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Abstract
A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the
three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The
conformation space is reduced in dimensionality by introduction of linear combinations of
hydrogen bond distances as the collective variables making use of a specially adapted Principal
Component Analysis (PCA); i.e., to make structured conformations more pronounced, only the
formed bonds are included in determining the principal components. It is shown that a three-
dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first
component, to which eight native hydrogen bonds make the major contribution (four in each beta
hairpin), is found to play the role of the reaction coordinate for the overall folding process, while
the second and third components distinguish the structured conformations. The representative
points of the trajectory in the 3D space are grouped into conformational clusters that correspond to
locally stable conformations of beta3s identified in earlier work. A simplified kinetic network
based on the three components is constructed and it is complemented by a hydrodynamic analysis.
The latter, making use of “passive tracers” in 3D space, indicates that the folding flow is much
more complex than suggested by the kinetic network. A 2D representation of streamlines shows
there are vortices which correspond to repeated local rearrangement, not only around minima of
the free energy surface, but also in flat regions between minima. The vortices revealed by the
hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path
sampling. Making use of the fact that the values of the collective hydrogen bond variables are
linearly related to the Cartesian coordinate space, the RMSD between clusters is determined.
Interestingly, the transition rates show an approximate exponential correlation with distance in the
hydrogen bond subspace. Comparison with the many published studies shows good agreement
with the present analysis for the parts that can be compared, supporting the robust character of our
understanding of this “hydrogen atom” of protein folding.
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1. INTRODUCTION
A complete description of how proteins fold into their native state is one of the primary
objectives of structural biology. In principle, computer programs for molecular dynamics
(MD) simulations, such as CHARMM1, AMBER2, and Desmond3, can provide details about
the folding process in the form of time-dependent positions and velocities of the atoms
constituting the protein chain as the protein progresses from the unfolded to the native state.
Because of the time scale of folding for even small fast folding proteins (μs to ms), such
folding simulations have only recently become possible using special computer hardware4.
However, even when statistically significant numbers of such trajectories become more
widely available, as they will, their utilization for understanding the essential features of the
folding process requires special techniques for their interpretation. One approach is to
determine the free energy surface (FES) of the folding reaction as a function of a small
number (often two) collective variables that include the essential features; examples of
coordinates that have been used are the radius of gyration, the fraction of native contacts and
a set of hydrogen bonds5–9. Another approach is to calculate the free energy disconnectivity
graphs (FEDG)10–14, which show the populations of various free energy basins at
equilibrium and the barriers by which these basins are connected. A related approach
constructs equilibrium kinetic networks (EKNs), in which the protein conformations along a
long MD trajectory with many folding/unfolding events are divided into clusters on the basis
of kinetic connectivity and/or root-mean-square-deviation (RMSD) of the
conformations15,16. The FEDG and EKN can be projected on a one-dimensional reaction
coordinate to give a one-dimensional free energy profile (FEP) for the folding process17.
Also, the conformation space can be reduced to a space of a few collective variables using
Principal Component Analysis18 and various non-linear reduction methods19–26, as in the
previous studied of protein folding23,27,28.

The antiparallel β-sheet miniprotein (beta3s, Fig. 1) is one of the few systems for which the
protein folding reaction has been simulated in sufficient detail, albeit with an implicit
solvent model, to make possible meaningful applications of the analysis methods mentioned
above29. An all-atom representation was employed and the CHARMM program1 was used
to calculate “equilibrium” folding and unfolding trajectories; the temperature for the
simulations (330K) was chosen so that the denatured and native state were significantly
populated at equilibrium. Ferrara and Caflisch29, and later Marai et al.30, have used the
fractions of the native contacts formed in the N-terminal (residues 1–13) and C-terminal
(residues 7–20) β-hairpins as the essential coordinates. Qi et al.31 performed an extensive
analysis based on the genetic neural network (GNN) method of So and Karplus32 to find
optimum collective variables to describe the folding reaction. They found that the hydrogen
bond distances between residues 3 and 10 and 5 and 8 in the N-terminal hairpin and those
between residues 11 and 18 and 13 and 16 in the C-terminal hairpin are most important; in
fact, the sum of these distances is a good simple reaction coordinate for the overall
description of the folding process. Carr and Wales have built the FEDGs and examined
specific pathways of folding33, while Rao and Caflisch34 have constructed the EKN for the
folding process. Most folding events followed two pathways: in one of them (most
frequent), the C-terminal β-hairpin is formed first followed by the N-terminal β-hairpin, and
in the other (less frequent), these hairpins are formed in reverse order. A more detailed
kinetic analysis35 showed that the conformations that have the N-terminal hairpin formed
and the C-terminal unstructured and those with the C-terminal hairpin formed and the N-
terminal unstructured, correspond to free energy basins which are separated from the native
state basin by the transition state ensembles. Further studies of beta3s folding have mainly
focused on the consideration of one-dimensional FEP by the projection of the EKN on a
single progress coordinate35–38). This coordinate was determined in various ways, using the
direct pfold method of Du et al.39 and its modifications, such as the node-pfold (Rao et al.40)
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and pfold(τcommit) (Snow et al.41 and Rao et al.40), pfoldf (Krivov and Karplus17), and the
mean-first-passage-time (MFPT) (Park et al.42). All these methods lead to similar results for
beta3s folding37,38. Also, recently Zheng et al.43 used the LSDMap method26 to reduce the
conformation space of beta3s to a few collective variables that describe the protein behavior
at different time scales. Comparisons with a number of these studies are made in the
manuscript.

All of the analyzes of beta3s mentioned above have been based on a set of equilibrium
folding/unfolding trajectories of up to 20 μs in length reported previously35. We use the
same (20 μs) trajectory data in the present study. The conformation space is characterized
with the hydrogen bond distances and reduced to a three-dimensional (3D) space of
collective variables with the PCA method. To make structured conformations more
pronounced, only the formed bonds are taken into consideration. The representative points
are grouped into clusters of conformations, and a spatial (3D) kinetic network is constructed,
which shows not only how the clusters are connected but also how they are disposed in the
3D conformation space. The collective variables corresponding to the first three PCA
components are projected onto the hydrogen bond space to determine the most
representative bonds.

The analysis of folding kinetics is complemented by a “hydrodynamic” description of the
folding process (Chekmarev et al.44). It is based on a reduced space determined with a
modified PCA method. In the hydrodynamic approach, the calculated folding trajectories are
used to determine the fluxes of the representative points of a system in the reduced space
from which the vector fields of folding flows and the “streamlines” of the flows are
constructed. In contrast to the FESs, which determine the probability for the system to be
found in a certain conformation state, such flows show the direction in which the system
proceeds in local regions of the conformation space. This leads to more insight into the
actual folding dynamics and provides an efficient separation of different folding pathways,
which makes it ideally suited for studying beta3s. The tracer paths representing the
“streamlines” of folding flows are calculated to examine the dynamics of beta3s folding. For
an earlier application of the hydrodynamic approach to a SH3 domain, see Kalgin et
al.45,46). Beta3s is an ideal system for applying the hydrodynamic analysis not only because
it has been extensively studied with different approaches as mentioned above. In addition,
the earlier studies have indicated that the beta3s folding dynamics is complex, in part due to
the fact that the denatured state consists notably of an “entropic” region, but also has a
helical basin and several misfolded traps.

The paper is organized as follows. Section 2 describes the methods we used to perform
molecular dynamics simulations (2.1), to characterize the conformation space and collective
variables (2.2), to construct one-dimensional FEP (2.3), to cluster conformations (2.4), to
analyze secondary structures (2.5) and to present the folding behavior in the form of “hydro-
dynamic” flows and the paths of passive tracers (2.6 and 2.7). Section 3 presents the results
of the study and their discussion, including clustering the representative points (3.1), spatial
kinetic network (3.2), the hydrodynamic picture of the folding dynamics and its comparison
with the FES (3.3), and the dependence of the rates of transitions between the clusters upon
the distances between the clusters (3.4). Section 4 contains a concluding discussion.

2. METHODS
2.1. Simulation System and Molecular Dynamics Simulations

The designed three-stranded antiparallel 20-residue peptide (called beta3s) (Thr1-Trp2-Ile3-
Gln4-Asn5-Gly6-Ser7-Thr8-Lys9-Trp10-Tyr11-Gln12-Asn13-Gly14-Ser15-Thr16-Lys17-
Ile18-Tyr19-Thr20 with charged termini47) was modelled with the CHARMM program1.
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All heavy atoms and the hydrogen atoms bound to nitrogen or oxygen atoms were
considered explicitly; PARAM19 force field48 and a default cutoff of 7.5 Å for the
nonbonding interactions were used. A meanfield approximation based on the solvent-
accessible surface (SAS) was employed to describe the main effects of the aqueous
solvent49. It has been shown29 that at T = 330K, irrespective of the initial conformation, this
model yields reversible folding of the solvated beta3s to the conformation determined by
NMR47 (23 of the 26 nuclear Overhauser effect constraints are satisfied). The neglect of
collisions with water molecules (frictional effects) in the simulations with the implicit
solvent model, leads to rates that are about 100 times faster than the experimental values.
However, importantly the relative rates of folding for different secondary structural elements
are comparable to the values observed experimentally; i.e., helices fold in about 1 ns50, β-
hairpins in about 10 ns50, and triple-stranded β-sheets in about 100 ns51 compared to
experimental values of ~ 0.152, ~ 152, and ~ 10 μs47, respectively.

The simulations were performed with the time step of 2 fs using the Berendsen thermostat
(coupling constant of 5 ps) at T = 330K. The number of folded and unfolded conformations
at this temperature has shown that for the present protein model it is slightly above the
melting temperature53. Ten MD trajectories with different initial distributions of atomic
velocities generated in a previous study of the Caflisch group35, each of 2 μs length, were
grouped into a single “equilibrium” trajectory. During the total time of 20 μs, the protein
experiences about one hundred folding/unfolding events34. The atomic coordinates
(“frames”) were saved every 20 ps, which resulted in 106 snapshots.

2.2. Conformation Space and Collective Variables
As mentioned in the Introduction, various variables can be used to characterize the
configuration of a protein. Based on the results of the analysis of possible variables by Qi et
al.31, we employed the hydrogen bond distances. For comparison, the interatomic distances
were tried but they were found to be less efficient in separating representative points of the
protein into clusters (see Supporting Information). Using hydrogen bond distances, the
configuration is determined by the distances between the oxygen atom in the (CO)i group
and the nitrogen atom in the (NH)j group for \j − i\ > 2, where i and j are the numbers of the
residues (see Fig. 1).

To simplify the description for further analysis, it is useful to introduce a small number of
collective variables. The reduced variable space should be sufficient to represent the full
configuration space, while being orthogonal. Although, in some cases, such variables can be
selected on physical grounds, as, for example, groups of native contacts for the final stage of
folding of the SH3 domain46, an unbiased choice is preferable. Many methods are available
for this purpose. They include the early quasiharmonic analysis54, the PCA18 (in application
to protein folding, e.g.,27,28) as well as a variety of methods in which the projection of a
nonlinear manifold onto a space of lower dimension is more or less effective in limiting the
overlap of the variables. Examples include the Isomap (IM)19, Landmark Isomap (LIM)20,
Local Linear Embedding (LLE)21, Hessian Locally Linear Embedding (HLLE)22, Full
Correlation Analysis (FCA)23, Manifold Sculpting (MS)24, Diffusion Map (DF)25 and the
Locally Scaled Diffusion Map (LSDMap)26 methods. In the present study, we tried a
number of these methods (PCA, LLE, FCA and MS) but found that each of them had certain
failings (Supporting Information). Consequently, we use a modification of the standard PCA
method, as described below, that was satisfactory for the beta3s peptide.

One disadvantage of the standard PCA method in its application to the present problem is
that it poorly resolves well-organized conformations among a large number of unstructured
conformations (Supporting Information, Figs. S1 and S2). This problem arises in beta3s at
temperatures close to and higher than the melting temperature, particularly in the case of
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equilibrium folding when the protein spends a comparably long time in the denatured state.
One way to solve this problem is to consider for the state vector a residue contact vector,
whose component for each pair of residues is augmented if, and only if, the bond between
these residues is formed. With this restriction, the relative weight of the unformed bonds,
and thus the unstructured conformations, decreases. This approach has been successfully
used to study folding of an amyloidogenic lattice protein (Palyanov et al.27) and off-lattice
models of protein G and src SH3 domain (Hori et al.28). The algorithm used in the present
paper is described in Supporting Information. Briefly, for each current vector of the
hydrogen bond distances h = (h1, h2, …, hD), where D is the number of possible hydrogen
bonds (dimension of conformation space), a conjugate vector of states p = (p1, p2, …, pd) is
introduced, in which component pi is equal to 1 if the corresponding hydrogen bond is
formed and 0 otherwise. Then, applying the standard PCA algorithm18, the conformation
space h is reduced to a K-space of collective variables g1, g2, ..., gk, which are directed
along the eigenvectors corresponding to the largest eigenvalues. As a result, the protein
conformation with hydrogen bond distances h1, h2, …, hD is determined by the values of the

collective variables , where wij indicates the contribution of the bond i into the
variable j, i.e. the original h = (h1, h2, …, hD) space is mapped onto the reduced g = (g1, g2,
…, gk) space of collective variables. Since the collective variables are linear combinations of
the original variables, they are measured in the same units as the latter, i.e. in angstroms. In
what follows we refer to this algorithm to as the Hydrogen Bond PCA (HB PCA) method.

The coefficients wij, determining the contributions of the hydrogen bonds to the collective
variables, are essential for the interpretation of the present analysis. If wij is small, it
indicates that j collective variable does not capture dynamics of formation of the i bond,
which must appear in another collective variable. If wij is large, not only the value of wij but
its sign is significant; it indicates whether bond i is forming or breaking as gj varies; i.e.
whether the length of the bond decreases or increases. It should be noted, however, that it is
not known a priori which sign of wij corresponds to the formation (or the breaking) of the
bond, because the PCA algorithm does not distinguish between the positive and negative
directions of an eigenvector (they both are equally acceptable). Consequently, this choice
has to be based on the general picture of the folding process.

In the present paper, we use a 3D space of collective variables, g = (g1, g2, …, g3) for the
analysis, although this space could easily be extended to higher dimension. The spectrum of
the largest twenty five eigenvalues is shown in Fig. 2 (the eigenvalues are normalized so that
their sum is equal to 1). The first three modes account for 30% of the data variation
(calculated as a sum of the corresponding eigenvalues18). Although larger percentages might
be desirable, the fact that a large number of small contributions are required to obtain
significantly higher percentages (e.g. 25 modes yield ~ 70%) suggests that their inclusion
would not change the analysis significantly. Also, we have done some analysis with only the
first two components because of their simpler graphical representation; they account for ~
25% of the data.

2.3. One-dimensional Free Energy Profile
To calculate the one-dimensional free energy profile (FEP), we followed the pfoldf method
of Krivov and Karplus17. The calculation is started by constructing the equilibrium kinetic
network (EKN). For this, the chosen reaction coordinate in the g space was divided into
bins, and the protein conformations occurring along the simulated folding trajectory were
distributed among these bins. These bins were considered to be the nodes of the EKN.
Having the EKN, the pfold value of node i (pi) was calculated as the solution of the equation
pi = Σ jpijpj with the boundary conditions pa = 1 and pb = 0, where pi is the probability for
the system to be in node i, pji is the probability of transition from node j to i, A is the node
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corresponding to the native state, and B to a “denatured” state. To determine the FEP, node
B was considered to represent every node not belonging to native basin. Each value pc
between 0 and 1 can then be used to cut the network into set A containing all nodes with
pfold> pc and set B containing the nodes with pfold < pc. For each cut, a point with the
abscissa Za/Z and the ordinate ΔG = – kBT ln Zab/Z is obtained, where G is the free energy,
kB the Boltzmann constant, Za the partition functions of node A, Z the total partition
function, and Zab the number of EKN transitions between the two sets. To obtain the FEP
along the original reaction coordinate, the progress variable Za/Z is then transformed to this
coordinate.

2.4. Clustering the Conformations
As a result of the reduction of the conformation space, the representative points are
distributed in a 3D space of the collective variables, g = (g1, g2, g3). To divide these points
into clusters, we used the MCLUST method by Fraley and Raftery55. In this method, the
collection of points is approximated by a set of multidimensional (in our case 3D) Gaussian
functions with generally different covariance matrices and different weights. Each function
represents a cluster of the points. To determine the optimal number of clusters and distribute
the points among them, a maximum-likelihood estimation is employed. To perform the
calculations, we used the MCLUST codes available at the website56.

2.5. Secondary Structure Analysis
As in the previous studies34,35,38, protein conformations were discriminated according to the
secondary structure strings (SSSs) encoded with the DSSP alphabet57, i.e. the letters H, G, I,
E, B, T, S, and “-” stand for α-helix, 310-helix, π-helix, extended, isolated β-bridge,
hydrogen bonded turn, bend, and unstructured segments, respectively. With this coding, the
native state (Fig. 1) is represented by the string “-EEEETTEEEEEETTEEEE-”34. The
program WORDOM58 was used to perform the analysis.

2.6. “Hydrodynamic” Description of the Folding Process
The hydrodynamic description of protein folding44 is based on the calculation of the
transitions in the space of the collective variables g. These transitions are organized into the
local transition probability fluxes j(g). In the case of three variables, g = (g1, g2, g3), the g1-
component of the flow at a point g is determined as

(1)

where tf is the total time length of the simulated events, n(g″,g′) is the total number of
transitions from state g′ to g″, and g ⊂ g* is a symbolic designation of the condition that the
transitions included in the sum have the straight line connecting points g′ to g″, which
crosses the plane g1 = const within the square of unit length (typically of 1 Å ) centered at
the point g. The first term on the right-hand side of the equation corresponds to the
transitions in the positive direction of g1, and the second term to those in the negative
direction (Fig. 3). The g2- and g3-components of j(g) are determined in a similar way, except
that one selects the transitions crossing the planes g2 = const and g3 = const, respectively.
With these fluxes, the flow is divergence free, i.e. for every cell in the 3D space the
incoming flow is equal to the outgoing flow. We note that small values of the fluxes can be
the result of a small number of transitions between two states or a larger number of
transitions in one direction that are compensated by the transitions in the opposite direction.
This occurs when detailed balance holds approximately as is expected in equilibrium folding
trajectories.
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2.7. Visualization of the Streamlines
Once the fluxes j(g) have been determined from the trajectories, it is possible to construct
the “streamlines” of the folding flows, i.e. the lines which are tangent to the local directions
of the j(g) vectors. In the case of two dimensions, they are easily obtained by calculation of
so called stream function59. Due to the continuity equation ∂jg1/∂g1 + ∂jg2/∂g2 = 0, the
fluxes can be determined as jg1= ∂Ψ/∂g2 and jg2= −∂Ψ/∂g1, where Ψ(g1, g2) is the stream
function. Then Ψ(g1, g2) can be calculated as

(2)

The stream function is constant at each streamline and changes from one streamline to
another, so that the difference between the stream functions for two streamlines determines
the fraction of the total flow in the “stream tube” between the streamlines. We have used this
approach to study folding of two model proteins, a lattice α-helical hairpin44 and an off-
lattice fyn SH3 domain45, and found that the folding flows do not follow the FES landscape.

Determining the stream function in a 3D space is not so simple. In this case, the continuity
equation leads to a 3D vector potential59, which does not offer a suitable means for flow
visualization (when the 3D flow is reduced to a 2D flow, only a single component of the
vector potential remains nonzero, which is perpendicular to the 2D plane and represents the
stream function). Therefore, the streamlines of a 3D flow are usually visualized by seeding
the flow with weightless point particles (“passive tracers”), which follow the streamlines of
the flow due to the absence of any inertia60. To calculate the paths of the passive tracers, the
equation

(3)

is numerically integrated starting from various points of the g space, where j(g) is the flux
vector determined by Eq. (1), and τ is a parameter (“time”). Since j(g) are known only at the
discrete points of the g space, corresponding to the snapshots, their values at intermediate
points were calculated by a (linear) interpolation between the neighboring points according
to the algorithm by Darmofal and Haimes61. To initiate tracer paths, we typically chose the
points at which the flux vectors had the largest values (see below).

3. RESULTS AND DISCUSSION
3.1. Three Dimensional Distribution and Clustering of the Representative Points

Figure 4 presents the distribution of the representative points in the 3D space of the
collective variables g = (g1, g2, g3) obtained with the HB PCA method (Sect. 2.2). Clusters
associated with different protein conformations are colored in Fig. 4 in accord with the color
pallete. Table I shows the clustering of the points with the MCLUST program55,56; see
Methods 2.4. The points are taken from the 20 μs equilibrium trajectory at T = 330K at 20
ps interval; thus, the total number of points is 106. In Table I, the first column is the cluster
number, and the 2nd column shows the relative number of points in the cluster (in
percentage of the total number of 106 points). Also, Table I contains information about the
protein secondary structures characteristic of each cluster. The 3th column presents the
number of conformations that have different SSSs; the 4th column shows the SSSs of two
most populated secondary structures, and the 5th column the weight of these structures in
the cluster. Finally, the last column indicates the type of the representative protein
conformation with which the cluster is associated according to the SSSs. The representative
conformations are labeled as in the previous studies of folding of beta3s miniprotein34–36,38;
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i.e. “Native” stands for native-like structures, “Ns-or” for conformations in which the C-
terminal hairpin is formed and the N-terminal hairpin is unstructured (“out of register”),
“Cs-or” for conformations with the N-terminal hairpin formed and the C-terminal
unstructured, “Ch-curl” for curl-like structures in which the C-terminal hairpin is formed
and the N-terminal is arranged antiparallel to the C-terminal hairpin, and “Helical” for
conformations which contain a helical region. To associate a cluster with a certain protein
conformation (the last column of Table I), we took into account not only the SSSs for the
most populated secondary structures but also the relative weights of these structures Wrel=
Wstr/Nstr, where Wstr is the weight of the given structure in the cluster (in percentage), and
Nstr is the number of unique SSSs in the cluster (Table I). Specifically, it was assumed that
the given cluster represents a certain protein conformation if Wrel ≳ 0.01 for this
conformation. For example, cluster 13 has as its most populated SSSs one that is very
similar to those in clusters 1 and 2, which were associated with the native state. However, its
relative weight is one order of magnitude less than the weight in cluster 2 (≈2 × 10−3 versus
≈2× 10−2), so it is considered separately.

We note that the variables g1, g2 and g3 in Fig. 4, as well as in similar figures below, are
measured in angstrom units. The distance between two points in the g space is found to be
approximately linearly proportional to the all-atom RMSD between the protein
conformations corresponding to these points, and the coefficient of the proportionality is
approximately the same for all direction in the g space (Supporting Information, Fig. S7).
Figure 5 presents the average RMSD as a function of

, where the upper indices 1 and 2 denote two
different points in g space. To calculate this dependence, 103 conformations were chosen at
random. It is seen that at the distances larger than the hydrogen bond distances (g > 3.6 Å ),
beyond which the protein conformations do not overlap in the h space, the linear
proportionality holds well. According to the slope of the best fit line, one unit in the g space
corresponds to approximately 0.14 Å in the RMSD space. It follows that the spatial
distribution of the points in the g = (g1, g2, g3) space that represent essentially different
conformations, in particular, the distribution of the clusters, can be also viewed as a
distribution in the all-atom RMSD space, which complements the usual schematic networks
used in the past (see below).

According to Table I, the first eleven clusters represent the Native, Cs-or, Ns-or, Ch-curl and
Helical conformations, and the other six less structured conformations. The list of the
structured conformations is the same as in the previous studies29,30,34–36,38,43, but the
clustering results are somewhat different, e.g., instead of single clusters for the native-like
and Ns-or conformations35,38, two clusters for each of these conformations are observed.
The present clustering is generally consistent with the results of Zheng et al.43, where the
FESs were constructed as functions of two collective variables (for details, see Supporting
Information). One variable represented the first eigenfunction (the slowest collective
motion) and the other the second to forth eigenfunctions for different FESs (faster motions).
Similar to this work, we observe two clusters for the native-like conformations (clusters 1
and 2), a single cluster for the Cs-or conformations (cluster 3), two clusters for the Ns-or
conformations (5 and 6), and two clusters for the Ch-curl conformations (10 and 11). A
difference is that instead of a single cluster for helical conformations43, two clusters (8 and
9) are observed, which is in agreement with Krivov et al.38. In addition to these clusters, two
other clusters are observed. They are positioned between the Native cluster and the Cs-or
and Ns-or clusters (clusters 4 and 7, respectively, in Fig. 4) and contain mixtures of the
native-like and the corresponding Cs-or and Ns-or conformations (Table I).
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Table II compares the weights of the clusters for different conformations with those
previously calculated35,36,38. For this comparison, the intermediate Cs-or+Native and Ns-or
+Native state clusters were associated with the native state; i.e. the weight of the Native
cluster was calculated as a sum of the weights of clusters 1, 2, 4 and 7. It is seen that the
results are in good agreement. Concerning the weight of the Native state, it has to be noted
that secondary structure grouping resulted previously in a native basin38 with about 35% of
the snapshots (the first basin on the cFEP in Fig. 2) while clustering according to all-atom
RMSD with a 2.5 Å threshold in that work yielded a native basin with about 28% of the
snapshots (cFEP in Fig. S4).

We recall that the clusters listed in Table I, and so also in Table II, are associated with the
protein conformations that have the largest weights according to their SSSs, similar to what
was done previously35,36,38. Since these weights are not dominant (Table I), it cannot be
ruled out that the clusters contain considerable portions of less structured conformations or
conformations of different types. Some examples of unstructured conformations are shown
in Supporting Information.

It is of interest to determine which hydrogen bonds make the major contributions to the
collective variables g1, g2 and g3. Figure 6 shows the first eight bonds that have the largest
projections of the variable onto the hydrogen bond distance space; in each case, the total
contribution is about fifty percent (for the contribution of the other bonds, see Supporting
Information, Figs. S8 and S9). The bonds involved in g1 (the upper panel) are exactly the
bonds Qi et al. have found most appropriate to describe folding of beta3s31, and Zheng et al.
have indicated as the bonds that make the major contribution to the first “diffusion”
coordinate43. Moreover, the contributions of different bonds are approximately equal, as was
assumed31 and confirmed43 previously. A nonzero projection of g1 onto a bond indicates
that g1 changes as the length of the bond changes. Since these eight bonds are characteristic
of the native state (Fig. 1) and they contribute in the same direction of g1, the coordinate g1
determines the deviation from the native state and can serve as a reaction coordinate for an
overall description of the folding process. Moreover, the sum of the distances can also serve
as a reaction coordinate, as has been previously indicated by Qi et al.31.

The same above mentioned eight bonds are observed for the second variable g2 (the middle
panel of Fig. 6), except that bond 4–6 appears instead of bond 18–11. The former, however,
has a weight just 0.2% larger than that of the latter, so that the 18–11 bond can be included
equally well. The principal difference between g1 and g2 is that the bonds all contribute in
the same direction in the former, while the bonds contribute in different directions in the
latter. Specifically, the pairs of bonds 11–18 and 18–11 (which replaces 4–6 bond) and 13–
16 and 16–13 contribute in the negative direction, and the pairs of bonds 3–10 and 10–3 and
5–8 and 8–5 in the positive direction. According to Fig. 4, the negative direction of g2
corresponds to conformations in which the C-terminal hairpin is unstructured (Cs-or), which
is consistent with the negative contribution of bonds 11–18, 18–11, 13–16 and 16–13 (Fig.
1). Similar consistency is observed for the positive direction of g2, in which the N-terminal
hairpin unstructured conformations (Ns-or) reside (Fig. 4); here bonds 3–10, 10–3, 5–8 and
8–5 make the corresponding positive contribution. Hence, the second collective variable g2
discriminates between the conformations in which one hairpin is formed and the other is
unstructured. The third variable g3 (the bottom panel) has several bonds characteristic of the
deviation from the native state (8–5, 11–18, 18–11, and 13–16), the bonds that appear when
one strand shifts with respect to the other (10–4, 11–19, and 19–10), and one bond
characteristic of the Ch-curl conformations (18–2). In contrast to the other two variables, g3
does not have clear fingerprints of the Ch-curl and Helical conformations. This variable
accumulates information about other conformations (structured and unstructured) that is not
captured by the variables g1 and g2. The characteristic (occurring with a pronounced
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probability) bonds in the Ch-curl and Helical structures are as follows: In the Ch-curl 1
cluster (see Table I), the bonds with the probabilities not less than 0.5 (the number in the
parentheses) are 13–16 (0.79), 2–18 (0.78), 20–2 (0.73), 19–11 (0.68), 18–11 (0.64), 16–13
(0.62), 10–19 (0.55), and 11–19 (0.52), and in the Ch-curl 2 cluster they are 10–19 (0.77),
2–18 (0.72), 19–10 (0.70), and 20–2 (0.62). The number of different structures in the Helical
clusters are larger than in the Ch-curl clusters, therefore the probability of the most
frequently occurring bonds are smaller then in the latter: in the Helical 1 cluster the bonds
with the probabilities not less than 0.2 are 10–6 (0.31), 11–7 (0.28), 13–9 (0.28), 12–8
(0.25), and 14–10 (0.22), and in the Helical 2 cluster they are 11–7 (0.37), 12–8 (0.32), 13–9
(0.30), 10–6 (0.29), 14–10 (0.22), and 10–7 (0.20). These sets of the bonds are in very good
agreement with those previously found by Zheng et al.43 for the Ch-curl and Helical
structures.

3.2. Free Energy Profiles and Spatial Kinetic Network
To obtain further insight into the significance of the reduced coordinate space, Figure 7
compares three free energy profile (FEPs), based on the equilibrium simulation. To calculate
two of them, the pfoldf method suggested by Krivov and Karplus17 was used. One profile
(the blue curve) uses the sum of distances for the above eight bonds as the reaction
coordinate (i.e., that used by Qi et al.31), and the other (the red curve) the collective variable
g1; the reaction coordinate was divided into bins of width 0.01 Å and 0.005 Å respectively.
Since the reaction coordinates are not identical, we matched their left and right boundaries to
compare the FEPs. It is seen that the profiles are in good agreement, confirming that the sum
of the bond distances31 and the first principal coordinate determined with the HB PCA
method (Sect. 2.2) can both serve as reaction coordinates for the overall description of the
folding process. It should be noted that in both cases the helical conformations do not form a
basin on the FEP (Fig. 7), similar to what Qi et al.31 observed, while the RMSD clustering
reveals such a basin38. However, if the clustering is performed in the whole g = (g1, g2, g3)
space, i.e. taking the elementary cubes in the g space as the nodes to construct the EKN, the
basin for helical conformations appears (Supporting Information, Fig. S10). It was also
interesting to calculate the FEP by direct summation of the representative points of Fig. 4
over the variables g2 and g3 for the current value of g1 (the green curve), i.e. not using the
EKN. It is seen that even in this case the basins for the characteristic conformations are
placed correctly, although the overall profile is biased toward the native state; i.e., the free
energy difference between the native state and the other structures is larger than that shown
by the blue and red curves.

As has been shown in the previous works29,30,37,38,43, the Native, Cs-or, Ns-or, Ch-curl and
Helical clusters correspond to the enthalpically stabilized basins on the FES, and all other,
i.e., the unstructured conformations (see Table 1), form an “entropic” basin through which
the former basins are kinetically connected. The distribution of clusters inside the entropic
basin in Fig. 4 generally agrees with this picture of the kinetics. More detailed information is
obtained by calculating the number of transitions between the clusters. For this, at each
subsequent 20 ps step, we determined the cluster in which the representative point had the
maximum probability of being according to their Gaussian distributions (Sect. 2.4). If the
system was found in a cluster which was different from the cluster it had resided in, this
event was counted as the transition, and if in the same cluster, it increased the residence time
in the cluster. Figure 8 presents a spatial kinetic network, which is based on the distribution
of the representative points in the 3D space of collective variables of Fig. 4, the clustering of
the conformations of Table I, and the calculated transitions between the clusters. Balls and
tubes represent, respectively, the clusters and the transitions between them. Ball volumes are
proportional to the numbers of intra-cluster transitions (i.e. the residence times in the
clusters), and the tube cross-sections to the numbers of inter-cluster transitions. The latter
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are calculated as one-half of the total number of the forward and backward transitions
between the two clusters; they were found to be very similar, indicating that detailed balance
is essentially fulfilled (see Table S7 in Supporting Information).

Figure 8 shows that the clusters that have similar conformations (similar SSSs) are well
connected, i.e. clusters 1 and 2 for the native conformations, clusters 5 and 6 for the Ns-or
conformations, clusters 8 and 9 for the helical conformations, and clusters 10 and 11 for the
Ch-curl conformations. Also, it is seen that the “intermediate” clusters (4 and 7) are much
better connected to the Native cluster than to the corresponding Cs-or and Ns-or clusters,
which supports the association of these clusters with the native conformations. Another
feature of Fig. 8 is that the Native and intermediate clusters are considerably better
connected to the clusters corresponding to unstructured conformations than to the nearest
Cs-or and Ns-or clusters. This indicates that the folding pathways connect the native state
with the entropic basin mostly directly rather than through the Cs-or and Ns-or states, in
agreement with Krivov et al.38. We note that in contrast to commonly constructed 2D
kinetics networks, e.g., to Fig. 7 in the work of Krivov et al.38, the clusters of conformations
are not arbitrarily arranged in space but they are positioned according to their coordinates in
the g space. Moreover, because of approximate proportionality between the distances in the
g and the all-atom RMSD spaces (Fig. 5), the relative distribution of the clusters in Fig. 8
can be viewed approximately as the corresponding distribution in the RMSD space.

The results obtained here are consistent with those of Zheng et al.43, who employed the
LSDMap technique by Rohrdanz et al.26 and found that the first principal coordinate plays
the role of the reaction coordinate for the folding process and the others, which correspond
to smaller eigenvalues, discriminate between the clusters of representative conformations of
the protein (basins on the FES). The difference is that in contrast to the variables we use, the
variables used by Zheng et al.43 correspond to different time scales, so that the spatial
distributions are “time biased” (see Supporting Information).

3.3. Hydro dynamic Analysis
Figure 9 presents 3D passive tracers calculated with Eq. (3) in Section 2.7. They were
initiated at 900 representative points of Fig. 4 with the largest fluxes j(g) and continued for
some finite “time” τ. According to Eq. (3), the lengths of the tracer paths are proportional to
the values of j(g). Therefore, the tracer paths have different lengths; some of them, which
were initiated at the points with relatively small values of j(g) and/or cross the regions with
small values of j(g), are short, and the others, corresponding to large values of j(g), are long.
As can be seen from the definition of j(g) (Sect. 2.6), they present the average fluxes of
transitions, so that a small value of the flux can be due either to a small number of
transitions or to good detailed balance between neighboring states. Figure 9 makes evident
the fact that the dynamics of the folding process is more complex than the kinetic network
(Fig. 8) seems to imply; i.e., the streamlines of folding flow are not organized into bundles
connecting the clusters of characteristic conformations, as is suggested by the simple kinetic
network, but they span all intermediate regions between the clusters.

A clearer picture of the folding dynamics is obtained in the 2D representation, where the
flow of the system from the unfolded to the folded state can be mapped directly on the FES
constructed from the simulation44,45. The FES depends on the two variables g1 and g2 and is
given by F(g1, g2) = – kBTln[P(g1, g2)], where [P(g1, g2)] is the probability of the system to
be at the point (g1, g2). The latter was obtained by summing the points of Fig. 4 over the g3
variable. To determine the streamlines, we calculated the stream function using Eq. (2). The
2D folding fluxes jg1(g1, g2) and jg2(g1, g2) necessary for these calculations were obtained
by summing these components of the 3D fluxes j(g) over g3, similar to the way P(g1, g2)
was calculated. Panel a of Fig. 10 shows the results. The FES is relatively flat, but it has
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several well pronounced local minima (colored in blue-green), which correspond to the
clusters of conformations that are indicated in Table I and Figs. 4, 8 and 9. The folding flow
field is quite complex. A number of small regions restricted by closed streamlines are
present. As has been shown previously44,45, such regions correspond to vortices of folding
flows, which arise from repeated local rearrangements of the protein, e.g., due to its partial
folding and unfolding. Some vortices are formed at the local minima, which is consistent
with the FES landscape and signals that the protein spends some time in these minima.
However, many of them are formed in flat regions of the FES between the minima,
indicating that the folding flows do not generally follow the FES landscape, in agreement
with the previous results for an α-helical hairpin44 and the fyn SH3 domain45.

Panel b of Fig. 10 also shows the 2D tracer paths initiated at the same points as in Fig. 9.
They were calculated using Eq. (3) with the above mentioned 2D fluxes jg1(g1, g2) and
jg2(g1, g2). A comparison of the paths of the passive tracers in Fig. 10b with the streamlines
(Fig. 10a) shows that the vortex regions restricted by closed streamlines represent basins of
attraction of tracer paths, in which the tracer paths follow scroll-like trajectories to the end.
However, as has previously been shown for the fyn SH3 domain46, the closed streamlines do
not mean that the system is completely trapped in such regions; these regions are open in the
direction that extends the 2D space to a 3D space. The tracer paths initiated beside these
regions reveal 3D eddies that contain attractors at which the tracer paths behave as saddle
trajectories, i.e. they approach the attractor, execute several cycles, and then leave it46. One
example is shown in Fig. 11, which presents 3D tracer paths in a region spanning the Cs-or
basin and its vicinity; in panels a and b of Fig. 10 this region corresponds to the white closed
streamline at the Cs-or basin (labelled as 3) and the clockwise scroll-like tracer path,
respectively.

3.4. Relation of transitions rates to cluster distances
It is of interest to see if the rates of transitions between the clusters of representative
conformations indicated in Table I and Figs. 4, 8 and 9 correlate with the distances between
the clusters. We use as the distance measure that in g space; i.e., the distance between the
clusters was determined as the distance between their centers in the g space (dg). The rate of
transitions from cluster i to cluster j was calculated as rji= Nji/ttot/Ni, where Nji is the number
of the transitions from cluster i to j (which was taken as one-half of the total number of the
forward and backward transitions between these clusters since detailed balance is satisfied),
ttot is the total simulation time equal to 20 μs, and Ni is the number of conformations in
cluster i among the 106 conformations stored (see Table I). Figure 12 shows the results. We
see that there is a clear distance dependence. It is essentially exponential, although
considerable scatter is present. This dependence is in accord with the fact that the distance in
g space is correlated with the change in hydrogen bonding required to go from one cluster to
another (Sect. 3.1). However, there is no direct correlation between the rate of transitions
from cluster i to j and the change of the number of hydrogen bonds in cluster i with respect
to cluster j (results not shown). This is probably due to the fact that the collective variables
g1, g2 and g3 obtained with the HB PCA algorithm (Sect. 3.1) involve hydrogen bonds
which have different importance to the folding process. In Supporting Information we also
show the corresponding results for the atomic coordinate space, determined as the RMSD
between the atomic conformations which had the values of the collective variables g1, g2
and g3 nearest to the centers of the clusters in g space (Fig. S11). The correlation is much
poorer here, which is somewhat surprising in view of Fig. 5, according to which the RMSD
distance is approximately linear proportional to the distance in the g space. The correlation
is, however, reestablished on a coarse-grain scale, when the rates of transitions and the
corresponding RMSD distances are averaged over the bins in the g space (as large as of 5 Å
in size), see Supporting Information (Fig. S12). These results suggest that the clustering of
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the conformations on the basis of hydrogen bonds plays a key role for the correlation
between the rates of transitions and the distances, and the distance in the g space is most
appropriate to represent this correlation.

4. CONCLUDING DISCUSSION
We have analyzed the kinetics and dynamics of folding of a three-stranded antiparallel β-
sheet miniprotein (beta3s) at T = 330K, which is slightly above the melting temperature.
Simulations were performed using the CHARMM program1 with the implicit solvent
approach. Using the Berendsen thermostat to simulate constant temperature conditions, a
long 20μs MD trajectory has been studied. To characterize protein conformations, we
employed the hydrogen bond distances between (CO)i and (NH)j backbone groups, where i
and j are the numbers of the residues, and \j — i\ > 2. The hydrogen bonds involving the C-
and N-terminal residues were discarded to avoid noise due to fluctuations of the termini. To
facilitate the analysis, this multidimensional bond space was reduced to a 3D space of the
most representative collective variables. The standard PCA method and some recent
nonlinear methods, such as the Local Linear Embedding (LLE)21, Full Correlation Analysis
(FCA)23, and the Manifold Sculpting (MS)24 methods have been found not as satisfactory
for obtaining a manifold of the representative points that could be successfully grouped into
clusters. Motivated by the suggestion that this is due to the fact that the structured
conformations have too low a weight in comparison with the unstructured ones (which is
typical for the equilibrium folding above the melting temperature), we used a bond PCA
method27,28, i.e. just the formed hydrogen bonds were taken to contribute to the state vector;
we refer to this approach as the Hydrogen Bond PCA (HB PCA) method. Three principal
components corresponding to the largest eigenvalues were used as the collective variables to
represent the conformation space of the protein g = (g1, g2, g3).

The resulting spatial distribution of the representative points in the 3D space was then
clustered using the MCLUST method of Fraley and Raftery55. With this method the
representative points are divided into 17 clusters. Structural analysis of the protein
conformations in the clusters, based on the secondary-structure strings (SSSs)57, similar to
those used in previous studies34,35,38, showed that eleven clusters can be associated with
well structured protein conformations and the other six with mostly unstructured
conformations. Based on the similarity of the SSSs, the clusters for the structured
conformations were grouped into five “consolidated” clusters, which represent locally stable
characteristic conformations that were described previously34,35,38, and two intermediate
clusters. The former represent the native-like conformations, the Cs-or conformations in
which the N-terminal hairpin is formed and the C-terminal unstructured, the Ns-or
conformations with the C-terminal hairpin formed and the N-terminal unstructured, the Ch-
curl conformations presenting curl-like structures with the C-terminal hairpin formed, and
the helical conformations that contain a helical region. The latter two intermediate clusters
contain mixtures of the Ns-or or Cs-or conformations with the native-like conformations and
are positioned between the Native cluster and the Ns-or or Cs-or clusters, respectively. With
these intermediate clusters joined to the Native cluster, the residence probabilities of the
system in the Native, Ns-or and Cs-or, Ch-curl and Helical clusters are in good agreement
with the results of the previous studies36,38. The clusters which present unstructured
conformations form a pool of conformations (an “entropic” basin38) that connects the
clusters for the structured conformations. We note that recent beta3s simulations with a free-
energy guided sampling protocol indicate that the first basin on the cFEP of beta3s has a
statistical weight of only 20% using residues 3–18 for RMSD clustering with 2.5 Å
threshold (Figure 5 of Zhou and Caflisch62) which is congruent with the 21% weight of
cluster 1 alone. The origin of these differences and their relation to convergence of the
simulations is under investigation.
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By counting the numbers of transitions between the clusters, the 3D distribution of the
representative points can be presented in the form of a spatial kinetic network. In contrast to
the previously constructed equilibrium kinetic networks34–36,38, it shows not only how the
clusters of conformations are connected but also how they are disposed in a 3D (g or
RMSD) conformation space. Two interesting observations emerge from the additional 3D-
spatial information. First, the helical and Ch-curl clusters are both kinetically and
geometrically the most distant from the Native cluster. Second, the spatial kinetic network
reveals that the Native and intermediate clusters are considerably better connected to the
clusters of unstructured conformations than to the nearest Cs-or and Ns-or clusters. This
indicates that the folding pathways tend to connect the native-like states directly with the
entropic basin rather than through the Cs-or and Ns-or states. A possible explanation of the
large kinetic distance of the Ns-or (Cs-or) state from the Native cluster is that the N-terminal
strand (C-terminal strand) is out of register by one residue in Ns-or (Cs-or). Thus, all side
chains of the out of register, misfolded strand point in the wrong orientation with respect to
the rest of the three-stranded β-sheet which requires almost complete unfolding of the N-
terminal (C-terminal) hairpin for reaching the Native cluster despite the relatively small
backbone deviation between Ns-or (Cs-or) and the Native structure.

Projecting the collective variables g1, g2 and g3 onto the hydrogen bond space has allowed
further insight into the folding process. The largest eight projections of g1 and g2, with the
total contribution to each variable of about fifty percent, correspond to the bonds that Qi et
al.31 have found most appropriate for describing the folding of beta3s, and Zheng et al.43

have indicated to be the bonds that make the major contribution to the reaction coordinate.
Because these bonds determine the native contacts in the N- and C-terminal hairpins, the
larger the projections of g1 and g2 onto the bonds, the more distant the conformation from
the native state. For g1, which is the first principal component, the projections have the same
signs, so that it measures the distance from the native state. Consequently, the first principal
component can serve as a good reaction coordinate for the overall description of the folding
process, similar to the sum of the distances of the bonds31. Constructing the free energy
profiles17 along g1 and the sum of the bond distances has shown that these profiles are very
similar. In contrast to g1, the projections of the second component, g2, onto the bond space
have different signs. This variable discriminates between Ns-or and Cs- or conformations,
which are positioned along g2 approximately symmetrically with respect to the native state.
The third component, g3, “accumulates’ information about all other conformations
(structured and unstructured) that is not captured by the variables g1 and g2.

The analysis of the folding kinetics has been amplified by use of the “hydrodynamic”
description44–46, which demonstrates that the folding dynamics are much more complex
than the kinetic network suggests. Most indicative is a comparison of the folding streamlines
with the FES in the g1, g2 space. A number of small regions restricted by closed streamlines
occur. They correspond to vortices of folding flows. As has been previously shown, such
vortices are the result of repeated partial folding and unfolding of the protein44,45. Some
vortices are located at the FES minima corresponding to clusters of conformations, which
indicates that the protein spends some time in these minima in accord with the conventional
view of the FES landscape. However, many vortices occur in relatively flat regions of the
FES outside the minima, which indicates that the folding flows do not generally follow the
FES landscape. This is in agreement with what we previously observed for an α-helical
hairpin44 and fyn SH3 domain45.

An approach recently proposed by Zheng et al.63 in their study of folding of a Trp-Cage
mini-protein, is of interest to compare with the “hydrodynamic” description of the folding
process44. Based on a set of protein conformations obtained with replica exchange
molecular dynamics and some estimates for the reaction rates between the clusters of
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conformations in a reduced configuration space, they generated folding pathways using
transition-path theory64,65. Depending on their distance in the configuration space, the
folding pathways were grouped into folding “tubes”, somewhat similar to stream tubes
(Sect. 2.7). However, in contrast to the latter, the folding tubes were found to follow the
FES. The essential difference between the hydrodynamic44,45 and Zheng et al.63 approaches
is that in the former, the local fluxes of transitions are not necessarily directed to the folded
state of the protein, while in the latter the pathways are based exclusively on the folding
fluxes that advance pfold (the committor probability) values (see also Noé et al.65). Because
of this, for example, the pathways thus calculated ignore possible vortex regions on the FES,
in which the protein repeatedly partially folds and unfolds.

One essential feature of the collective variables g1, g2 and g3 determined with the HB PCA
algorithm is that the transition rates approximately correlate with the distances between the
clusters of characteristic conformations: the larger the distance, the smaller the rate.
Moreover, the rates decrease with distances exponentially, suggesting that it is the FES
barriers that increase with distance. This provides a new relation between the 3D spatial
distribution of the clusters and their folding kinetics.

In summary, by introducing combinations of hydrogen bonds to define a three-dimensional
space, the “g” space, to describe the folding kinetics and dynamics of miniprotein beta3s, we
have been able to characterize some previously unknown aspects of the folding of this well-
studied system. Specifically, we have been able (i) to find an inverse correlation between the
rate of transitions between pairs of clusters and their distance in the g space, (ii) to determine
the cluster distribution and kinetic network in the g space, and (iii) to show an
approximately linear relation between RMSD and the distance in the g space. Equally
important, the hydrodynamic analysis has demonstrated that the folding is much more
complex than it appears in the usual kinetic network description and that flow vortices occur
that do not follow the low free energy regions.

5. ASSOCIATED CONTENT
5.1. Supporting Information Available

The Supporting Information includes the technique of determining the collective variables,
the results of clustering of the representative points using the PCA, LLE, FCA and MS
methods, the comparison of the weights of the clusters obtained with these methods,
examples of unstructured conformations of beta3s, the dependence of the all-atom RMSD on
the distance in the g space, the projection of the g1, g2 and g3 variables onto the hydrogen
bond distance space, the FEP with clustering in g space, the numbers of transitions between
the clusters, a comparative discussion of the Zheng et al.43 approach, the dependences of the
rates of transitions between the clusters of conformations on the distances in the atomic
coordinate space, and the corresponding coarse-grained dependences for the atomic
coordinate and g spaces. This information is available free of charge via the Internet at
http://pubs.acs.org/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
Native structure of beta3s. The lower part of the protein corresponds to the N-terminal
hairpin, and the upper part to the C-terminal hairpin. The dashed lines indicate hydrogen
bonds.
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FIG. 2.
Spectrum of the largest eigenvalues.
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FIG. 3.
Scheme illustrating Eq. (1). The red and blue arrows are for the transitions in the positive
and negative directions of g1. The light blue square is the unit square.
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FIG. 4.
Stereo view of the distribution of the representative points of beta3s in the 3D space of
collective variables g = (g1, g2, g3). Clusters are numbered according to Table I. The units of
the g1, g2 and g3 variables are in Angstroems.
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FIG. 5.
The all-atom RMSD as a function of the distance in the g space. The solid line show the best
fit to the data with the slope ≈ 0.14.
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FIG. 6.
Fractions of the hydrogen bonds which make a major contribution to the collective variables
g1, g2 and g3. The figures at the top of each bar denote the bond; the first figure is the
number of the residue with the oxygen atom and the second figure is that with the nitrogen
atom. The empty and solid bars are for the bond contributions to the negative and positive
directions of the collective variable, respectively. The numbers in percentage at the top of
each panel are the total contribution of the given bonds to the collective variable.
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FIG. 7.
One-dimensional free energy profile. Blue and red curves show the profiles calculated with
the pfold method by Krivov and Karplus17: the blue curve is for the reaction coordinate
calculated as the sum of distances for eight hydrogen bonds of the upper panel of Fig. 6
(similar to Qi et al.31), and the red curve is for g1 as the reaction coordinate. Green curve is
the profile obtained by the summation of the representative points over g2 and g3 collective
variables.
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FIG. 8.
Stereo view of the spatial kinetic network. Clusters are numbered as in Table I and colored
according to the pallete of Fig. 4. The units of the g1, g2 and g3 variables are in Angstroems.
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FIG. 9.
Stereo view of passive tracer paths. The balls represent the Native, Cs-or, Ns-or, Ch-curl and
Helical clusters shown in Fig. 8. The radii of the balls are increased for illustrative purpose.
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FIG. 10.
Two dimensional (g1, g2) presentation: (a) free energy surface (in kcal/mol). The blue local
minima on the surface correspond to the clusters indicated in Table I and Figs. 4, 8 and 9.
The white, gray and black lines correspond to the stream function values Ψ = −0.01, Ψ = 0
and Ψ = 0.01, respectively. Closed white and black streamlines correspond to the vortex
regions, in which the rotation of folding flows is, respectively, clockwise and anti-
clockwise. (b) The paths of passive tracers.
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FIG. 11.
The 3D tracer paths for a region at the Cs-or basin (see text for details). The blue and red
dots denote the initial and terminal points of the tracers in this region.
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FIG. 12.
Rates of transitions between the clusters of conformations vs the distances between the
centers of the clusters in the g space. Crosses and circles are for the transitions from smaller
and larger populated clusters, respectively. The dashed line corresponds to the best fit for the
crosses [r ∼ exp(−0.55dg)], and the solid line to that for the circles [r ∼ exp(−0.58dg)].
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