et al. Towards a proteome-scale map of the human protein-protein interaction network. 
Nature. 2005; 437:1173–8. [PubMed: 16189514] 

8. Yu H, et al. High-quality binary protein interaction map of the yeast interactome network. Science. 
2008; 322:104–110. [PubMed: 18719252] 

9. Braun P, et al. An experimentally derived confidence score for binary protein-protein interactions. 
Nature Methods. 2009; 6:91–97. [PubMed: 19060903] 

10. Krogan NJ, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. 
Nature. 2006; 440:637–43. [PubMed: 16554755] 

11. Costanzo M, et al. The Genetic landscape of a cell. Science. 2010; 327:425–431. [PubMed: 
20093466] 

12. Ramani AK, et al. A map of human protein interactions derived from co-expression of human 
mRNAs and their orthologs. Molecular Systems Biology. 2008; 4:180–195. [PubMed: 18414481] 

13. Barzel B, Biham O. Quantifying the connectivity of a network: The network correlation function 
method. Phys. Rev. E. 2009; 80:046104.

14. Eisen M, et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. 
Sci. USA. 1998; 95:9212–17.

15. Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using 
pairwise entropy measurements. Pacific Symposium on Biocomputing. 2000; 5:415–426.

16. Margolin AA, et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in 
a mammalian cellular context. BMC Bioinformatics. 2006; 7:S7. [PubMed: 16723010] 

17. Guo S, et al. Uncovering interactions in the frequency domain. PLoS Comput. Biol. 2008; 
4(5):e1000087. [PubMed: 18516243] 

18. Faith JJ, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation 
from a compendium of expression profiles. PLoS Biol. 2007; 5(1):e8. [PubMed: 17214507] 

19. Marbach D, et al. Wisdom of crowds for robust gene network inference. Nature Methods. 2012; 
9:796–804. [PubMed: 22796662] 

20. Lezon TR, et al. Using the principle of entropy maximization to infer genetic interaction networks 
from gene expression patterns. Proc. Natl. Acad. Sci. USA. 2006; 103:19033–38. [PubMed: 
17138668] 

21. Ma S, et al. An Arabidopsis gene network based on the graphical Gaussian model. Genome 
Research. 2007; 17(11):1614–25. [PubMed: 17921353] 

22. Lide H, Jun Z. Using matrix of thresholding partial correlation coefficients to infer regulatory 
network. BioSystems. 2008; 91:158–165. [PubMed: 17919808] 

23. Chen L, Zheng S. Studying alternative splicing regulatory networks through partial correlation 
analysis. Genome Biology. 2009; 10:R3. [PubMed: 19133160] 

24. Peng J, et al. Partial correlation estimation by joint sparse regression models. Journal of the 
American Statistical Association. 2009; 104(486):735–746. [PubMed: 19881892] 

25. Yuan Y, et al. Directed Partial Correlation: inferring large-scale gene regulatory network through 
induced topology disruptions. PLoS ONE. 2011; 6(4):e16835. [PubMed: 21494330] 

26. Adamic LA, Adar E. Friends and neighbors on the web. Social Networks. 2003; 25(3):211.

27. Alon, U. An introduction to systems biology: design principles of biological circuits. Chapman 
&amp; Hall; London, U.K.: 2006. 

28. Karlebach G, Shamir R. Modeling and analysis of gene regulatory networks. Nature Reviews. 
2008; 9:770–780.

Barzel and Barabási Page 8

Nat Biotechnol. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Caldarelli G, Capocci A, De Los Rios P, Muñoz MA. Scale-free networks from varying vertex 
intrinsic fitness. Physical Review Letters. 2002; 89:258702. [PubMed: 12484927] 

30. Liu Y-Y, Slotine J-J, Barabási A-L. Observability of complex systems. Proc. Natl. Acad. Sci. 
USA. 2013; 110(7):2460–65. [PubMed: 23359701] 

31. Erdös P, Rényi A. On the evolution of random graphs. Publications of the Mathematical Institute 
of the Hungarian Academy of Sciences. 1960; 5:17–61.

32. Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex networks. Nature. 2000; 
406:378–482. [PubMed: 10935628] 

33. Cohen R, Erez K, Ben-Avraham D, Havlin S. Resilience of the Internet to random breakdowns. 
Physical Review Letters. 2000; 85:214626–28.

34. Bollobás, B. Cambridge Studies in Advanced Mathematics. Cambridge University Press; 2001. 
The Evolution of Random Graphs–the Giant Component.; p. 130-159.

35. Stauffer, D.; Aharony, A. Introduction to percolation theory. CRC Press; 1994. 

36. Cohen, R.; Havlin, S. Complex networks: structure, robustness and function. Cambridge 
University Press; 2010. 

37. Venkatesan K, et al. An empirical framework for binary interactome mapping. Nature Methods. 
2009; 6:83–89. [PubMed: 19060904] 

38. Kauffman S. The ensemble approach to understand genetic regulatory networks. Physica A. 2004; 
340:733–740.

39. Marks DS, Hopf TA, Sander C. Protein structure prediction from sequence variation. Nature 
Biotechnology. 2012; 30(11):1072–80.

40. Barabási A-L, Albert R. Emergence of scaling in random networks. Science. 1999; 286:509–512. 
[PubMed: 10521342] 

41. Albert R, Barabási A-L. Statistical mechanics of complex networks. Reviews of Modern Physics. 
2002; 74:47–97.

42. Caldarelli, G. Scale-Free Networks. Oxford University Press; 2007. 

Barzel and Barabási Page 9

Nat Biotechnol. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Silencing indirect links
(a) The experimentally observed global response matrix, Gij, accounts for direct as well as 

indirect correlations, with no clear separation between them. The source of Gij could be gene 

coexpression data, statistical correlations or genetic perturbation experiments. (b) In the 

absence of a clear separation in Gij assigned to direct and indirect correlations, our ability to 

infer direct physical links (solid lines) is limited. Simple thresholding, i.e. accepting all links 

for which Gij exceeds a predefined threshold, is known to predict spurious links (strong 

dashed lines) and overlook true links (light solid lines). (c) While the average Gij terms 

associated with direct links (dark blue) are higher than the average terms associated with 

indirect links (light blue), as captured by the discrimination ratio, ΔG, the difference is not 

sufficient to identify direct and indirect links. (d) Silencing is achieved through Eq. (5), 

which exploits the flow of information in the network: the flow from the source (j) to the 

target (i) is carried through the indirect effect Gkj (orange) coupled with the direct impact Sik 

of the target's nearest neighbor κ (blue). By silencing the indirect contributions, Eq. (5) 

provides the local response matrix, Sij , whose non-zero elements correspond to direct links. 

(e) – (f) In Sij the terms associated with indirect links are silenced, allowing us the detect 

only the direct links of the underlying network. (g) As indirect terms become much smaller 

in Sij, we obtain a greater discrimination ratio, ΔS. The degree of silencing, κ, captures the 

increase observed in the discrimination ratio by the transition from Gij to Sij (5).
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Figure 2. Network inference in model systems
We numerically simulated Michaelis-Menten dynamics on a scale-free network [40-42], 

extracting the correlations Gij between all pairs of nodes (see Sec. S.III for details). (a) Gij 

and Sij associated with interacting (green) and non-interacting (orange) node pairs. Sij 

silences the correlations associated with indirect interactions, resulting in a clear separation 

between direct and indirect interactions, a phenomenon absent from Gij. (b) ROC curve 

obtained from Gij (red, area 0.91) and Sij (blue, area 0.997). The Sij network reaches 100% 

accuracy with a negligible amount of false positives. (c) Precision obtained for threshold q 

for Gij (red) and Sij (blue). The gradual rise of the Gij-based precision indicates that for a 

broad range of thresholds only a small fraction of the links will be identified. In contrast, the 

steep rise in precision for Sij indicates its enhanced discriminative power between direct and 

indirect links: virtually any non-zero Sij corresponds to a directly interacting pair. (d) The 

discrimination ratio, Δ, is much higher in Sij (blue) compared to Gij (red). This indicates that 

Sij is a much better predictor of direct vs. indirect interactions. The silencing (5), which 

captures the increase in the discrimination ratio is κ = 15.0. (e) Silencing increases with the 

path length dij between i and j, so that the more indirect is the link the more dramatic is the 

silencing. (f) The source of Sij's success is the silencing effect, here illustrated on 

correlations measured for a linear cascade. The reconstruction of the cascade from Gij is 

confounded by numerous non-vanishing indirect correlations. In Sij the indirect correlations 

are silenced, providing a perfect reconstruction.
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Figure 3. Inferring regulatory interactions in E. coli
(a) Starting from gene expression data, we used Pearson correlations in expression patterns 

to construct Gij for 4,511 E. coli genes, obtaining Sij via (4). We compared our predictions to 

a gold standard of experimentally verified genetic regulatory links [19]. The area under the 

ROC curve (AUROC) is increased from 0.59 to 0.64 in the transition from Gij to Sij, 

representing a 56% improvement (above the baseline of 0.5 for a random guess). (b) An 

improvement of 67% is observed for Spearman rank correlations. (c) A less dramatic 

improvement of 6% is shown when Gij is constructed using mutual information. (d) The 

discrimination ratio for all three methods compared with that obtained from the pertinent Sij 

matrix. The transition to Sij (4) increases the discrimination between direct and indirect 

interactions by a factor of two or more, so that indirect interactions have a significantly 

lower expression in Sij. (e) - (f) This observation becomes even more dramatic when 

focusing on two specific motifs: cascades and co-regulators. In Gij the indirect correlation 

between X and Y, which is induced by the intermediate node, I, may lead to the false 

prediction of the spurious X – Y link. Thanks to silencing, the discrimination between the 

direct and indirect links in these motifs is increased by a factor of three or more for Pearson 

and Spearman correlations, and by a factor of about two for mutual information.
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Figure 4. Silencing in a noisy environment
To test the method's performance in the presence of a noisy input we added Gaussian noise 

to the numerically obtained Gij, and measured the silencing, κ, vs. the signal to noise ratio θ. 

For low noise levels (θ ≲ 0.1) silencing is relatively unharmed. At higher noise level 

silencing decreases as κ ~ θ–1, a slow decay that supports the robustness of the method. 

Silencing is lost at θC ≈ 0.75, when the signal is almost fully driven by the noise.
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Figure 5. Performance with hidden nodes
(a) A network with N = 8 nodes of which a fraction η = 1/4 are hidden. The observable sub-

network has six nodes, five forming a connected component (with 10 connected node pairs) 

and one isolated (6 isolated pairs). The ratio between isolated and connected node pairs here 

is ρ = 6/10. Equation (5), applied to the observable network, successfully silences the 

indirect Gij terms among the nodes of the connected component. However the correlations 

between the isolated node and the rest of the network, lacking an indirect path, are not 

silenced. (b) To test the silencing in the presence of hidden nodes we used the numerically 

obtained Gij (Fig. 2) from which we eliminated a fraction η of the nodes, obtaining an 

observable network with 104 isolated node pairs (ρ ≈ 103). After applying Eq. (5) to the 

remaining nodes we find that the silencing of Gij terms associated with connected node pairs 

is unaffected (orange bar), while for the isolated node pairs silencing drops to κ = 1, namely 

no silencing (purple bar). Hence for the isolated node pairs Sij is not more predictive than 

Gij. (c) Increasing the fraction of hidden nodes, η (top horizontal axis), we measured κ vs. ρ. 

As expected, silencing is observed as long as most node pairs are connected via finite paths 

(ρ < 1). However, when the number of hidden nodes is increased to the point that the 

isolated pairs dominate (ρ > 1), silencing is no longer observed (κ = 1). The critical fraction 

of hidden nodes, ηC, corresponds to ρ = 1, the point where silencing no longer plays a 

significant role. Here we find ηC ≈ 0.57 (blue arrow), in agreement with the prediction of 

Eq. (7).
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