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Reference Annotations [7]*The authors developed a bacterial promoter library with relative protein production rates that are
independent of the coding sequence of the expressed protein. This is one of the first examples of a context-independent biological
control element.
[11]**Researchers engineered an RNA-based scaffolding system capable of forming 1, 2, or 3-D assemblies in vivo and binding
tagged enzymes with aptamers.
[16]*By fusing plant sesquiterpene synthases to mitochondrial targeting sequences, the authors co-localized these enzymes with host
enzymes that produce sesquiterpene precursors and thereby improved sesquiterpene biosynthesis in engineered yeast.
[20]**In this work, researchers replaced entire chromosome arms in yeast with designed synthetic versions. This is the first example
of 10-100,000 bp sections of synthetic DNA being constructed to replace native sequence in a eukaryote.
[29]*The authors identified a biocatalytic route to 1,4-butanediol from central metabolism using pathway prediction software, built the
suggested pathways, and improved overall titers by using a whole-cell metabolic model of E. coli to predict engineering targets. This
is one of the first successful applications of de novo pathway prediction software.
[31]*Researchers improved titers of n-butanol by carefully identifying and characterizing enzymes from genetic databases with
optimal kinetic parameters. This work is an excellent example of how genetic information can be rationally implemented for pathway
design.
[33]**Genetic databases were used to identify a 36 kb Vibrio splendidus genome fragment suspected to encode transporters needed
for alginate utilization, and this large fragment was cloned into E. coli by screening a genomic fosmid library. The researchers also
engineered an alginate lyase secretion system and heterologous ethanol pathway to produce ethanol from macroalgae feedstocks.
[37]*The authors used conjugative genome assembly in E. coli to combine 32 defined sections of different strain genomes into a
single recoded E. coli genome.
[43]**An in vivo RNA-based biosensor was used to couple intracellular small-molecule product concentrations to GFP levels,
allowing a large enzyme library to be rapidly screened by plate-based fluorescence readings and FACS. This is one of the first
screening methods that does not depend on any innate property of the substrate, product, or enzyme.
[44]**In the system developed here, the expression of a protein necessary for phage survival is linked to a desired biomolecule
activity. The host E. coli is infected by selection phage that encode the biomolecule library, and the culture is maintained in a
turbidostat such that phage that encode biomolecule library members that activate the expression of the phage-survival protein are
enriched over time.
[48]**By measuring changes to global transcriptional patterns by DNA microarrays, heme depletion was discovered to be the
principal source of stress for a yeast strain expressing evolved P450 monooxygenase enzymes. Subsequently alleviating this stress by
overexpression of the genes responsible for heme biosynthesis showed recovered activity for the evolved P450 at high copy
expression.
[53]**Model-guided analysis identified gene knockouts for increase in cellular availability of NADPH for sesquiterpene synthesis.
The analysis also suggested a gene target to overexpress – this targeted change offset the growth impairment in the engineered strain
versus wild type.
[54]**Targeted changes to the native E. coli metabolism were identified by a whole cell E. coli metabolic model. These modifications
increased flux toward lactyl-CoA production, increasing lactate fraction of polymer as well as total polymer content of the cells by dry
weight %.
[64]**Expression of a key biosynthetic enzyme in the isoprenoid biosynthesis pathway was tied to media glucose concentration by use
of a glucose responsive promoter.
[65]*Heterologous protein expression can be tied to cell concentration by use of modified quorum sensing components.
[67]**The native E. coli transcriptional regulator FadR was used to control ethanol overproduction and FAEE synthase modules
relative to pools of free fatty acids in the E. coli host strain. This approach achieved higher titers than tuning relative transcriptional
strengths of the different modules with various constitutive promoters.
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Abstract
Biotechnological production of high value chemical products increasingly involves engineering in
vivo multi-enzyme pathways and host metabolism. Recent approaches to these engineering
objectives have made use of molecular tools to advance de novo pathway identification, tunable
enzyme expression, and rapid pathway construction. Molecular tools also enable optimization of
single enzymes and entire genomes through diversity generation and screening, whole cell
analytics, and synthetic metabolic control networks. In this review, we focus on advanced
molecular tools and their applications to engineered pathways in host organisms, highlighting the
degree to which each tool is generalizable.

Introduction
Chemical biotechnology is the use of biocatalysts in engineered systems to produce bulk and
fine chemicals [1]. Three waves of biocatalysis have been described: first, realization that
biological components could be used for chemical transformations; second, development of
genetic engineering techniques needed for industrial production of proteins; and third,
development of directed evolution-enabled enzyme engineering [2]. The coming wave relies
not only on further improvements in protein engineering and DNA synthesis technologies,
but also critically on our ability to engineer controlled, multi-enzyme pathway systems.
Although isolated enzymes are widely used industrially today, whole cells are a more
feasible system for multi-enzyme pathways. The introduction of heterologous pathways into
a host organism and metabolic flux optimization toward the product of interest is a
synergistic application of concepts from metabolic engineering and synthetic biology [3]. In
this review, we describe selected contributions of metabolic engineering, synthetic biology,
systems biology, and protein engineering to chemical biotechnology to improve the
productivity of multi-enzyme pathways. These fields have provided advanced molecular
tools for de novo pathway identification, tuned pathway construction, diversity generation
and screening, genome-scale identification of optimization targets, and dynamic pathway
control. Here, we focus on such molecular tools developed, improved, and applied in new
contexts over the past few years.

Enhanced tools for precise biosynthetic pathway construction
Engineered biosynthetic pathways require composition of genetically encoded expression
devices that support precise and tunable levels of pathway enzymes. Both the number of
characterized control elements—such as ribosome binding sites (RBSs), promoters, and
terminators—and the degree to which those control elements can be made to behave in a
predictable manner under a range of contexts have expanded. Additionally, improved and
new methods have been developed to assemble these control elements with enzymes to
construct biosynthetic pathways.

One challenge to the rational design of genetically encoded elements is that they often
behave in a context-dependent manner, exhibiting properties that depend on the combination
of other elements used in the device or exhibiting off-target perturbations of the biological
host. This challenge has been addressed by designing for context and then iteratively
optimizing to improve behavior. Contextual features to consider range from the specific
(e.g., DNA sequence surrounding the element) to the holistic (e.g., environmental growth
conditions). For example, the impact of oxygen and glucose conditions on constitutive yeast
promoter activities was characterized to permit design for these culture conditions [4].
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Known variation in tRNA availabilities among hosts has been used to reduce the host-
dependence of protein expression via codon optimization [5, 6]. Alternatively, insulated
elements have been developed that behave robustly in varying contexts. For example,
researchers have developed an insulated constitutive bacterial promoter library with relative
protein production rates that span two orders of magnitude and are independent of the
coding sequence of the expressed protein [7]. New insulating elements that use RNA
processing to reduce the context dependence of genes in multi-gene operons have also been
introduced [8].

Quantitative modeling and characterization of control elements have enabled researchers to
create larger libraries of elements that exhibit predictable behaviors when integrated into
gene expression devices. For example, a thermodynamic model of bacterial translation
initiation was developed and used to forward design synthetic RBSs with a 47% chance of
exhibiting protein expression levels within 2.3-fold of the desired level [9]. In addition,
libraries of novel gene control elements have been developed using evolutionary and
screening strategies. For example, a set of Rnt1p-cleavable hairpins provides post-
transcriptional tuning of protein expression levels ranging from 8-84% of a control construct
without a hairpin [10]. In vivo scaffolds are another set of synthetic control elements and act
post-translationally to improve pathway flux by spatially co-localizing enzymes to RNA
[11], DNA [12], protein [13, 14], cell surface [15], or a specific organelle [16].

Along with the diversification and insulation of genetic control elements have come faster,
more reliable methods to construct biosynthetic pathways. Notably, an eight-gene
biosynthetic pathway was assembled into a shuttle vector or yeast artificial chromosome in a
single transformation with over 50% efficiency (Figure 1a) [17]. Pathways can also be
integrated iteratively, which may increase the accessible library size for testing variants in a
multi-gene pathway [18]. The construction and transplantation of a chemically synthesized
bacterial genome showcased the cumulative advances of in vitro enzyme-mediated assembly
and in vivo transformation-associated-recombination in yeast [19]. Similar techniques have
been used to replace chromosome arms in yeast with circular or linear synthetic versions
[20]. In E. coli, researchers have developed “recombineering” methods that use phage
proteins to facilitate recombination-based genetic engineering. Rec-mediated
recombineering was developed for efficient recombination between linear PCR products and
linearized plasmids, which complements efficient lambda phage Red-mediated
recombination between linear PCR products and circular plasmids [21].

Improved tools for de novo pathway identification
Engineered biosynthetic pathways were once painstakingly pieced together from a single
organism’s cDNA to mimic natural biosynthesis strategies, and optimization of host
platforms involved serial knockouts or overexpression of targeted genes. However, modern
bioinformatic tools allow rapid mining of huge sequence repositories for functions of
interest and even prediction of multiple possible pathways to produce a desired small
molecule (Figure 1a). Databases such as BioCyc [22], Kyoto Encyclopedia of Genes and
Genomes (KEGG) [23], Rhea [24], and Braunschweig Enzyme Database (BRENDA) [25]
facilitate search and display of metabolic pathways. These databases and others are
populated by proteins whose discovery is accelerated by functional prediction algorithms,
e.g., global biochemical reconstruction using sampling (GLOBUS), that take a systems
biology approach to adjusting functional predictions generated by homology and secondary
structure [26]. Genome-scale metabolic models of several industrially useful host organisms
are available and reviewed elsewhere [27]. These stoichiometric models are used in
computational predictions of routes from central metabolites to a product of interest,
implementing a variety of rules for reaction qualifications (e.g., known enzymes,
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metabolites, or reaction chemistries) and scoring schemes (e.g., route length, number of
enzymes known, complexity of transformations, flux balance analysis) to rank possible
pathways [28]. For example, researchers used in-house pathway prediction and ranking
software with a genome-scale E. coli model to identify two possible pathways to the non-
natural product 1,4-butanediol [29].

In a creative use of genomic information, an alkane-producing operon was discovered via
subtractive genomic analysis of 11 cyanobacteria strains and used in E. coli to produce a
mixture of alkanes and alkenes [30]. Enzymes variants can be rationally selected when
enzymes with similar functions from many organisms are available. In the reverse
engineering of the β- oxidation cycle for production of n-butanol, enzymes were chosen
based on kinetic parameters and co-factor specificity [31, 32]. The combination of genomic
information and library-based cloning strategies is a rapid way to obtain rare enzymatic
activities. In one example, a 30 kb Vibrio splendidus genome fragment, suspected by
homology to encode transporters needed for alginate utilization, was cloned into E. coli by
screening a genomic fosmid library [33].

Tools for molecular diversity generation and screening
Directed evolution is a powerful method for optimizing biosynthetic pathways and requires
molecular tools for generating and screening diversity (Figure 1c). Tools for generating
diversity at the single-gene level, such as error-prone PCR, DNA shuffling, saturation
mutagenesis, and site-directed mutagenesis, have been used to generate enzyme libraries of
varying size for some time. Screening for small molecule production depends on physical
characteristics of the substrates, cofactors, products, or strains. Screens employ selection,
growth, colorimetric, fluorescent, or UV readouts in a high-throughput format; or direct
quantification by a separation method coupled to a detection method, like LC-MS, in lower-
throughput formats. Recent work to engineer E. coli for increased levopimaradiene
production provides examples of both small and large library generation and screening [34].
One enzyme in the pathway, levopmaradiene synthase, was iteratively subjected to site-
directed and single-site saturation mutagenesis at amino acid positions selected from a
structural homology model, and resulting changes in productivity were analyzed by GC-MS.
A second enzyme, geranylgeranyl diphosphate synthase, was subjected to error-prone PCR,
expressed in the context of a lycopene-producing strain, and then screened visually for
production of the red pigment characteristic of lycopene. Together, these two optimized
enzymes, along with higher expression of four upstream endogenous enzymes, increased
levopimaradiene production from 0.15 mg/L to 700 mg/L [34].

Advances in DNA synthesis support the design of synthetic oligonucleotides and genes; thus
smaller libraries with defined variation and a higher fraction of functional proteins can be
built, permitting lower-throughput, higher-sensitivity screens (Figure 1c). Several
commercial DNA synthesis companies offer tailored synthetic libraries, including specified
amino acid frequencies at each site, truncations of varied length, mixed-and-matched
domains from similar proteins, and specific frequencies of random mutations in all or a
subset of amino acid sites. Structure or structural homology, phylogeny, and known amino
acid sequence-function relationships often inform the design of these tailored libraries. For
example, a computational structure-guided recombination method was used to divide
cellulases into domains, and a subset of all possible chimeras was synthesized to sample the
effect of each domain on thermostability and activity [35]. Linear regression analysis and
machine learning were then applied to the results from the first chimera library and used to
design a second small synthetic library, which yielded three variants with similar activities
to the parent and greatly enhanced thermostability.

Galanie et al. Page 4

Curr Opin Biotechnol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Several tools for generating directed diversity at the genome level have been developed.
Some genome alteration methods build on recombineering E. coli. For example, a process
termed “multiplex automated genome engineering” (MAGE) introduces changes mediated
by lambda phage Red and directed by synthetic oligonucleotides to generate up to 15 billion
genetically distinct E. coli cell populations in three days of automated transformation cycles
[36]. Since MAGE is most efficient with a pool of ~10 oligonucleotides, a hierarchical
conjugation assembly genome engineering (CAGE) method was developed to combine
altered portions of the genome into a single strain using E. coli donor-receptor strains
engineered for site-specific recombination [37]. A trackable multiplex recombineering
(TRMR) method was developed to introduce thousands of targeted and barcoded changes
into the bacterial genome such that fitness phenotypes can be mapped back to the specific
change in the genome [38]. This approach was recently used with MAGE to combinatorially
alter the ribosome binding sequences of thousands of genes and map resulting growth
phenotypes to their accompanying genomic changes [39]. In yeast, homologous
recombination has been used for generating diversity via transformation with libraries of
synthetic oligonucleotides flanked by homology regions [40]. Additionally, homologous
recombination has been combined with an inducible double-stranded break system and
sexual reproduction to generate rounds of diversity in vivo by mating rather than by
transformation [41].

Optimal enzymes or control elements for a biosynthetic pathway can only be identified
through appropriate screens; thus, generalizable, high-throughput screens are highly
desirable. For example, enzyme activity can be assayed indirectly by monitoring
consumption or production of a UV-active cofactor like NAD(P)H or using either a general
colorimetric assay for pH or an organic functional group. However, these assays can be
difficult to conduct in vivo and may not have the necessary sensitivity and signal-to-noise
ratio to detect small changes in enzyme function. Recently, a screening strategy was
described that combines yeast display of an enzyme library, chemoenzymatic conjugation of
one substrate to the cell surface, incubation with a second substrate with an affinity handle,
fluorescent staining of or conjugation to the affinity handle, and fluorescence-activated cell
sorting (FACS) to select cells expressing enzymes capable of forming bonds between the
two substrates [42]. Although this method is not dependent on physical properties of the
substrates or product, it does require that both substrates be amenable to chemical
conjugation and that the enzyme being selected tolerate surface display and have a
sufficiently flexible active site. In an alternative approach, an in vivo RNA-based biosensor
couples intracellular small-molecule product concentrations to levels of a genetically
encoded reporter like GFP, such that large enzyme or pathway libraries can be rapidly
screened by FACS [43]. This method depends on selection of an appropriate RNA aptamer
to the small molecule target of interest and integration of the aptamer into the RNA
biosensor platform, rather than on any innate property of the substrate, product, or enzyme.

Small molecule biosensors that can be linked to gene expression are particularly powerful in
the context of the recently developed in vivo phage-assisted continuous evolution (PACE)
[44]. In PACE, host E. coli cells express two plasmids, one for continuous mutagenesis and
one on which the expression of a protein necessary for phage survival is linked to a desired
protein activity. The host E. coli is infected by selection phage that encode the protein
library, and the culture is maintained in a turbidostat such that phage that encode protein
library members that activate the expression of the phage-survival protein are enriched over
time.
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Systems biology analysis for host-level optimization
As tools and methods for identifying, building, and optimizing heterologous metabolic
pathways have grown in number, the need to understand host metabolism at a systems level
to support further optimization has emerged. To meet this need, systems biology has
developed techniques to support “-ome-level” interrogation of cellular behavior and
quantitative models for analysis of whole-cell metabolic networks (Figure 1d) [45-47]. The
use of systems-level measurements has expanded researchers’ abilities to identify gene
targets to improve engineered strains. For example, transcriptome profiling has been used to
identify sources of stress in yeast strains harboring evolved P450 monooxygenases. By
analyzing the global transcriptional response across a series of evolved enzyme variants,
researchers identified heme depletion as the major limiting factor for optimized
monooxygenase activity at high expression. Subsequent overexpression of cellular
machinery for producing heme increased the productivity of the highest activity evolved
variant by 2.3-fold [48]. In another study, global transcript, metabolite, and genotype
measurements were used to identify traits associated with higher yeast growth rates on
galactose, an industrially relevant sugar disfavored by native yeast metabolism. Researchers
compared two previously engineered strains and three newly evolved strains against a parent
strain and identified specific favorable mutations that arose in gene targets unpredictably
related to carbohydrate sensing and catabolism [49].

Improvements in stoichiometric genome-scale metabolic networks with constraint-based
models like flux balance analysis (FBA) or minimization of metabolic adjustment (MOMA)
have enabled several recent model-guided strain optimization efforts, in which predicted
modifications of host metabolism improved product yields (Figure 1d) [50]. For example,
OptGene, a genetic search algorithm for non-linear optimization [51], and MOMA were
used to identify knockout targets within a stoichiometric model of S. cerevisiae that would
lead to increased sesquiterpene production [52, 53]. Deletion of the predicted target
glutamate dehydrogenase GDH1 and overexpression of the NADH-dependent glutamate
dehydrogenase gene GDH2 to repair the consequent growth defect, resulted in a strain with
nearly triple the total sesquiterpene titer [53]. Using similar computational methods,
researchers simulated the effect of gene knockouts on the relationship between growth rate
and polylactic acid production rate, identifying three knockout targets that were combined
with two rationally selected overexpression targets to increase overall polymer accumulation
by 3.7-fold [54]. An engineered strain of E. coli for the production of 1,4-butanediol (BDO)
was improved by the introduction of targeted changes to the host genome guided by a
whole-cell metabolic model [29, 55, 56]. The changes made to host metabolism included
knockouts of key enzymes, deletion of a global regulator, and a point mutation in an enzyme
to destroy the allosteric inhibition of the native citrate synthase, leading to over 95% of
carbon flux being directed to the BDO pathway as measured by 13C labeling [29].

Molecular control elements for dynamic pathway regulation
Taking a cue from natural regulatory networks, researchers have begun designing dynamic
regulation for engineered biosynthetic pathways (Figure 1b) [57, 58]. For example, a
theoretical analysis detailed parameter constraints necessary to build a biological
proportional-integral control network capable of perfect adaptation and modeled the effects
of these parameters in a two-promoter gene network [59]. An in silico model of dynamic
control in a biofuel production pathway concluded that efflux pumps under control of a
biofuel-responsive promoter would limit toxicity [60]. However, implementation of these in
silico designs is currently limited by availability and tunability of the molecular components
required to build dynamic controllers.
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Genetically encoded sensors developed for selection and screening can potentially be
coupled to activators to create synthetic molecular dynamic controllers [61]. While
conceptually simple, building such a device can be practically challenging and demands
parameter tuning to obtain desired behavior [62]. For example, nine distinct parameters were
involved in the design of static ribozyme-regulated expression devices [63]. Dynamic
controllers sense and process a molecular input and generate a gene-regulatory output.
Open-loop controllers sense an external molecular input, such as the IPTG supplied to an
IPTG-inducible promoter, while closed-loop controllers sense a molecular input associated
with the pathway of interest, such as an intermediate in an engineered biosynthetic pathway
[61]. In a recent implementation of open-loop control, researchers used the glucose-
responsive promoters HXT1 and HXT2 to control the expression level of squalene synthase,
ERG9, resulting in a 2-fold increase in α-santalene production in yeast, which was improved
by further host metabolic engineering and bioprocess optimization strategies [64]. In
addition to concentrations of small molecules, open-loop controllers can respond to
autoinduction by cellular quorum sensing. By engineering the native quorum sensing
regulon to initiate the expression of T7 polymerase, researchers demonstrated an
autoinduction “switch” that serves as a late stage E. coli heterologous protein expression
system [65].

Because closed-loop control requires response to a signal associated with the biosynthetic
pathway, it can be more complex to engineer. The first example of a closed-loop metabolic
controller was a synthetic regulon built using parts of the acetyl phosphate-responsive
promoter glnAP2 applied to the control of enzyme expression levels in the lycopene
biosynthesis pathway. As metabolic flux to acetyl phosphate competes with that to lycopene,
this controller served to divert flux to the lycopene pathway, increasing productivity 3-fold
[66]. In a recent example, researchers built a dynamic closed-loop controller from the
natural fatty-acid sensing transcription factor FadR, which binds to and represses a
recombinant promoter [67]. High cellular concentrations of fatty acids lead to increased
pools of acyl-CoA that bind FadR, which then releases its DNA binding region and allows
transcription from the engineered promoter. This promoter was used to control the
expression of pdc and adhB for ethanol production, fadD for fatty acyl-CoA production, and
atfA for fatty acid ethyl ester (FAEE) production. The dynamic control system effectively
prevents the build-up of ethanol, a toxic pathway intermediate, and over-production of acyl-
CoA, which consumes fatty acids needed for other processes. FAEE yield increased by 3-
fold to 28% of the theoretical maximum under the dynamic control scheme. These systems
demonstrate the promise of dynamic control strategies for engineered biosynthetic pathways,
and show that repurposing of native systems can be a useful starting point for building
dynamic controllers [67].

Conclusion
Enhancing our ability to engineer controlled, multi-enzyme biosynthetic pathways in whole-
cell hosts is essential to expanding the spectrum of fine and bulk products that can be made
with chemical biotechnology. Molecular tools for pathway identification, rapid and precise
pathway construction, directed evolution for component optimization, systems-level models
and measurements for host optimization, and dynamic pathway control advance these
efforts. While a convergent set of tools and methodologies that allow researchers to build
pathways to synthesize molecules of interest with ease is desired, developing generally
applicable tools is an overarching challenge in chemical biotechnology. As shown in Table
1, solutions to improve pathway productivity are often specific to the host organism, the
small molecule product, or even the particular strain. Much work remains to gain the
predictive understanding necessary to build a biosynthetic pathway “off-the-shelf” and will
involve amassing particular solutions to find generalizable patterns for strategic construction
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and optimization as well as developing generalizable, robust biological components and
system composition methods.
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Highlights

□ Novel molecular tools advance the productivity of engineered multi-enzyme
biochemical pathways in live cells.

□ These tools enable precise, rapid pathway construction and static and dynamic
control of enzyme expression levels.

□ Molecular tools facilitate enzyme or pathway optimization via directed evolution
and systems biology approaches.

□The generalizability of each tool depends on its function, context dependence, and
host requirements.
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Figure 1.
Molecular tools to advance engineering of multi-enzyme biochemical pathways for chemical
biotechnology. (a) Genetic and genomic databases are used with predictive algorithms to
design pathways, which are then genetically constructed in vitro and/or in vivo. (b) Dynamic
control elements allow enzyme expression levels to vary in response to small molecule
concentrations. (c) Rounds of diversity generation and screening, informed by machine
learning and design of experiment algorithms, generate optimized enzyme variants. (d)
Whole cell read-outs provide data for systems level analysis and prediction of specific
changes to enable global phenotypic improvements.
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Table 1

Generalizability of selected molecular tools for chemical biotechnology.

Role Molecular tool Host cell(s) Generalizability References

Expression
tuning

Constitutive
promoters

S. cerevisiae Applications in yeast [4]

Expression
tuning and
robustness

Codon
optimization

Any Any [5, 6]

Expression
robustness

Insulated bacterial
promoters

E. coli Any bacterial system where a 160 bp
promoter is acceptable and elements in the 5’-
UTR are not needed

[7]

Expression
robustness

Clustered
regularly
interspaced short
palindromic repeat
(CRISPR) RNA
processing

E. coli, B.
subtilis, S.
cerevisiae

Any organism in which the Csy4-based
processing platform can be functionally
expressed

[8]

Expression
tuning

Synthetic
ribosome binding
sites

E. coli Applications in E. coli [9]

Expression
tuning

RNA control
modules based on
Rnt1p hairpins

S. cerevisiae Applications in yeast [10]

Enzyme
scaffolding

RNA-enzyme
assemblies

E. coli Applications in prokaryotes in which enzymes
are amenable to tagging with aptamer binding
domains

[11]

Enzyme
scaffolding

DNA-enzyme
assemblies

E. coli Applications in prokaryotes in which enzymes
are amenable to tagging with zinc-finger
proteins

[12]

Enzyme
scaffolding

Protein scaffold-
enzyme
assemblies

E. coli, S.
cerevisiae

Applications in which enzymes are amenable
to tagging with protein scaffold binding
domains

[13, 15, 68,
69]

Enzyme
scaffolding

Protein
microcompart-
ments

E. coli Potential applications in prokaryotes for
enzymes that are amenable to tagging with
binding domains or localization tags that
direct them to protein microcompartments

[70-73]

Enzyme
scaffolding

Host-heterologous
protein fusions for
localization

S. cerevisiae
(in this
example)

Any application in which a suitable host
localization protein can be identified and a
functional host protein-heterologous enzyme
chimera can be generated

[14]

Enzyme
scaffolding

Organelle-
targeting tags

S. cerevisiae Applications in eukaryotes in which an
appropriate organelle tag is available and the
enzyme(s) is amenable to fusion

[16]

Genetic
assembly

One step
homologous
recombinatio-
nbased plasmid
assembly or
integration

S. cerevisiae Applications requiring assembly of 8-10 DNA
segments in yeast

[17]

Genetic
assembly

Iterative
homologous
recombination-
based integration

S. cerevisiae Applications in yeast in which one-at-a-time
integration and selection marker rescue is
desired, such as pathway library construction

[18]

Genetic
assembly

Combined in vitro
and in vivo
assembly for
genome-scale
constructs

S. cerevisiae Applications requiring assembly of multi kB-
MBconstructs in yeast

[19, 74]
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Role Molecular tool Host cell(s) Generalizability References

Genetic
assembly

Construction of
synthetic
chromosome arms
and replacement
of endogenous
arms

S. cerevisiae Applications in yeast in which the
incorporation of large/many synthetic
fragments and/or deletion of many native
elements for stability is desired

[20]

Genetic
assembly

Recombination of
linear fragments

E. coli Applications in bacteria [21]

Genome scale
diversity
generation

Multiplex
automated genome
engineering

E. coli Applications in bacteria where genome-scale
diversity generation is useful for optimization
and a suitable screening method is available to
evaluate the resulting large library

[36]

Genome scale
diversity
generation

Conjugation
assembly genome
engineering

E. coli Applications in bacteria where the
combination of defined genomic fragments
from multiple lineages into a single genome is
desired

[37]

Genome scale
diversity
generation

Continuous
recombination

E. coli Applications in bacteria where continuous
recombination is useful for optimization (e.g.
by combining multiple lineages) and a suitable
screening method is available to evaluate the
large library generated

[75]

Genome scale
diversity
generation

Homologous
recombination of
synthetic
oligonucleotide
libraries

S. cerevisiae Applications in yeast [40]

Genome scale
diversity
generation

Inducible doublestranded
break and
sexual
reproduction

S. cerevisiae Applications in yeast where desired changes
can be obtained in a manageable number of
manual rounds

[41]

Diversity
screening

Yeast 3-hybrid
chemical
complementation
to screen for bond-
forming enzymes

S. cerevisiae Applications in yeast where enzyme tolerates
surface display and two substrates between
which a covalent bond is formed are amenable
to chemical conjugation

[42]

Diversity
screening

Small moleculeresponsive
synthetic RNA
switch

S. cerevisiae Applications where RNA that binds the
molecule is available or can be selected and
incorporated into a self-cleaving genetic
device

[43]

Genome scale
diversity
generation
and screening

Phage-assisted
continuous
evolution

E. coli Applications in bacteria where the activity of
the enzyme to be evolved can be linked to
gene expression

[44]

Whole cell
gene
expression
measurement

DNA microarray
measurement of
global
transcriptional
response to
heterologous
protein expression

S. cerevisiae Applications in yeast where host metabolism
or stress response is limiting to strain
productivity

[48]

Model-guided
host
optimization

Target gene
knockouts and
promoter
substitutions based
on model
prediction

S. cerevisiae Applications in yeast where host metabolism
is limiting to strain productivity

[53]

Model-guided
host
optimization

Target gene
knockouts and
gene
overexpression
based on model
prediction

E. coli Applications in E. coli where host metabolism
is limiting to strain productivity

[54]

Curr Opin Biotechnol. Author manuscript; available in PMC 2014 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Galanie et al. Page 16

Role Molecular tool Host cell(s) Generalizability References

Dynamic
control of
gene
expression

Glucose
responsive
promoter

S. cerevisiae Applications in yeast where linking enzyme
expression to glucose levels improves
productivity

[64]

Dynamic
control of
gene
expression

Rewired quorum
sensing regulon

E. coli Applications in E. coli where cell-density
dependent expression of proteins is desired

[65]

Dynamic
control of
gene
expression

Fatty acid
responsive
transcriptional
regulator

E. coli Applications in bacteria where gene
expression tied to cellular free fatty acid pools
is desired and cross-talk between the
transcriptional regulator and native
transcriptional control is not limiting

[67]
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