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Abstract
The ability to generate a massive amount of sequencing and genotyping data is transforming the
study of human genetic disorders. Driven by such innovation, it is likely that whole exome and
whole-genome resequencing will replace regionally focused approaches for gene discovery and
clinical testing in the next few years. However, this opportunity brings a significant interpretative
challenge to assigning function and phenotypic variance to common and rare alleles.
Understanding the effect of individual mutations in the context of the remaining genomic variation
represents a major challenge to our interpretation of disease. Here, we discuss the challenges of
assigning mutation functionality and, drawing from the examples of ciliopathies as well as
cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the
human genome. Functional modularization in addition to the development of physiologically-
relevant assays to test allele functionality will accelerate our understanding of disease architecture
and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction
in individuals.

Emerging challenges in genomics
The emergence of new genomic technologies is catalyzing the unprecedented production of
sequence and genotype information from patients with both rare and common disorders.
This, in turn, is expediting the identification of disease-causing genes under traditional
mendelian paradigms, such as the recent whole exome sequencing of small numbers of
unrelated individuals that identified new variants in two rare mendelian disorders1, 2, and
provides promise for a successful transition from haplotypic association to allelic causality
in complex traits. Behind these endeavors is the potential to query the extent of variation in
normal and disease genomes allowing new insights into the underlying biology of disorders.
This approach has been successful for rare traits, where gene and mutation identification
have illuminated pathways associated with clinical phenotypes. Many of these studies have
been model-free and the resultant functional pathway not obviously linked to the phenotype.
The same approach has found some success in complex traits as well. For example, multiple
genome-wide studies in large cohorts have linked age-related macular degeneration (AMD)
to genes involved in the complement cascade 3 and similar studies in Crohn's disease have
revealed an interesting contribution of the autophagy pathway 4, 5.
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Despite the perceived differences between rare and complex traits, the fundamental
questions of disease architecture and mechanism are identical: How can we categorize the
variants and genes to gain a better understanding of the biology? Which alleles drive
phenotypes and which alleles modulate the effect of cis and trans genetic lesions? In this
review, we will focus on two primary issues that are pertinent to all genetic disorders,
irrespective of frequency of disease and alleles, penetrance and expressivity. First, we will
explore the idea of mutational load in genetic disease as a potentially accurate predictor of
allele pathogenicity and clinical outcomes. We will ask whether ‘modularization’ of the
human functional genome might offer advantages and opportunities in solving mechanism
of disease, allelic effects and in providing predictive clinical power to genotypic
information. Second, we discuss the challenges in establishing the pathogenic potential of
alleles with respect to genetic disease when the functional contribution of a particular gene
is unknown. To address this question, we offer potential solutions and briefly compare the
current tools available for the functional assessment of allele functionality.[SC1]

Modular organization of disease genes
Discussion of modularization of genetic disease is not new. Large informatics-based studies
have determined that categorization of phenotypes, such as disorders of the eye or
gastrointestinal defects, can be used to create networks of diseases and that these networks
are overlapping and interlinked 6. Similarly, genes associated with disease have been
classified by protein function to understand how similar proteins might contribute to distinct,
but overlapping, phenotypes, as is the case with Stickler syndrome, Marshall syndrome and
oto-spondylo-mega-epiphyseal dysplasia (OSMED) syndrome, which are all caused by
mutations in collagen genes 7-9. Although useful, such categorization of genes based solely
on a narrow phenotypic outcome might have insufficient functional resolution, for instance
when significantly different molecular pathways underpin similar phenotypes. For example,
non-syndromic retinitis pigmentosa, the progressive loss of photoreceptor or retinal pigment
epithelium function, has been linked to mutations in many different genes with functions
ranging from photoreceptor specification (CRX) to restoration of visual pigment function
(RGR) 10, 11. Likewise, relying exclusively on protein function can be both limiting and
hazardous, because most proteins have multiple functions that can contribute to entirely
different processes and are often cell or tissue dependent. For example, there is the lack of
phenotypic overlap in disorders resulting from fibroblast growth factor receptor 1 (FGFR1)
loss-of-function mutations causing Kallmann Syndrome, a disorder characterized by
anosmia and hypogonadotrophic hypogonadism 12, and gain-of-function mutations causing
Pfeiffer Syndrome, which commonly presents with craniosyntosis and cutaneous
syndactyly 13, 14.

A combination of phenotypic and functional modularization offers added value, as
demonstrated by overlapping of the human disease network (HDN) with the disease gene
network (DGN) where groups of genes contributing to a particular disorder or disorder
group are more likely to be involved in similar molecular processes in the cell 15. Under
such a paradigm, it is possible to cluster disorders based either on their organellar
dysfunction or on their commonalities of signaling defects. Identification of genes by
querying candidate pathways has been previously explored. For example, a potential digenic
model for inheritance of polycystic ovary syndrome (PCOS) in cortisone reductase
deficiency (CRD) patients was established when investigation of genes in the glucocorticoid
pathway revealed mutations in hexose-6-phosphate dehydrogenase, a regulator of
glucocorticoid availability which acts via a second mutated gene, 11ß-hydroxysteroid
dehydrogenase type 1 16. For some disorders, such as those associated with cilia,
mitochondria, or peroxisomes, grouping by their organellar site of dysfunction is sufficient
to explain the phenotype. In others, such as the cohesinopathies or channelopathies,
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grouping by cellular functional modalities that are not necessarily organelle-specific might
be the best way to capture the breadth and variability of the phenotype.

Organellar grouping of disorders: the ciliopathies
Cilia were first observed in the kidney and the thyroid gland 17, but are now known to be
present in nearly all mammalian cells. Extending from the apical surface of the cell and
tethered to the basal body, cilia typically consist of nine microtubule doublets around the
periphery extending from the basal body, with a subset of cilia containing an additional
central microtubule pair that is though to impart motile functions 18. The near ubiquitous
presence of cilia in the vertebrate body plan produces a wide range of phenotypes. To date,
cell types known to be impacted by ciliary dysfunction include renal and retinal tissues, the
neural tube, developing limbs, and the central nervous system 19. It is likely that as our
knowledge of these organelles expands, additional tissue defects will also be recognized.

Defects that impact on the function of cilia, directly or indirectly, have been demonstrated in
many diseases, including polycystic kidney disease (PKD), nephronophthisis (NPH),
Alstrom Syndrome (ALMS), Bardet-Biedl Syndrome (BBS) and Meckel-Gruber syndrome
(MKS). The common causality of ciliary dysfunction has led to the grouping of these
discrete disorders as the ciliopathies 19. The availability of integrated gene and protein
databases for ciliary proteins 20-30 is facilitating both the identification of new genes
mutated in these disorders and the recognition of additional clinical entities as ciliopathies.
For example, Jeune asphyxiating thoracic dystrophy (JATD), a lethal disorder characterized
by a narrow and rigid thoracic cage, was recently characterized as a ciliopathy. The
generation of a phenotypic matrix based on the symptoms of known ciliary disorders 19 such
as retinal dystrophy, polydactyly, renal cysts, CNS malformations and situs inversus,
identified JATD as a candidate ciliopathy. Subsequent cross-referencing of JATD critical
regions in the genome with the ciliary proteome led to the identification of causative
mutations in IFT80, proving that the ciliopathy module has a robust predictive value and
significantly accelerating the identification of the first gene for this disorder 31. Indeed, the
observation that JATD is a ciliopathy had a direct impact on other similar phentoypes, in
particular short rib polydactyly, which was shown recently to be caused by mutations in a
component of the cytoplasmic dynein complex DYNC2H1, which is necessary for proper
ciliogenesis 32.

The near-ubiquitous presence of cilia in the mammalian body plan probably underlies the
profound pleiotropy of ciliopathy phenotypes, whereas complex genetic interactions
between causal and modifying alleles in ciliopathy genes have contributed further to
phenotypic variability. This can pose challenges for accurate diagnosis, especially in the
absence of reliable genetic or biochemical assays. However, the similarity in disease
mechanisms associated with defects in ciliary proteins results in significant overlap in the
phenotypes observed across different ciliopathies. For example, defects in retinal and kidney
function are observed across a range of ciliopathies owing to defects in photoreceptor and
renal cilia 33. In other cell types, dysfunction leads to developmental abnormalities such as
polydactyly and mental retardation or pulmonary defects.

Similar phenotypes are observed in ciliopathies that were originally classified as distinct,
unrelated clinical entities. However, not only does the significant phenotypic overlap argue
against a compartmentalization of such overlapping disorders, but the underlying genetics
raise a compelling grouping argument, because the same genes can contribute alleles to
most, if not all, ciliopathies (Figure 1). For example, Bardet-Biedl syndrome (BBS) – a
model ciliopathy and a developmental disorder diagnosed on the basis of the presence of
obesity, retinal defects, polydactyly, hypogonadism, renal dysfunction and mental
retardation 34 – is caused by mutations in 14 genes 23, 35-48, and at least three BBS-
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interacting loci contribute modifying mutations 49-51. BBS-associated proteins localize
primarily at the pericentriolar region and the ciliary axoneme of some cells, and the
transition zone and axoneme of sensory neurons in C. elegans 42, 52. Mutations in one or
multiple BBS genes can result in clinical phenotypes, pointing to the necessity for protein–
protein interactions. Several BBS proteins form a complex that can interact in vitro with the
GTPase RAB8 to promote the formation of the ciliary membrane 53, consistent with the idea
that multiple genes produce a disease phenotype,

In addition, defects in BBS proteins lead to defects in the planar-cell polarity (PCP)
pathway, an aspect of non-canonical Wnt signaling that regulates the elaboration of
structures in three-dimensional space (for a review, see Ref [54]). Bbs4-null mice exhibit
defects also seen in mutants for PCP-associated proteins, including exencephaly and rotated
cochlear stereociliary bundles. Suppression of bbs4 in the zebrafish PCP mutant trilobite
exacerbated the convergent extension defects common to PCP mutants 55. Importantly,
many of the phenotypes associated with BBS can be attributed to PCP defects, including
defective otoacoustic emissions 55 and renal cystic disease 56-59. This is presumably because
the BBS proteins and components of the intraflagellar transport (IFT) machinery such as
IFT88 and KIF3A are necessary for regulating Wnt signaling 60 by regulating β-catenin
degradation, possibly at the level of proteasome 61.

BBS patients do not exhibit the more severe phenotypes seen in PCP mutants, which include
neural tube defects, although the mouse Bbs4 knockout exhibits these features with modest
(10-15%) penetrance 62. Neural tube defects, however, feature prominently and are part of
the differential diagnosis of a more severe ciliopathy, Meckel-Gruber Syndrome, MKS 63.
Importantly, mutations in at least three BBS genes have been reported in antenatal cases
diagnosed with Meckel-like syndrome 64 whereas mutations in three genes associated with
MKS, MKS1, MKS3 and NPHP6, have been identified in BBS patients 48. As such, BBS
and MKS share common phenotypes associated with ciliary dysfunction 65 as well as
several phenotypic features and common causal genetic relationships. These observations
have cumulatively led to the suggestion that the two disorders represent different positions
on a causality continuum caused by ciliary dysfunction and that they should be considered
as part of the spectrum of the same clinical entity, a ciliopathy.

Clinical features of BBS overlap with MKS, and Mkks (Bbs6) is associated with both
disorders 35, 36. One variant in particular, Y37C, has been reported in the homozygous state
in BBS patients, but only in the heterozygous state in MKKS patients, suggesting that
MKKS represents a milder, hypomorphic disorder caused by similar pathway defects 36.
Although the clinical features common to both disorders include post-axial polydactyly, the
Mkks-null mouse exhibits features common to BBS, including obesity and retinal
degeneration, and to MKKS, [SC2]most notably hydrometrocolpos, an abnormality of fluid
build-up in the female genitalia. This phenotype is also observed in Bbs4-null mice,
supporting evidence of overlap between the two disorders 66. These examples highlight the
fact that, although the correlation between genotype and phenotype severity has been
limited, severity of phenotype can potentially be linked to the nature of mutations in
particular module components.

The genetic ’pairing‘ of traditionally discrete clinical disorders is not restricted to these
examples; rather, the emerging theme is one in which ciliopathy-causing genes have the
capacity to contribute pathogenic alleles to most ciliopathies (Figure 1). For example,
mutations in the ciliary gene RPGRIP1L, also known as FTM, have been identified in
Joubert syndrome (JS), MKS, BBS, LCA, SLS and NPH patients, and mice ablated for this
locus bare the cerebral, renal and hepatic defects associated with both of these disorders
[SC3]67. JS also provides examples of this phenomena 51, 68: in addition to mutations in the
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Jouberin gene (AHI1) that have been reported only in JS patients 69-72, these patients also
have mutations in MKS3 (one of the genes associated with Meckel syndrome) 73, which is
associated with Nephronopthisis 74. Mutations in another gene, NPHP6, also cause JS, and
other ciliopathies including BBS, Meckel syndrome, Nephronophthisis and Leber congential
amaurosis (LCA) 48, 75, 76.

An examination of the allelic overlap between ciliopathies illustrates two key points: (i) the
historical compartmentalization of the disorders in the ciliopathy continuum is insufficient to
explain the genetic observations; and (ii) the genotype at a single locus cannot accurately
predict the phenotype. This supports the idea that the ciliopathies share both phenotypes and
genetic mechanisms, and give credence to the model where distinct disorders are variations
of a spectrum of one disease group caused by genes involved in a limited set of molecular
pathways. Application of similar strategies to other organelle-specific groups of disorders,
such as the mitochondriopathies, could reveal the contribution of previously unknown genes
and/or pathways. Although disorders associated with mitochondrial genes have not been
characterized into functional modules, the recent development of a mitochondrial protein
interaction database, the MitoInteractome 77, offers the potential to shed light onto novel
mechanisms underlying disease and lead to the identification of new genes.

Disorders of other structural modalities: channelopathies
Inherited defects of proteins associated with discrete cellular modalities can also have
overlapping clinical phenotypes. Such disorders can also be integrated and unified based on
common cellular mechanisms. Perhaps the best-studied examples are the ion
channelopathies, disease caused by ion channels. Located on the cell membranes of a wide
array of cell types, ion channels are composed of several pore-forming protein subunits that
regulate the flow of ions in and out of cells 78. Similar to ciliopathies, mutations in ion
channel genes cause disorders of varying severity, often with overlapping clinical
presentation. Furthermore, different channelopathies are often caused by mutations in the
same genes, suggesting an overlap of biochemical functional defects. For example, the most
common channelopathy, cystic fibrosis (CF), is characterized by clinical abnormalities such
as bronchitis, asthma, sinusitis, pancreatitis, or gastrointestinal problems 79. However, these
symptoms can be presented with a variety of other disorders making definitive diagnosis on
the basis of clinical criteria alone somewhat difficult. Mutations in CFTR, which were
thought to be exclusively associated with CF, have been identified in another disorder,
congenital bilateral absence of the vas deferens (CBAVD), which can also be present in
cystic fibrosis patients 80, 81. The overlap in clinical and genetic defects indicates that the
development of a biochemical test can produce more accurate diagnoses. Because the
biochemical defect underlying cystic fibrosis is known to be abnormal electrolyte transport
within cells resulting in excessive salt loss 82, an observation-driven diagnosis can be
confirmed by measurement of sodium chloride in sweat 83, 84.

Similarly, mutations in CLCN5, which encodes CIC-5, a renal chloride channel necessary
for proper tubular endocytosis of proteins 85, underlie four channelopathies: Dent disease,
X-linked hypophosphataemic rickets (XHPR), X-linked recessive nephrolithiasis with renal
failure, and low-molecular-weight proteinuria, suggesting similar pathway defects are
present in these disorders. Because of similar genetic defects, these disorders are thought to
represent a varying spectrum of the same underlying molecular disorder 86, 87. In addition,
patients with Dent disease who do not have mutations in CLCN5 have been found to carry
mutations in OCLR1, which is associated with another X-linked disorder, Lowe
syndrome 88, 89, suggesting the possibility of pathway overlap between the two disorders.
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Defects in proteins of specific function: cohesinopathies
Disorders characterized by defects of particular protein complexes can also be grouped
together, for example the cohesinopathies 90. Cohesin complexes that bind DNA are thought
to serve two functions, mediation of sister-chromatid cohesion and regulation of gene
expression (reviewed in 91). Two particular disorders resulting from defects in cohesin and
proteins regulating cohesin are Cornelia de Lange (CdLS) Syndrome and Roberts/SC
phocomelia (RBS/SC). CdLS, characterized by growth and mental retardation, craniofacial
anomalies, and microcephaly, and is caused by mutations in NIPBL, SMC1A and SMC3,
genes necessary for loading of cohesin onto DNA 92-95. Exhibiting a similar phenotype to
CdLS , Roberts syndrome is also associated with mutations in a gene required for the
establishment of cohesion, ESCO2 96, 97. Although these disorders are both characterized by
defects in cohesin binding, there is no evidence of defects in cell proliferation, indicating
that sister-chromatid cohesion is unaffected. Recent evidence has implicated CTCF, which is
required for transcriptional insulation, in regulation of gene transcription by cohesin-
regulated promoter insulation 98, suggesting that disorders of cohesin can be attributed to
defects in gene expression regulation, specifically in those genes where cohesin binding to
DNA is important for regulation of gene expression. Thus, defects in various cohesin
proteins could result in expression defects in a defined set of genes. Importantly, some 40%
of CdLS patients do not have mutations in NIPBL, SMC1A or SMC3. From a modular
perspective, it will be important to understand whether additional cohesin components
contribute to the genetic load of the disorder, or whether mutations in downstream
transcriptional targets can drive the same phenotype. The cohesinopathy modular idea would
predict the former to be true. One also might anticipate that trans-acting mutations in the
known cohesinopathy genes might be found in patients with a primary cohesin defect, a
hypothesis that is yet to be tested.

Predictive challenges: Modularization and complex disease
The examples above illustrate the potential usefulness of modularization with respect to
mendelian or oligogenic traits. This concept may also prove useful for complex disease as
well, where the phenotype is the product of interactions between multiple genes and the
environment. Though, the evidence for this is currently limited, there are some promising
examples. One example is the implication of the complement gene C3 in AMD. Initial
genome-wide association studies identified common variants in complement factor H (CFH)
and complement factor B (CFB) to be associated with AMD99-107. Based on the potential
importance of the complement pathway in giving rise to macular degeneration, Yates et al.
investigated the potential contribution of other complement genes and identified a strong
association of a non-synonymous polymorphism in complement gene C3108.

A similar notion has been applied to obesity by the evaluation of functional expression
networks. A recent study identified a network of genes that are perturbed by susceptibility
loci in liver and adipose tissue expression in a mouse population segregating metabolic
traits109. Integration of this network with expression networks from other tissue types
revealed an enrichment in macrophage genes and led to the identification of three previously
unknown candidate obesity genes. These findings highlight that, in addition to
modularization based on cellular or molecular functionality, transcriptional networking and
other types of interaction matrices will also be useful in the dissemination of the genetic
architecture of complex traits. However, one major unanswered question in that regard
remains the ability to query such networks in toto. At present, computational limitations and
statistical power considerations preclude the systematic assessment of possible epistatic
interactions within a complex disease network. It is possible that as resequencing tools
become more widely used, there will be a paradigm shift towards resequencing such
networks and examining the combinatorial effects of trans alleles.
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Functionality of individual variants: effect and context
Modularization of genetic disease is likely to be useful in understanding pathways and
phenotypic continua. However, understanding the functional consequences of an allele or a
group of cis and trans acting alleles within a module is also crucial. Severity of mutation at
each locus within a module provides some insight as to which module components might be
dispensable and how total mutational load might explain variable penetrance and
expressivity. In addition, the relative positions of alleles might also be critical, because
proximal functional interactions might be more relevant to disease development and
progression than distant ones (Figure 2).

The ciliopathy module represents a useful example, primarily because it is now densely
populated by >30 genes and >300 disease-associated alleles. BBS is a less severe phenotype
than MKS, although there is overlap between the two in causative genes. Interestingly,
characterization of mutation severity revealed that hypomorphic mutations in MKS1 give
rise to BBS, suggesting that a homozygous loss of MKS1 results in severe dysfunction,
whereas residual protein activity[SC4] from that locus leads to an intermediate
phenotype 50. Such a paradigm is abundant in ciliopathies; hypomorphic NPHP3 and MKS3
mutations cause NPH, whereas null alleles cause MKS 74. These observations provide clues
about the necessity of individual proteins or nodes within a module and offer initial clues
with regard to the buffering ability of individual positions. However, trans interactions and
their behaviors are equally important with regard to phenotypic modulation. Mutations in
FTM cause a host of ciliopathies with no clear evidence for allelic cis stratification of
phenotypes. Likewise, null mutations in NPHP6/CEP290 have been found in patients that
cover the entire ciliopathy spectrum, from isolated NPH to MKS. For such examples, either
stochastic factors or functionally proximal, trans alleles are likely to determine disease
modulation. For instance, although mutations in FTM do not appear to cause the
intermediate BBS phenotype, there is a significant enrichment for heterozygous FTM alleles
in patients with ciliopathies defined clinically by retinal degeneration. In particular, whereas
homozygosity of the A229T allele alone is benign, lesions at other positions in the module
can interact genetically to potentiate retinal degeneration 51. [SC5]

This concept has also been explored in the context of cancer modules. Several large
sequencing screens in solid tumors from various tissues have used statistical comparison to
characterize mutations as ‘driver’ alleles, which confer a clonal growth advantage, or as
‘passenger’ alleles, which do not 110-112; genes carrying driver mutations are categorized as
cancer genes. These studies have used either prevalence of mutations 111, 112 or the ratio of
non-synonymous to synonymous mutations as the determining factor in this context 110.
However, when mutations in FLT3 associated with acute myeloid leukemia (AML) were
assayed for differences in effects on kinase activation and downstream signaling, 4 of 9
imparted gain of function and could act as drivers of leukemogenesis, even though these
mutations were considered passengers when assessed by statistical methods alone 113. These
findings provide evidence that although the importance of genes within a particular module
can be garnered by assessing the type of variant, i.e. coding, non-coding, the ultimate
determinant of disease mechanism is testing the specific variant function using biological
assays.

Concluding remarks
We will shortly have access to genetic variation data both from an increasing catalog of
humans of diverse ethnic backgrounds 125 as well as from exomes and eventually genomes
of patients with diverse disorders 1, 126. Current practices tend to follow one of two major
paths. For rare disorders, the primary focus lies on strict mendelian models, often discarding
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the variation outside the ’disease gene‘ where two pathogenic alleles might lie (for recessive
disorders). At the other end of the spectrum, complex trait genetics remain largely driven by
the investigation of alleles of sufficient frequency to empower statistical arguments. We
suggest that the first approach, although successful in identifying highly penetrant alleles
that drive much of the phenotype, will miss the opportunity to investigate the functional
effect of mutations in the context of variation across the genome. As such, it might be
important to collate, archive (in the public domain) and analyze all the variation found in
patient exome and genome resequencing projects, especially since alleles can appear to be
functionally benign in one context but pathogenic in another. Ultimately, one can envision
the functional modularization of the entire morbid human genome, wherein it will be
possible to conduct functional assays pertinent to a specific module for all the variation
detected. We are certainly not in a position to accomplish that goal at present. However,
there is no reason to believe that such a goal is unattainable.

It is important to consider the potential limitations of the modular approach. One potentially
confounding factor is the spatial and temporal regulation of expression of individual module
components by differential expression or tissue-specific splice isoforms. In Usher
Syndrome, for example, a functional network including the five causative disease genes has
been established based on binding interactions between the proteins127. Different types of
mutations in one network component, cadherin 23 (CDH23/USH1D), cause either deafness
and blindness associated with Usher syndrome or only nonsyndromic deafness128. Further
investigation revealed that the discrepancy in phenotype may result from differential tissue-
specific expression CDH23 isoforms in the retina and inner ear 129, 130, suggesting that
modularization may not be informative in particular tissue or cell-type contexts. Second,
discussions of the modular approach have generally applied to loss of function mutations.
For gain of function mutations, however, it might be difficult to assess the contribution of
individual components and their impact on the module as a whole. Returning to the FGFR1
example, loss- and gain-of-function mutations produce significantly different phenotypes
suggesting that the protein can contribute to different pathways, making functional
modularization challenging. Though there is limited functional data to support this notion,
informatics based approached have analyzed the differential contribution of disease genes
dependent on the nature of mutation. Computational analysis of interaction profiles of
mutant proteins in the context of mendelian disorders for example, revealed that
perturbations in these networks by complete removal of network components (i.e. loss of
function mutations) is predicted to have more deleterious effects on the overall architecture
of the network as compared to slight perturbations131. However, mutations conferring a gain
of interactions, would also potentially alter the overall network, albeit differently. As the
nature of disease gene functionality becomes better understood, the complexity of
relationships between them, and the contribution of variation to altering those relationships,
will become clearer. It is possible that investigation of variation across functional modules
will offer better predictive power with regard to penetrance, expressivity and rate of disease
progression and this will help understand the mechanics of the genetic basis of phenotypic
variability, which in humans is often complex and ill-defined.
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Glossary[SC9]

Functional
modularization

the use of modules or collections of biological information
about one disease or developmental pathway to aid in the
identification of genes for similar or even distinct but linked
diseases

Mutational load the total of all deleterious mutations across the genome
contributing to a genetic trait

Stickler syndrome a group of disorders caused by mutations in COL2A1,
COL11A1, COL11A2 or COL9A1 and characterized by
craniofacial defects including flat mala, hearing loss, myopia
or other eye problems

Marshall syndrome an autosomal dominant disorder caused by mutations in
COL11A1 and presenting with craniofacial defects and
myopia. Marshall is distinct from Stickler syndrome in the
presence of a flat or retracted midface and the appearance of
large eyes

Oto-spondylo-mega-
epiphyseal dysplasia
(OSMED) syndrome

an autosomal recessive disorder caused by mutations in
COL11A2 or in some reports COL2A1. The disease is
characterized by skeletal and craniofacial defects and
hearing loss

Hypogonadotrophic
hypogonadism

an absence or reduced functionality of the testes or ovaries

Cutaneous syndactyly the appearance fusing together of toes or fingers at the skin,
not the bones

Polycystic kidney disease
(PKD)

a disorder that can be autosomal recessive or autosomal
dominant (the majority of cases) and characterized by the
presence and growth of multiple cysts in the kidneys

Nephronophthisis (NPH) an autosomal recessive disorder presenting with polyuria,
polydipsia, proteinuria and characterized by multiple renal
cysts and fibrosis

Alstrom Syndrome
(ALMS)

an autosomoal recessive disorder caused by mutations in
ALMS1 and characterized by obesity, retinal dystrophy, and
hearing loss

Bardet-Biedl Syndrome
(BBS)

a pleiotropic disorder caused by mutations in genes
localizing to the basal body and cilium and typically
characterized by retinal degeneration, obesity, polydactyly,
mental retardation, renal dysfunction and hypogonadism

Meckel-Gruber
syndrome (MKS)

a lethal condition resulting in pre- or early post-natal death
as a result of neural tube defects and renal cysts and
malformations

Exencephaly the abnormal development of the brain outside of the skull
usually resulting in death of the fetus or newborn

Otoacoustic emissions sounds produced in the inner ear as a result of external
stimulation and amplification by the cochlea that can be
reduced with damage to the inner ear
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Box 1[JS6]: Tools for prediction of allele function

The most commonly used method to predict allele functionality has been the use of
computational algorithms, which capitalize on some component of protein character to
predict the effect that a change will have. Often, these tools are used to predict the
character of non-synonymous coding variants using sequence-based or structure-based
analyses, but relatively few of them categorize mutations based solely on pathogenic
nature 114. Such algorithms include SIFT (Sorting Intolerant From Tolerant) and MAPP
(Multi-variant Analysis of Protein Polymorphisms), which are based on conservation of
residues in protein families across species 115, 116 or PhD-SNP which utilizes the
sequence profile along with conservation information 117. Other programs use a
combination of information. For example, the commonly used PolyPhen uses both
sequence alignments and structural information 118. Similarly, SNAP (Screening for
Non-Acceptable Polymorphisms) considers biochemical properties of particular residues
in addition to evolutionary data 119. Such tools have provided rapid, easy methods by
which to analyze variants, but the somewhat limited accuracy of prediction (70-80% for
most algorithms) makes them insufficient for definitive prediction of function or for
clinical diagnostic applications.

Biological assays of variant function remain the gold standard, especially for rare
variants for which genetic data are of insufficient resolution and power. Drawing from
the ciliopathy group, evaluation of variants already known to underlie disease, such as
the BBS1-M390R[SC7] knock-in mouse 120 or in vitro mislocalization of mutant
BBS6 121, confirms the association and provides insight into disease mechanism.
Evaluation of alleles of ambiguous pathogenic contribution can complement the genetic
information to definitively associate variants with disease. For example, a recent study
examined 17 mutations in BRCA2 by assessing the ability of wild type and mutant
BRCA2 protein to rescue depletion of endogenous protein 122. Using cell viability as a
phenotypic readout, Kuznetsov et al. demonstrated the efficiency and accuracy of this
application to determine variant neutrality. This concept is potentially true for mutations
as well as associated polymorphisms and functional testing of associated polymorphisms
have confirmed the functional contribution of such variants. For example, expression of a
missense SNP in DDX5, a gene associated with a higher risk of cirrhosis, in hepatic
stellate cells revealed enhanced fibrogenic activity via derepression of fibrogenic
genes123. Likewise, a study of the effect of a SNP associated with aspirin intolerance in
asthma revealed that the high risk variant in CysLTR2[SC8], which promotes
inflammation and bronchoconstriction, resulted in higher expression levels and increased
mRNA stability in transfected B cells 124. Although examples such as these support the
usefulness of biological assays in deciphering allele functionality, it will also be
imperative to refine assays to capture multiple functions of proteins to understand the
contribution of different alleles to different pathways and phenotypes, Ultimately, rapid
and efficient assays will be the necessary tools with which to evaluate novel variants in
disease genes found in patients and to refine other tools, including computational
predictors, for improved accuracy.
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Figure 1. Genetic overlap within the ciliopathy module
There is significant overlap in the causative genes in disorders associated with ciliary
dysfunction. Most genes associated with Nephronophthisis (NPH), Senior-Loken Syndrome
(SLS), Joubert Syndrome (JBTS) and Meckel-Gruber Syndrome (MKS) have been
associated with at least one other clinically distinct ciliopathy, with the exception of Bardet-
Biedl Syndrome (BBS), for which a large proportion of causative genes have not been
linked to other ciliopathies. Two genes in particular, NPHP6 and RPGRIP1L (FTM), have
been associated across the ciliopathy module.
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Figure 2. Architecture of interaction across ciliopathy module components
A simplified depiction of the interaction between components of the ciliopathy module.
Genes contributing to the individual disorders have a high likelihood of both functional
interactions (dashed lines) and protein-protein interactions (solid lines). The BBSome, for
example, comprises physical interactions between BBS proteins. These genes have
functional interactions as well because mutations in one BBS gene can modify or be
compounded with mutations in other BBS genes. This functional interaction is also true for
BBS genes outside of the complex. Likewise, physical and functional interactions are
present within Meckel-Gruber or Nephronophthisis genes. In addition, genes contributing to
each disorder can also interact with genes contributing to other disorders. For example, FTM
(RPGRIP1L) is a modifier (asterisk) of BBS, MKS and NPH, and can physically interact
with some proteins underlying those diseases 51. Similarly, MKS3 is a modifier of BBS 48.
RPGR is outside of the ciliopathy module but physically interacts with module components
and is mutated in some ciliopathy patients 51. This suggests the potential for contribution of
RPGR to ciliopathies and incorporation of this gene into the module.
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