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Abstract
In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and
fabricated using both ternary Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and binary
Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) single crystals. Performance of the array transducers was
characterized as a function of temperature ranging from room temperature to 160°C. It was found
that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of
satisfactory performance at 160°C, having a −6-dB bandwidth of 66% and an insertion loss of 37
dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for
high-temperature ultrasonic transducer applications is promising.

I. Introduction
WITH high electromechanical coupling factors and excellent piezoelectric coefficients, a
binary relaxorbased ferroelectric single crystal Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) near the
morphotropic phase boundary (MPB) composition has attracted considerable attention [1],
[2]. Various applications have been proposed using PMN-PT single crystals [3]–[6].
However, the binary PMN-PT single crystals have relatively low transition temperatures,
including the phase transition from rhombohedral to tetragonal phases (Trt ~ 60°C to 95°C)
and the Curie temperature (Tc ~ 130°C to 170°C) [7], [8]. Therefore, the thermal stability of
PMN-PT transducers could be a concern at high temperatures. The electrical properties of
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the single crystal might also be degraded easily in the fabrication of ultrasonic transducers
designed for high-temperature applications [9]. Additionally, with their relatively low
coercive field (Ec ~ 0.2 kV/mm) [10], PMN-PT single crystals are not suitable for high-
power applications. Hence, these drawbacks of PMN-PT single crystals will limit the
applications of devices that use this material.

Recently, a ternary single crystal Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT)
was developed to overcome the aforementioned shortcomings. Similar to the PMN-PT
single crystal, the PIN-PMN-PT single crystal can also be grown directly from the melt
using the Bridgman method [11]. With its MPB composition, the PIN-PMN-PT single
crystal was reported to exhibit high electromechanical coupling (k33 > 0.9) and piezoelectric
(d33 > 2000 pC/N) performance [12], [13]. Compared with the PMN-PT single crystal, the
phase transition temperatures (e.g., Tc > 200°C) and the coercive field (Ec > 0.4 kV/mm) of
the PIN-PMN-PT single crystal are significantly increased. With the increase of the phase
transition temperature, the piezoelectric performance of these crystals was reported to be
retained in a broad temperature range [14]. This enhancement would allow the PIN-PMN-
PT single crystals to work in a high-power or high-temperature environment.

With enhanced thermal and electrical stability, the PIN-PMN-PT single crystals have been
reported for transducer applications [15]–[17]. However, aside from single-element
transducer applications, there is still no report of this material being used in array transducer
applications. In fact, compared with the single-element transducers, the array systems are
much more desirable because they can be dynamically focused in the image plane at high
frame rates using electronic scanning. In this work, low-frequency linear-array transducers
were designed and fabricated using both the PIN-PMN-PT and the PMN-PT single crystals.
The performance of the transducers as a function of temperature was investigated in detail.

II. Linear Array Design, Fabrication, and Characterization
Fig. 1 displays a schematic diagram of the designed linear array ultrasonic transducer
consisting of two matching layers with a light backing strategy for broader bandwidth and
higher sensitivity [18].

A 〈001〉 oriented PIN-PMN-PT single crystal was lapped to a thickness of 0.29 mm, and
diced into 8.0 × 15.5 mm rectangular shapes. Top and bottom silver electrodes with a
thickness of about 2 μm were coated onto both sides via sputtering. A first matching layer
made of epoxy (EPO-TEK 301, Epoxy Technology Inc., Bill-erica, MA) and aluminum
oxide particles was cast and cured over the single crystal and then lapped to 158 μm. A 112-
μm-thick polyurethane (PU; Youfang Keji, Wuhan, China) layer was bonded onto the first
matching layer to serve as a second matching layer. A conductive backing material (2.3
MRayl) mixed with elastic epoxy (9000GA/120B flexible epoxy, WuXi kaimike Electronic
Materials Co. Ltd., Wuxi, China) and aluminum oxide particles (13 μm particle size) was
cast and cured over the opposite side of the single crystal. The PIN-PMN-PT single crystal
sandwiched between the backing and matching layers was diced into 10 elements with a
pitch of 0.8 mm. Each element was diced into 4 subelements with a width of 0.15 mm and a
kerf of 50 μm. As a result, the aspect ratio (width/thickness) of the subelements was 0.52,
avoiding the deleterious effects of mode-coupling [19]. The 50-μm dicing kerfs were then
filled with epoxy to reduce the crosstalk between the neighboring elements. An acoustic lens
(RTV, GE Silicones, Huntersville, NC) with an impedance of about 1.27 MRayl was
attached to the matching layer of the array, giving a focal length of about 6 cm. Finally, the
array was placed into a shielded plastic package. After fabrication, the array transducer was
poled in air at a room temperature under an electric field of 20 kV/cm for 10 min. In
addition, an 8-element PMN-PT single-crystal linear-array ultrasonic transducer of identical
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dimensions was fabricated for comparison. The parameters and dimensions of the arrays are
summarized in Tables I and II.

For measuring the pulse–echo response and insertion loss, the arrays were mounted on a
holder and immersed in a tank filled with the distilled water. The flat quartz reflector was
placed 6 cm away from the array surface, which is the focal length of the array. By
connecting to an ultrasonic pulser-receiver (Panametrics 5900PR, Olympus NDT Inc.,
Waltham, MA), the arrays were excited by a 1-μJ electrical impulse with 200 Hz repetition
rate and 50 Ω damping factor. The echo signals were acquired and displayed using an LC534
1-GHz digital oscilloscope (LeCroy Corp., Chestnut Ridge, NY). The captured pulse–echo
response signals were then used to compute the frequency spectrum using Matlab (R2010b,
The MathWorks Inc., Natick, MA). The center frequency (fc) and −6-dB bandwidth (BW) of
the array were determined from the measured fast Fourier transform spectrum:

(1)

(2)

where f1 and f2 represent the lower and upper −6-dB frequencies, respectively. The two-way
insertion loss (IL), or the relative pulse–echo sensitivity, is the ratio of the array output
voltage Vo to the excitation voltage Vi delivered to the array from a driving source:

(3)

The arrays were connected to a function generator (AFG2020, Tektronix, Inc., Beaverton,
OR) which was used to generate a tone burst of a 30-cycle sine wave at fc. The echo signal
received by the array, Vo, was measured by the oscilloscope with 1-MΩ coupling. The
amplitude of the driving signal Vi was then measured with 50-Ω coupling.

To investigate the temperature effect on the array performance, the arrays were heated in a
temperature controlled oven (Isotemp Premium Lab Oven, Fisher Scientific, Waltham, MA)
at different temperatures before pulse–echo measurement.

III. Results
The echo waveforms and frequency spectra of the PMN-PT single-crystal linear-array
ultrasonic transducer measured at different temperatures are shown in Fig. 2(a)–2(h). Table
III summarizes the PMN-PT single-crystal array transducer performance, including the
center frequency, bandwidth, and insertion loss at different temperatures. The center
frequency of the array transducer is about 3.4 MHz. At room temperature, the echo response
is strong with short ring-down. The array transducer is shown to have superior properties
with broad bandwidth and high output voltage. With increasing temperature, the variation of
the bandwidth is small up to 120°C, but the amplitude of the echo decreases gradually. By
increasing the temperature up to 160°C, the amplitude of the transducer drops significantly
because of the degraded properties of the PMN-PT single crystal near the Curie temperature.
Because the piezoelectric element cannot work beyond its Curie temperature, no echo signal
can be detected when the temperature exceeds 160°C.

Fig. 3 shows the insertion loss of the array as a function of temperature. It can be seen that
the insertion loss increases gradually before 120°C, and then increases sharply with the
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temperature approaching the Curie temperature. Similar phenomenon can be found in the
variation of the −6-dB bandwidth, as shown in Fig. 4, which indicates that the bandwidth
remains at around 60% from room temperature to 120°C, and then decreases to 50% beyond
140°C. The results suggest that the PMN-PT single crystal array transducers do not work
properly beyond 120°C.

To compare the temperature dependence of the array transducer performance, a 4-MHz
linear array transducer fabricated using PIN-PMN-PT single crystal was measured under the
same conditions as the PMN-PT array transducer. Fig. 5 shows the waveforms and
frequency spectra of the PIN-PMN-PT single-crystal linear-array ultrasonic transducer
measured at different elevated temperatures. The center frequency of the PIM-PMN-PT
linear array transducer is about 4 MHz. It can be seen that the waveforms and spectra remain
unchanged at higher temperatures. The center frequency, bandwidth, and insertion loss of
the PIN-PMN-PT array transducer are calculated and summarized in Table IV. It can be
seen that the transducer performance varies only slightly with temperature. The transducer
performance is stable even when temperature increases from room temperature to 160°C. At
160°C, the PIN-PMN-PT transducer array still works normally with 66.7% bandwidth and
37.6 dB insertion loss.

Figs. 6 and 7 show the calculated insertion loss and −6-dB bandwidth of the PIN-PMN-PT
single crystal array transducer as a function of temperature, respectively. The bandwidth and
the insertion loss of the array transducer are shown to be almost independent of the
temperature. These results indicate that the PIN-PMN-PT single crystal has better thermal
stability than PMN-PT single crystal and is a promising candidate for high-temperature
ultrasonic transducer applications.

IV. Conclusions
The PIN-PMN-PT and PMN-PT single-crystal linear-array ultrasonic transducers were
fabricated and the pulse–echo performances of the array transducers as a function of
temperature were investigated. Although the PMN-PT array transducer exhibits a better
insertion loss parameter up to 140°C, compared with the PIN-PMN-PT array transducer, the
insertion loss was found to increase at high temperature because of the low phase transition
temperature of the PMN-PT single crystal. However, the properties of the PIN-PMN-PT
array transducers were found to remain almost unchanged from room temperature to 160°C.
These results clearly suggest that the PIN-PMN-PT single-crystal array transducers have
superior thermal stability and hold great promise for high-temperature ultrasonic transducer
applications.
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Fig. 1.
Schematic diagram of the Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) linear-
array ultrasonic transducer.
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Fig. 2.
Pulse-echo waveforms and frequency spectra of the Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT)
linear-array ultrasonic transducer measured at (a) 21.5°C, (b) 40°C, (c) 60°C, (d) 80°C, (e)
100°C, (f) 120°C, (g) 140°C, and (h) 160°C.
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Fig. 3.
Temperature dependence of the insertion loss of the Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT)
linear-array ultrasonic transducer.
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Fig. 4.
Temperature dependence of the −6-dB bandwidth of the Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-
PT) linear-array ultrasonic transducer.
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Fig. 5.
Pulse-echo waveforms and frequency spectra of the Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3
(PIN-PMN-PT) linear-array ultrasonic transducer measured after several temperature
treatments: (a) 21.5°C, (b) 40°C, (c) 60°C, (d) 80°C, (e) 100°C, (f) 120°C, (g) 140°C, and
(h) 160°C.
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Fig. 6.
Temperature dependence of the insertion loss of the Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–
PbTiO3 (PIN-PMN-PT) linear-array ultrasonic transducer.
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Fig. 7.
Temperature dependence of the bandwidth of the Pb(In1/2nb1/2)–Pb(mg1/3nb2/3)-PbTio3
(PIn-Pmn-PT) linear-array ultrasonic transducer.
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TABLE I

Parameters of Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-
PT) Linear-Array Ultrasonic Transducers.

Layer Material Thickness (μm) Acoustic impedance (MRayl)

Single crystal PIN-PMN-PT/PMN-PT 291 32.60/36.90 [17]

1st matching Epoxy 158 6.64

2nd matching Polyurethane 112 2.26

Backing Elastic epoxy mixed with aluminum oxide particles 5000 2.30
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TABLE II

Dimensions of Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-
PT) Linear-Array Ultrasonic Transducers.

Number of elements 10 (PIN-PMN-PT)/8 (PMN-PT)

Number of subelements of each element 4

Dicing kerf 50 μm

Subelement pitch 200 μm

Subelement width 150 μm

Total width 7.95 mm (PIN-PMN-PT)/6.35 mm (PMN-PT)
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TABLE III

Temperature Dependence of the Performance of the Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) Linear-Array
Ultrasonic Transducer.

Temperature (°C) Echo Vpp (mV) fc (MHz) −6-dB BW (%) f1 (MHz) f2 (MHz) IL (dB)

21.5 69.83 3.36 57.14 2.10 4.32 27.65

40 69.28 3.40 64.71 2.30 4.50 28.62

60 55.78 3.29 61.80 2.27 4.30 29.51

80 54.74 3.30 60.61 2.30 4.30 30.20

100 46.75 3.53 71.95 2.26 4.80 31.04

120 51.36 3.21 61.68 2.22 4.20 30.27

110 30.88 3.24 53.09 2.38 4.10 33.40

160 10.41 3.05 47.87 2.32 3.78 42.90

BW = bandwidth; IL = insertion loss.
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TABLE IV

Temperature Dependence of the Performance of the Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT)
Linear-Array Ultrasonic Transducer.

Temperature (°C) Receive Vpp (mV) fc (MHz) −6-dB BW (%) f1 (MHz) f2 (MHz) IL (dB)

21.5 35.11 4.10 72.53 2.61 5.58 36.31

40 34.91 4.12 72.66 2.62 5.61 36.44

60 34.17 3.89 65.64 2.61 5.16 35.97

80 32.59 4.04 78.56 2.45 5.62 36.94

100 36.77 3.91 66.33 2.61 5.20 34.83

120 32.13 4.07 73.22 2.58 5.56 36.38

140 31.56 4.11 72.51 2.62 5.60 37.24

160 28.02 3.96 66.67 2.64 5.28 37.58

BW = bandwidth; IL = insertion loss.
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