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Abstract
In diagnostic studies without a gold standard, the assumption on the dependence structure of the
multiple tests or raters plays an important role in model performance. In case of binary disease
status, both conditional independence and crossed random effects structure have been proposed
and their performance investigated. Less attention has been paid to the situation where the true
disease status is ordinal, with the exception of Wang et al [1] who assumed conditionally
independent multiple tests when studying traditional Chinese medicine and Wang and Zhou [2]
who assumed a normal subject random effect but a fixed rater effect. In this paper, we propose
crossed subject- and rater-specific random effects to account for the dependence structure and
assess the robustness of the proposed model to misspecification in the random effects
distributions. The models are applied to data from the Physician Reliability Study which focuses
on assessing the diagnostic accuracy in a population of raters for the staging of endometriosis, a
gynecological disorder in women. Using this new methodology, we estimate the probability of a
correct classification and show that regional experts can more easily classify the intermediate
stage than resident physicians.
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1. Introduction
In public health and medical research, it is of importance to study the diagnostic accuracy of
new tests or raters (e.g., [3, 4]). This is usually done by comparing the diagnostic results
from the tests or raters with the true disease status (i.e., the gold standard). In many cases,
however, a gold standard may not be measured due to cost constraints, concerns of the
invasive nature of the diagnostic procedure, or a lack of biotechnology to obtain a definitive
result. There has been extensive literature on estimating diagnostic accuracy without a gold
standard, with the latent class approach (LCA) widely being used (e.g., [4, 5, 6]).

It is usually assumed in LCA that the multiple tests or raters are independent conditional on
the true disease status. However, the conditional independence assumption may not be valid
in practice and models with such an assumption may not fit the data well. Alternatively, Qu
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et al [7] developed a LCA by including normally distributed subject-specific random effects
to model conditional dependence among binary tests. Albert and Dodd [8] demonstrated
that, when the unknown disease status is binary, the model is weakly identified in the
random effects distribution in the sense that different random effects distributions may fit
the data equally well.

LCA can also be utilized when the true outcome of interest is ordinal rather than binary.
Wang et al [1] extended the work of Zhou et al [6] on binary outcome to ordered multiple
symptom categories and applied it to data from traditional Chinese medicine. In a further
extension, Wang and Zhou [2] incorporated normal subject-specific random effects while
assuming fixed effects for the raters. In this paper, we are interested in relaxing the
conditional independence assumptionin Wang and Zhou [1] by proposing crossed subject-
and rater-specific random effects to account for the dependence structure in the data. We are
interested in assessing the robustness of the proposed models to misspecifications in the
Gaussian random effects by considering a mixture of normals for both subject- and rater-
specific random effects.

This article is motivated by the Physician Reliability Study (PRS) [9] that investigated the
reliability of endometriosis between different physicians and settings. In the PRS, 12
physicians in obstetric and gynecology (OB/GYN) separately reviewed participant clinical
information (digital intra-uterus image taken during laparoscopy, surgeon notes, MRI and
histopathology reports) and assessed the endometriosis staging. Each physician conducted
the review in a sequence of four settings, with each successive setting having an additional
piece of clinical information to the reviewing physicians. In this article, we evaluate the
diagnostic accuracy of 8 physicians (4 regional experts and 4 residents) who are practicing
at the same medical center (Utah) when each of them reviewed the digital images (setting 1).
Our interest here is evaluating the diagnostic accuracy in the population of these physicians;
hence we treat physicians as a random rather than a fixed effect.

Endometriosis is a gynecological disorder in women that occurs when cells from the lining
of the uterus grow in other area of the uterus. The cause of endometriosis is unknown and
the accurate staging of the disease is subject to substantial errors. In this article, we focus on
the 5 stagings of endometriosis: no endometriosis, stage I (minimal), stage II (mild), stage
III (moderate) and stage IV (severe). In PRS, 79 subjects have complete staging results from
the 8 physicians of interest and constitute the study sample. Among the 632(= 79 × 8)
reviews, 155(25%) are no endometriosis while 250(40%), 136(21%), 63(10%) and 28(4%)
are stages I to IV, respectively. Table 1 presents the averaged conditional sample
proportions of endometriosis staging by one physician given the staging by another that are
based on 10000 bootstrapped samples (drawn with replacement from the original data set) of
the diagnostic results of two arbitrary physicians. As an indication of agreement, the kappa
statistics is estimated to be 0.379.

More specific substantive questions include (1) do the physicians have worse diagnostic
accuracy at higher stages (moderate and severe) than at lower stages (no disease and
minimal)? (2) are the extreme stages (no disease, minimal and severe) easier to diagnose
than the middle stages (mild and moderate)? (3) how accurate are the physicians at correctly
staging endometriosis? Off by only 1 stage? Off by 2 stages? (4) do the two groups of
physicians (regional experts and residents) have different misclassification matrices in
diagnosing endometriosis? From a statistical methodological perspective, we are interested
in evaluating the robustness of our proposed crossed random effects model with respect to
misspecification to the random effects distributions.

Xie et al. Page 2

Stat Med. Author manuscript; available in PMC 2014 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The remainder of this article is organized as follow. In Section 2, we propose a latent class
model with crossed random effects for estimating the diagnostic accuracy of ordinal tests for
ordinal true disease status. In Section 3, we present a Monte-Carlo EM algorithm for
parameter estimation. In Section 4, we perform simulation studies to assess the convergence
of the maximum likelihood estimators (MLE) obtained from a Monte-Carlo EM algorithm
and assess the operating characteristics of the procedure. In Section 5, we apply the
proposed model to data from the PRS in the staging of endometriosis. Conclusions and
discussions are provided in Section 6.

2. Methods
Let Yij denote the ordinal diagnostic test result of the stages of endometriosis (Yij = 0, …,
K) for the ith subject by the jth rater (i.e. physician), i = 1, …, I and j = 1, …, J. In the PRS,
there are four stages of endometriosis and we have 79 subjects who had complete diagnoses
from four regional experts and four residents; thus K = 4, I = 79 and J = 8. We denote Di as
the true disease status of the ith subject, where for each subject Di = 0 denotes absence of
endometriosis and Di = 1, 2, 3 and 4 denote the four stages of endometriosis respectively.
Investigators are interested in estimating the average accuracy across physician group rather
than physician-specific accuracy. We parameterize the cumulative probability by the
following model with two crossed random effects ({bi}, {cj}) and p covariates:

(1)

where  are subject-specific random effects with scale parameters 
are rater-specific random effects with scale parameters

 are monotonically

nondecreasing cut-points for disease status di,  is the ith row of the I × p matrix Xj, which
is the design matrix of the jth rater, and βdi is the di-th column of βp × D, the matrix of
coefficients for the covariates. Let

be a matrix of cut-off points with rows corresponding to the rating and columns
corresponding to the true unknown category.

The model specifications above differ from that in Wang and Zhou [2] in that the rater-
specific effect is assumed to be random in addition to the subject-specific effect. This is
important since in PRS the physicians were chosen from a population of OBGYNs and it is

of interest to obtain the average estimate across the population. The random effects 

and  can each be assumed to follow a standard normal distribution. In addition, to
allow for a more flexible random effects structure, we can also consider mixture of normals
(MixNs). Define Gb and Gc to be random variables from a Bernoulli distribution with
success probabilities λb and λc respectively, then
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(2)

where φ(•, μ, ν2) is the density of normal distribution with mean μ and variance ν2. For
model identification, we impose the restrictions on gb(•):

with similar restrictions for gc(•). Let πdi = P (Di = di) and note that πd (d = 0, 1, …, D) is
the prevalence of stage d of the disease. The probability that rater j rates subject i as k given
the true disease stage and random effects bi and cj can be expressed as

(3)

As in the PRS, we assume D = K = 4, which means that the number of rating categories (i.e.
stages) is the same as the number of true categories. Similar to Wang et al [1], extensions to

the case when D ≠ K can be considered. Given random effects  and , the ratings
are each conditionally independent and have a multinomial distribution. Thus, the
conditional distribution of each measurement is

Let θ = (γ, σ, τ, π, β)’ be a vector of the unknown parameters. The likelihood is given by

(4)

Once we obtain  which is the MLE of θ from (4), for covariate X = x, we obtain the MLE

of  by (1), where we use  and  to denote the generic test and
generic disease status respectively rather than any specific rater or subject.

We consider the misclassification matrix as a measure of diagnostic accuracy, where the (K
+ 1) × (D + 1) misclassification matrix has elements given by

(5)

in the (k + 1)th row and (d + 1)th column of the matrix. The misclassification matrix is
square (D = K) and it can be estimated by (5) once we obtain . By the invariance property
of MLE, we can estimate the probability of a correct classification as

, where  is a function of .
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3. Maximum Likelihood Estimation: MCEM Algorithm
In this section, we introduce the method for obtaining the MLEs of the model parameters.
Due to the high dimensional integration and summation, it can be challenging to use the
classical EM algorithm to estimate (4). Instead, we follow Wei and Tanner [10] in using the
Monte-Carlo EM (MCEM) algorithm. The MCEM incorporates a Monte Carlo
implementation into the E-step of EM algorithm so that the required expectation can be
approximated by the average of the Monte-Carlo samples from the target distribution. By
using the Metropolis-Hasting algorithm to draw samples from target distributions,
McCulloch [11] developed maximum likelihood algorithms for generalized linear mixed
models. Robert and Casella [12] gave examples of R implementations using the MCEM

algorithm. Here, we treat the true disease status , subject-specific random effects

 and rater-specific  as missing data. For notational brevity, let  be

the observed data,  be the missing data and W* = (Y*, Z*)’ be
the complete data. Accordingly, the complete-data likelihood is

(6)

For our purpose, we can obtain the kernel of the target distribution by Bayes Rule:

where  for d = 0, 1, …, D. We implement the MCEM algorithm as follows:

1. Start by initial values θ(0) = (γ(0), σ(0), τ(0), π(0), β(0))’ and set r = 0.

2. Generate M groups of values z*(1), z*(2), …, z*(M) from the target distribution f(z*|
y*, θ(r)) and choose θ(r+1) to maximize

which is the Monte-Carlo estimate of

where θ(r) is the parameter value from the rth iteration and set r = r + 1. The
maximization is subject to the restrictions that elements in each column of matrix γ
are nondecreasing from the top to the bottom, all the elements in σ, τ and π are
nonnegative and that all the elements in π sum up to one. R function nloptr can be

Xie et al. Page 5

Stat Med. Author manuscript; available in PMC 2014 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



employed for such constrained maximization. We generate sample z*(m) (m = 1,
…, M) from the target distribution by Metropolis-Hasting algorithm:

a.
Let  denote the

candidate distribution with  being the empirical distribution of di

and  and  being t distribution centered at the means of bi and
cj sampled from the rth iteration of the EM algorithm respectively. Choose
z0 from the support of the target distribution.

b. For n = 1, 2, …: generate Un ~ uniform(0, 1) and

. Set

As n → ∞, zn converges to z* ~ f(z*|y*, θ) in distribution. In order to
generate random effects bi’s and cj’s from the candidate distribution, we
choose 30 as the degrees of freedom of the t distributions mentioned in
part (a) so that they do not have heavy tails.

We repeat Step 2 a sufficient number of iterations until the estimates become
stable.

In the simulation studies and the analysis of the PRS data presented in Sections 4 and 5, we
run the algorithms 200 steps. We take M = 50 for iterations r = 1, …, 50, M = 200 for
iterations r = 51, …, 80 and M = 1000 for iterations r = 81, …, 200. Final estimates are

computed by averaging  over the last ten iterations.

We wish to compare different random effects distributions for {bi}, {cj} in (2) using
penalized likelihood method such as the Akaike information criterion (AIC). However, the
likelihood is difficult to evaluate given the high dimension of the random effects. We use the
simulated likelihood approach by Geyer and Thompson [13] to overcome this difficulty.

Specifically, let  be the MLE obtained from the MCEM algorithm and in (4)
consider

where the expectation is taken over all random effects {bi}, {cj} and {di}. The maximized

likelihood  can be approximated by
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where ,  and  are the t-th simulated realizations from the density functions gb for the
i-th subject, gc for the j-th rater and mass functions multinomial  for the i-th
subject respectively, T is the total number of such simulated realizations and

by (3). The Monte-Carlo estimate of the Akaike Information Criteria

 can be used to compare different models for the random
effects, where npar is the number of parameters in the model. In the simulation studies and
the analysis of the PRS data, we take T = 5000

Proving global identifiability for complex latent class models such as the one we are
proposing is a difficult and challenging problem. In fact, at the very least, these models lack
identifiability due to a label-switching problem. Practitioners need to be cautious when
applying these methods to be sure that results are scientifically sensible. Various authors
have worked on the issue of local identifiability (e.g., [14, 15]). This latter form of
identifiability can be proved by showing that the Hessian matrix is non-singular.
Unfortunately this is difficult for our model since the Hessian matrix can only be estimated
by using Monte-Carlo method and its estimate can be unstable when the number of
parameters is large.

4. Simulation Study
In this section, we perform simulation studies to assess the convergence and operating
characteristics of the MCEM algorithm. For simplicity, we focus on the case of a
homogeneous group of physicians (i.e., no covariates in the model). For notational brevity,

we therefore write  in place of . Data were simulated according to
model (1) with random effects following distribution (2). All simulations were performed
with I = 100 subjects and J = 10 raters. The true prevalences are 0.3, 0.25, 0.2, 0.15, 0.1 for
no endometriosis, stage I to IV respectively, and the true misclassification matrix is as in
Table 2. These values are chosen to be close to the parameter estimates in the PRS shown in
Section 5. Based on the parameters in Table 2, the true probability of a correct classification

is .

4.1. Convergence
To assess the convergence of the MCEM algorithm and the Monte-Carlo variations, we
simulated data sets based on random effects with normal and MixNs respectively. We
obtained the MLEs of the parameters by assuming that the random effects follow the true
corresponding distributions. The algorithm was performed based on two different seeds and
three different starting values of the probability of a correct classification: 0.8, 0.2 and 0.5,
for larger than, smaller than and close to the true value respectively. We show in Figure 1

that the convergence of the estimated probability of a correct classification  is
insensitive to the choice of either the starting values or the seeds of the MCEM algorithm.
This empirically suggests that the model is locally identifiable. The convergence of each

element in θ is similar to that of  and is not presented here to save space.
Specifically, the algorithm converges at around the 80th iteration and appears stable
thereafter with tolerable Monte-Carlo variations. This is probably because we increased the
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size of Monte-Carlo samples from the target distribution in the E-step from 200 to 1000 at
the 80th iteration. Similar results are observed regardless of whether the distributions of
random effects are normal or MixNs. We performed similar simulations using different
parameter values and observed the same results (data not shown). For the algorithm to reach
the approximate convergence (within Monte-Carlo error), it took approximately 16 hours on
an NIH linux cluster with a 2.8 GHz Intel X5660 processor.

4.2. Operating characteristics
To assess the operating characteristics of the MCEM algorithm, we simulated different data
sets based on different random effects distributions. More specifically, in (2), we choose λ =
λb = λc = 0, 0.25 or 0.5 with the corresponding distributions shown in Figure 2. For each λ,
we generated 200 data sets and obtained the MLEs of model parameters using each
individual data set.

In Table 3, we summarize the estimated prevalence, with the standard error in parentheses.
When λ = 0, the data are simulated according to normally distributed subject-specific and
rater-specific random effects. When a normal distribution is assumed as the working model,
the estimates are mostly unbiased. This is also true when MixNs are assumed since normal
random effects are special cases of MixN random effects. In contrast, when λ ≠ 0, the data
are simulated according to a model with the subject and rater-specific random effects
following MixNs. When MixNs are assumed as the working model, the estimates are nearly
unbiased. However, when normal distributions are assumed, most estimates are biased.
Moreover, the biases are more profound when λ = 0.5 where the misspecification of the
random effects distribution is more severe than when λ = 0.25 (see Figure 2). The estimated
misclassification matrix in Table 4 shows a similar pattern. For example, when λ = 0, the
estimates of P (Y = 4|D = 4) are nearly unbiased under both random effects distributions,
0.262 and 0.271 for normal and MixNs respectively compared to the true value of 0.25;
when λ ≠ 0 and MixNs are assumed as the working model, the estimates are mostly
unbiased: 0.237 and 0.231 for λ = 0.25 and 0.5 respectively. When normal distributions are
assumed, the estimates are biased: 0.326 and 0.381 for λ = 0.25 and 0.5 respectively.
Clearly the bias is larger (0.381) when λ = 0.5 than that (0.326) when λ = 0.25. When
normal distributions are assumed for the random effects in the true model and either normal
or MixNs in the working model, the estimated probabilities of a correct classification

 (standard errors) are 0.466(0.087) and 0.472(0.127) respectively, and both are close
to the true probability of a correct classification, 0.454. However, when λ = 0.25 or 0.5,
namely the true distributions of the random effects are MixNs, fitting a working model with
normal random effects distribution resulted in a biased probability of a correct classification:
0.548(0.095) and 0.602(0.105), respectively (compared with a true value of 0.454). In
comparison, the corresponding estimates under a correctly specified working models are
0.466(0.139) and 0.464(0.146) respectively.

Since it is important to specify the distribution of random effects correctly, we are interested
in the empirical rates that the penalized likelihood criteria select the true model. By
simulation, Zhang et al [16] showed that when the true disease status and outcomes from
raters are both binary, penalized likelihood criteria empirically select the true model at the
rate of 55%, which is slightly higher than 50%. Here, when the true disease status and
outcomes are both ordinal, the empirical rate that penalized likelihood criteria select the true
model is 74%, 73% and 76% for λ = 0, 0.25 and 0.5 respectively. Thus, compared to the
method of dichotomizing ordinal data, the proposed method is empirically more likely to
select the true model and estimate the parameters accurately. This is likely due to the
increased information contained in the ordinal data.
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5. Application
We now apply the proposed modeling framework to data from the Physician Reliability
Study [9]. Eight physicians (4 residents and 4 regional experts) reviewed digital images on
79 subjects. Scientific substantive questions include: (1) how did these physicians stage
endometriosis? Were they more likely on target or within one stage? (2) are the physicians
better at diagnosing some particular stages as compared to others? (3) are the findings in
questions (1) and (2) different for the 4 residents as compared with the 4 regional experts?

With respect to the 8 physicians, we first ignore their difference, treating them as a
homogeneous group. Later we will account for their difference (residents vs regional
experts) in the modeling framework.

Among all the four possible combinations of subject and rater-specific random effects the
AIC is the smallest (3219.47) for the model with normal subject-specific random effects and
MixN rater-specific random effects. Under the best model, the prevalences of the five stages
are estimated at 0.321(0.11), 0.238(0.08), 0.211(0.03), 0.151(0.06) and 0.079(0.06)
respectively, and the estimated misclassification matrix (with the bootstrap standard errors
based on 1000 bootstrapped samples in parentheses) is presented in Table 5. The estimated

probability of a correct classification is . In Table 5, the diagonal elements
represent the average diagnostic accuracy across the population of the physicians for each
true endometriosis stage. For example, when the true stage of endometriosis is mild (d = 2),
the average probability that the physicians would correctly stage the disease is 0.289. In
each row, the elements adjacent to the diagonal elements are important since they represent
the situation when the physicians categorize the diagnostic result only one stage off from the
truth. In the PRS, the physicians are more likely to underestimate the severity by one stage
than overestimate by one stage. Moreover, it appears that these physicians are better at
diagnosing lower stages of endometriosis (no endometriosis and mild stage) than higher
ones, with the correction classification of 75%, 63%, 29%, 26% and 29% for the five stages
(from low to high), respectively.

Since there are two physician groups (residents and regional experts) serving as raters, it is
of interest to see whether the above conclusions hold when we account for the difference
between the two groups of physicians with different levels of experience. In doing so, we
utilize a modified version of model (1):

where I(•) is an indicator function.

Among all the four combinations of random effects distributions, the model assuming
normal subject-specific random effects and normal rater-specific random effects had the
smallest AIC (3211.36), with the probability of a correct classification for resident and
regional expert being 0.463 and 0.489 respectively. The estimated prevalences and
coefficients for the group indicator as well as the misclassification matrices for both groups
(with the bootstrap standard errors based on 1000 bootstrapped samples in parentheses) are
listed in Tables 6 and 7 respectively. By including the group indicator as covariate, we have
smaller AIC than when the two groups are treated as homogeneous, suggesting that the
resident and regional expert group might be different at staging endometriosis. More
specifically, we can see from Table 7 that when the true disease stage is mild (d = 2), the
probability that regional experts make the right judgement is 0.342, which is significantly
higher than 0.151, the probability that residents make the right judgement. This difference in
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the physician type may also explain why a MixNs distribution is needed for the rater-
specific random effects when the 8 physicians are treated homogeneously. It appears that
failure to include an important binary rater-specific covariate will induce a bimodal structure
in the random effects distribution.

6. Discussion
In this article, we have described a method for evaluating diagnostic accuracy without gold
standard by latent class approach with crossed random effects for ordinal tests. This work
generalizes Wang and Zhou [2] to allow for the rater effect to be treated as random rather
than fixed and for the incorporation of flexible random effect distributions. We show that
estimate of diagnostic accuracy may be sensitive to assumptions on the random effects
distributions and that unlike for the binary case (see Zhang et al [16]), penalized likelihood
comparisons can be used for assessing the adequacy of these distributions.

The proposed method was motivated by the Physician Reliability Study in staging
endometriosis. To that end, we have found that it is important to incorporate covariates in
the modeling framework to capture heterogeneity in raters. Substantively, we found that
regional experts make better diagnoses than the residents when the true disease is mild, that
physicians in PRS are more likely under-staging than over-staging, and that they are better at
diagnosing lower stages of endometriosis than higher ones. These interesting findings can be
useful in helping training physicians in the field.

In the analysis of the PRS, the covariate is binary, making it easy to present the
misclassification matrix for both realizations of the covariate. For more complicated case of
covariates, we recommend plotting the elements of the misclassification matrix as a function
of changes in these covariates. In particular, since we can write the misclassification matrix
in a close-form as presented in the Appendix, we can plot each element of it against a
continuous covariate.

One feature in both our simulation study and the application is that the number of raters is
small. With such small numbers of random effects, estimate of the corresponding variance
component (τd) can be biased. We indeed observed this bias in a separate simulation study
with J = 10 and near unbiasedness with J = 100. For example, with the true τ4 = 0.1, we
obtained  when J = 10, reflecting substantial bias, and  when J = 100,
reflecting little bias. Estimates of the subject-specific variance component in both cases are
unbiased. Interestingly, regardless of J = 10 or 100, the estimated misclassification matrices,
the primary focus of our work, are unbiased.
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APPENDIX: CLOSED FORM EXPRESSION OF EQUATION (5)
The closed form expression of the element in the misclassification matrix can be written as
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(7)

For the special case of normal random effects with λb = λc = 1, μ1b = μ1c = 0 and νb = νc =
1, we have the following closed form of the misclassification matrix for an arbitrary
realization of covariate x.

Equation (7) can be derived by considering the following.

Note that since , we have  given Gb = 1 and

similarly  given Gc = 1. It follows that
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where the last equation simply extends the argument by Qu, Tan and Kutner [7]. Similarly,

we can obtain ,  and

. By using

, we obtain

.
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Figure 1.
Convergence of the MCEM algorithm by seeds and starting values under true random effect
distributions.
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Figure 2.
The distribution of random effects under different λ values.
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