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Abstract
Tuberculosis is a worldwide health problem with 2 billion people infected with Mycobacterium
tuberculosis (Mtb, the bacteria causing TB). The hallmark of infection is the emergence of
organized structures of immune cells forming primarily in the lung in response to infection.
Granulomas physically contain and immunologically restrain bacteria that cannot be cleared. We
have developed several models that spatially characterize the dynamics of the host–mycobacterial
interaction, and identified mechanisms that control granuloma formation and development. In
particular, we published several agent-based models (ABMs) of granuloma formation in TB that
include many subtypes of T cell populations, macrophages as well as key cytokine and chemokine
effector molecules. These ABM studies emphasize the important role of T-cell related
mechanisms in infection progression, such as magnitude and timing of T cell recruitment, and
macrophage activation. In these models, the priming and recruitment of T cells from the lung
draining lymph node (LN) was captured phenomenologically. In addition to these ABM studies,
we have also developed several multi-organ models using ODEs to examine trafficking of cells
between, for example, the lung and LN. While we can predict temporal dynamic behaviors, those
models are not coupled to the spatial aspects of granuloma. To this end, we have developed a
multi-organ model that is hybrid: an ABM for the lung compartment and a non-linear system of
ODE representing the lymph node compartment. This hybrid multi-organ approach to study TB
granuloma formation in the lung and immune priming in the LN allows us to dissect protective
mechanisms that cannot be achieved using the single compartment or multi-compartment ODE
system. The main finding of this work is that trafficking of important cells known as antigen
presenting cells from the lung to the lymph node is a key control mechanism for protective
immunity: the entire spectrum of infection outcomes can be regulated by key immune cell
migration rates. Our hybrid multiorgan implementation suggests that effector CD4+ T cells can
rescue the system from a persistent infection and lead to clearance once a granuloma is fully
formed. This could be effective as an immunotherapy strategy for latently infected individuals.
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1. Introduction
1.1. Epidemiology of TB

Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium tuberculosis
(Mtb) in humans (Kumar and Robbins, 2007): inhalation of a single droplet containing just a
few bacteria (as few as 2–5) can lead to infection (Behr et al., 1999; Nicas et al., 2005). This
is remarkable, especially when considering that most infectious diseases require an initial
dose of more than 1000 bacteria, and some as high as 109 bacteria (Zak and Sande, 1999). If
the immune response does not clear initial infection (clearance scenario), Mtb is able to
persist in a (clinically) asymptomatic latent state in the majority of infected hosts (called
latent TB infection or LTBI). There is, however, a small chance that an infected individual
will initially progress to active TB (Kumar and Robbins, 2007; Selwyn et al., 1989)
(characterized as uncontrolled bacterial growth and/or disseminating infection), which, if
untreated, can result in death rates of more than 50% of infected hosts (Onyebujoh et al.,
2006). Approximately 2 million deaths due to TB occurred in 2008, including 500,000
people with HIV-1/AIDS (2009). Moreover, each person with active TB can infect on
average 10–15 people every year (2009). Clinical epidemiological data have revealed that
the risk of progression to active disease (3–10%) of infected individuals, defined as a PPD
(purified protein derivative) skin test conversion, is much higher for the first few years
waning over time (Vynnycky and Fine, 2000). Of particular importance is that factors
resulting in these different infection outcomes in humans are not well-characterized. Of
great concern is that TB persists as a latent infection in one-third of the world population (~2
billion people), providing a reservoir of potential disease and contagion: individuals with
latent infection have a 10% lifetime chance of reactivation, a number that increases in the
presence of HIV-1/AIDS.

Treatment of both latent and active TB is difficult and requires long courses of multiple
antibiotics. Antibiotic resistance is a growing problem, leading to untreatable cases such as
(extensively) multi-drug-resistant tuberculosis (XDR-TB), which occurs when resistance to
second-line drugs develops on top of multi-drug-resistant tuberculosis (MDR-TB).

1.2. Host immunity to TB
TB manifests in different forms, but the most common in adults is pulmonary TB. This work
focuses on TB infection in the lung, while in other work we consider TB meningitis (in
preparation). Upon introduction into lung alveoli environment, Mtb is taken up by antigen
presenting cells (APCs) such as macrophages (Mϕs) and dendritic cells (DCs). TB bacteria
have evolved strategies to evade many of the typical protective host immune mechanisms,
especially in macrophages (such as neutralizing reactive nitrogen intermediates or
preventing phagosome/lysosome fusion) (Rohde et al., 2007). DCs are less permissive for
Mtb replication and change their phenotype upon internalization of the pathogen (Giacomini
et al., 2001): they start expressing co-stimulatory and adhesion molecules, and migrate
through the lymphatics to lung draining lymph nodes. Dissemination of bacteria to the
draining lymph node occurs following aerosol infection and the lymph node itself is the first
site of expression of effector function for T cells (Chackerian et al., 2002). In some cases,
further spread occurs through the bloodstream to other tissues and organs where secondary
TB lesions can develop (kidneys, brain, and bone (Herrmann and Lagrange, 2005; Kumar
and Robbins, 2007)).

Priming (and activation) of specific immune cell types (lymphocytes like CD4+ and CD8+
T cells) in the lymph node is key to the generation of protective adaptive immunity and host
resistance to Mtb infection (Mogues et al., 2001; Orme, 1987). Priming is performed by
APCs in the T cell zone of a lymph node. The slow or delayed induction of expression of
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effector functions of these primed T cells seen in Mtb infection has been shown to be
detrimental to the ultimate success of the response (Chackerian et al., 2002). This could be
due to mechanisms occurring between Mtb and the host; factors such as inhibiting either cell
migratory activity, modulating antigen presenting cell (APC) function (Chang et al., 2005)
and danger signals (Matzinger, 2002), or by its extremely slow proliferation rate compared
with other bacteria (Mtb divides every 16–24 h) (Cox, 2004).

Although most exposed individuals do not become infected, exposure to Mtb results in the
development of a strong Th1 host response (Flynn and Chan, 2001). This is characterized by
a host cellular immune response in the lung, recognizing mycobacterial antigens that leads
to the production of type I cytokines and activating infected macrophages that kill or at least
contain the bacterial infection (Cooper et al., 1993; Flynn and Chan, 2001; Flynn et al.,
1993).

Tuberculosis is classified as one of the granulomatous inflammatory conditions. In fact, the
hallmark of Mtb infection is the emergence of self-organizing structures of immune cells
forming primarily in the lung in response to bacterial invasion. The purpose of the
granuloma is to physically contain and immunologically restrain bacteria that cannot be
cleared. Infection triggers inflammation in the pulmonary alveoli environment where
cytokine and chemokine signals (Flynn and Chan, 2001) are released activating cells and
recruiting more immune cells to aid in granuloma formation. Macrophages, T and B cells
and fibroblasts are among the cells that cluster together, with T cells surrounding a core of
infected macrophages. T cells secrete cytokines such as interferon gamma (IFN-γ), which
activates macrophages to kill their intracellular bacterial load (Kaufmann, 2002). Cytotoxic
T cells can also directly kill infected cells, by secreting perforin and granulysin (Houben et
al., 2006). Importantly, bacteria are not always eliminated within the granuloma, but can
become dormant, a metabolic state often associated with latent TB infection (Kumar and
Robbins, 2007). Another feature of the granuloma in humans is the development of areas of
cell death, called caseum or necrosis, in the center of granulomas (Grosset, 2003). Due to
anoxic conditions killing of trapped bacteria and bacteria replication are both inhibited in
these regions. There are various types of human TB granulomas, including caseous (cheese-
like) necrotic, non-necrotizing, fibrotic, calcified, and suppurative (neutrophilic necrosis).
The factors that lead to different types of granulomas are not known, but each type may have
different immune and microbial microenvironments (Barry et al., 2009). The most common
granuloma is the caseous granuloma, where necrotic cell debris in the center is surrounded
by a rim of large macrophages and a thin zone of T cells.

1.3. Mathematical and computer models to aid understanding of TB
To spatially characterize mechanisms that control the complex dynamics and emerging
behavior in the lung during TB granuloma formation and development and to describe the
interplay between bacteria and host, we published the first agent-based model (ABM) of
granuloma formation in TB in 2004 (Segovia-Juarez et al., 2004). Based on our parallel
studies with equation based models of TB dynamics (Fallahi-Sichani et al., 2010; Marino
and Kirschner, 2004; Marino et al., 2011, 2004, 2007b; Sud et al., 2006), we recently
developed next generation granuloma agent-based models (Fallahi-Sichani et al., 2011; Ray
et al., 2009) that include additional T cell populations (e.g., effector CD8+ T cells and
regulatory T cells), as well as key cytokine and chemokine effector molecules (e.g., tumor
necrosis factor-TNF and three different chemokines, see (Lin et al., 2010)). In the last study
(Fallahi-Sichani et al., 2011), the ABM has been updated to capture the immune response to
Mtb over three biological scales: molecular, cellular and tissue. This multi-scale
computational modeling platform revealed a critical role for TNF receptor dynamics in TB
granuloma formation. These ABM studies (Fallahi-Sichani et al., 2011; Ray et al., 2009;
Segovia-Juarez et al., 2004) emphasize the important role of T-cell related mechanisms in
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infection progression, such as magnitude and timing of T cell recruitment, T cell movement
and macrophage activation. However, the current ABM formulation lacks any mechanism to
capture T cell priming, differentiation and recruitment of immune cells to the lung as these
events occur in the lung draining lymph node. Thus, studying these processes in more
mechanistic detail is warranted to obtain a deeper understanding of their role in infection
dynamics.

In other work (Linderman et al., 2010; Marino and Kirschner, 2004; Marino et al., 2004), we
have developed a 2-compartmental ODE model capturing the dynamics of immune cells in
the lung and a single draining LN. This multi-organ model was able to identify trafficking as
an important factor for the outcome of infection in the lung: delays in either DC migration to
the draining lymph node or T cell trafficking to the site of infection can alter the outcome of
Mtb infection, defining progression to primary disease or latent infection and reactivated
tuberculosis. That model, however, considered the lung a well-stirred tank, with no spatial
aspects. Thus, although we know trafficking of cells between lung and LN is important
during TB, we cannot identify mechanisms that will lend more insight into these dynamics
that can then aid in predicting strategies for treatments and vaccines for TB.

The work in this paper combines our modeling efforts of TB in both the lung and lymph
node. Herein we have developed for the first time to our knowledge, a multi-organ model
that is hybrid: an ABM for the lung compartment and a non-linear system of ODE
representing the lymph node compartment. The computational aspects of linking the two
compartments will be described, along with the details of how to perform sensitivity and
uncertainty analysis of a hybrid multi-organ model.

The main finding of this work is that APC trafficking to the lymph node is a key control
mechanism for protective immunity: the entire spectrum of infection outcomes can be
achieved by regulating APC migration only. More APCs enhance a protective T cell
response in the lung, where both CD4+ and CD8+ effector functions can successfully stop
bacterial invasion and clear infection before a granuloma is fully established. Our spatial
multi-organ implementation suggests that only effector CD4+ T cells can rescue the system
once a granuloma is fully formed: the peculiar granuloma structure walls off CTL killing
(extracellular bacteria are in the center of the granuloma and they are very difficult to reach
by CTL cells) and only macrophage activation (dependent on effector CD4+ T cells) can be
effective as an immunotherapy strategy for latently infected individuals. This hybrid multi-
organ approach to study TB granuloma formation in the lung and immune priming in the LN
allows us to dissect protective mechanisms that cannot be achieved using the single
compartment or multi-compartment ODE only system.

2. Methods
2.1. Multi-organ model implementation

We review some general specifications of the computational modeling platform used herein.
The readers can find all the details in the published manuscripts for the individual model
systems (Fallahi-Sichani et al., 2011; Ray et al., 2009), as well as in the diagrams shown in
Supplementary Material. We develop our hybrid model in a computational framework. First,
we describe the ABM of the lung granuloma, and then the ODE system for the LN. Then we
describe how we link them together. Finally, we refine our methodology for performing
uncertainty and sensitivity analysis and apply it here.

2.2. ABM of granuloma formation-lung compartment
The ABM of the lung granuloma is defined by four concepts: environment, agents within the
environment, rules for agent-agent and agent-environment interactions, and timescales of
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these interactions. The virtual granuloma environment captures a 2 mm × 2 mm section of
lung tissue (i.e., parenchyma, where the granuloma typically forms) as a 100 × 100 two-
dimensional (2D) grid with micro-compartments scaled approximately to the size of a
macrophage (20 mm in diameter (Krombach et al., 1997)). Use of the 2D grid speeds
computation considerably and other work has shown that the 2D model approximated well
the 3D model results (Forrest et al., 2006). In addition, the 2D model serves the purpose here
well in creating the hybrid system. A quick summary of the rules follows.

Cells are represented as discrete agents on the grid: they move and respond to their
environment based on rules reflecting known biological activities. Effector molecules such
as chemokines (e.g., CCL2, CCL5, and CXCL9) and the cytokine TNF are modeled by
partial differential equations. Since Mtb is a non-motile bacterium, we assume that bacteria
do not diffuse and we capture their proliferation according to a logistic growth function
within a single micro-compartment with a discretized ordinary differential equation.

We defined each subtype of T cell based on their immunological functions: interferon-γ
(IFN-γ)-producing T cells (Tγ), cytotoxic T cells or CTL (TC) and regulatory T cells (Treg).
As the lungs are highly vascularized, 50 vascular sources are randomly placed on the grid
and serve as entries for resting macrophages and effector T cells, representing 0.5% of the
grid (personal communication by JoAnne Flynn). The initial number of macrophages
represents ~1% coverage of the grid (Condos et al., 1998; Law et al., 1996; Schwander et al.,
1998). Resting macrophages populate the grid in the absence of infection, then post-
infection, they can become infected, chronically infected and activated, depending on
intracellular and extracellular bacterial load, and cell–cell interaction with IFN-γ (via Tγ)
and/or TNF. Each cell type can die of age or apoptosis (TNF-dependent, Tγ-cells
dependent) or killing. Infected macrophages can be killed by CTLs and chronically infected
macrophages can burst. Each mechanism can affect the bacterial count. A flowchart of the
algorithm of the simulation is also shown in Fig. 1.

2.3. ODE priming model: lymph node compartment
We use the lymph-node compartment portion of our two-compartmental ODE model
(Marino et al., 2010b) to capture mechanisms of APC and T cell trafficking, as well T cell
priming and differentiation. For the purpose of this study, we simplify the LN-ODE model,
and do not directly account for bacterial and cytokine dynamics. The LN-ODE system
captures the dynamics of antigen-bearing APCs, such as DCs which bring bacterial antigen
to the LN to present to T cells, as well as several subpopulations of T cells (naı¨ve, precursor
and effector CD4+ and CD8+ T cells). A system of 13 equations total shown below is
numerically solved by an Euler discretization scheme for a 10 min time span (fixed time step
of 6 s).

During any infection, but in particular TB, it is the arrival of antigen presenting cells-APCs
(DCs, macrophages, etc.) at the draining tissue LN that kick starts the development of
adaptive immunity. To capture this in the model, we define the sum of infected (MI) and
chronically infected macrophages (MCI) in the granuloma lung compartment at time t as a
proxy for the number of APCs migrating from the site of infection to the lymph node at any
iteration (10 min loop). After an APC successfully finds and phagocytoses mycobacteria, it
migrates out of the lung compartment through lymphatics (ultimately reaching the closest
draining lymph node). Because an APC encounters several possible delays during this
migration, we have defined a parameter that scales this representation (scalingAPC): it is set
to 1 for the containment scenario (no scaling) but we also can vary it to simulate vaccination
and immunotherapy strategies (see Section 3.7). The equation for APC dynamics is a simple
linear decay kinetics (with half-life given by the parameter µAPC):
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(1)

with initial condition at time t (i.e., APC(t)) seeded by scalingAPC[-MI(t)+MCI(t)] from the
lung compartment. Naïve CD4+ T cells are described in Eq. (2) with a constant source term
(sN4), recruitment by an APC-dependent recruitment term (k13 term), natural death, and
differentiation to precursor Th1 that depends on APCs (k14 term). Eq. (3) models precursor
Th1 cell dynamics. It accounts for the differentiation of naïve CD4+ T cells, proliferation of
Th1 cells (logistic growth with rate constant k15), differentiation, and migration into the
blood (ξ1 term). Eq. (4) describes Th1 cell dynamics, incorporating differentiation via APCs
(k20a term) and migration to the blood (ξ1a term). Eq. (5) models naïve CD8+ T cell
dynamics, and is similar to the naïve CD4+ cell Eq. (2). There is a source term (sN8), and
mechanisms for recruitment by APCs (k16 term), natural death, and differentiation to T80
cells (k17 term). The k17 term captures the role of licensed DCs in priming CD8+ T cells.
Licensing is achieved by initial successful CD4+ T cell priming: that is why CD8+ T cell
priming is only possible if either precursor or fully effector Th1 cells are present. Eq. (6)
describes primed CD8+ T cell dynamics, with mechanisms for CD8+ T cell proliferation
(k18 term), differentiation and migration into the blood (ξ2 term), similarly to Eq. (3). Eqs.
(7) and Eqs. (8) describe IFN-γ-producing T8 cell and CTL dynamics in the lymph node.
Both equations capture differentiation induced by ACPs (k24a term) and migration to the
blood (ξ2a and ξ2b terms). Parameter m allows for an overlap between IFN-γ-producing
CD8+ T cell and CTLs. Eqs. (9)–Eqs. (13) represent the fluxes of precursor and effector
CD4+ and CD8+ T cells arriving at the site of infection. These fluxes are used to initialize
the new T cell recruitment function within the lung compartment. The scaling factor γ
accounts for the possibility of multiple LN locations for T cell priming surrounding the lung
and eventually multiple sources for effector T cell influx on the grid. We set it to 2 for the
baseline scenario. Parameter and initial condition values for the LN model are shown in
Table 1.

Without infection, naïve CD4+ and CD8+ T cells remain at their initial values. Containment
and disseminating infection scenarios are described in Section 3:

(2)

(3)

(4)

(5)
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(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

2.4. Linking the two models
Effector T cell generation and recruitment are the main novelties of this new multi-organ
ABM implementation. In the previous versions of the ABM, T cells were recruited to the
lung granuloma through vascular sources at the site of infection (lung) as already fully
differentiated effector T cells in some local chemokine-gradient dependent fashion. The 50
vascular sources were sequentially scanned every 10 min and for each source a T cell type
was randomly selected from a uniform probability density function, with 54%, 36%, and
10% probabilities of choosing a Tγ, TC, or Treg, respectively. These effector T cells were
always available. After the T cell type was chosen, threshold conditions for recruitment were
checked. These thresholds are calculated by weighted linear combination of TNF and
chemokine concentrations at the source (see Ray et al. (2009), and Supplementary Text in
Fallahi-Sichani et al. (2011)). This is based on TNF-dependent and independent recruitment
of T cells via effector molecules (Ray et al., 2009). If satisfied, a T cell was input onto the
grid and the next source was scanned. T cell recruitment was enabled only after day 20 post-
infection. This reflected the ‘delay’ in mounting adaptive immunity.

Our new implementation uses the LN compartment to generate fluxes of effector T cells to
be input onto the lung ABM grid (see Fig. 1). These fluxes are a function of the magnitude
and timing of the infection in the lung compartment. The result is a hybrid multi-
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compartment mathematical/computational model, where a discrete/stochastic module is
represented by the granuloma/lung ABM and the continuous/deterministic module is
captured by a lymph node ODE model. Information is exchanged between the two
compartments at every time step.

2.5. APC trafficking: from the lung to the LN
A full iteration of the ABM is represented by a 10 min time span. For the purpose of
describing the linking of the two compartments, we label the initial and final times ti and ti +
10 (i=0,1,2,…,N), respectively. By construction, ti+10=ti+1. The algorithm computes
chemokines and TNF secretion, diffusion and degradation first, cell movement and then cell
recruitment (macrophage first, then T cells). Cell recruitment function relies on the
numerical solution of the LN-ODE, seeded by inputs from the lung compartment (see Fig.
1). Initial conditions at the beginning of the simulation (time t0, onset of infection) for the
LN compartment are all zeros except for naïve T cells (see Table 1 for naïve CD4+
andCD8+ T cell initial conditions). The LN-ODE is then solved for a 10 min time span
(t0+10) and all the solutions at time t0+10 are saved. Then, the fluxes generated by Eqs. (10),
(12), and (13) are passed to a recruitment function which inputs effector T cells on the ABM
grid (see the next section, T cell recruitment: from the LN to the lung).

The algorithm continues by calculating cell–cell interactions and state transitions, and then
starts the new iteration t1. The sum of infected and chronically infected macrophages
(multiplied by scalingAPC) is updated starting at time t1 (after the first 10 min of
simulation) and it will be used as initial condition for Eq. (1) for all the subsequent
iterations.

To preserve the continuity of the ODE system, the initial conditions for the LN compartment
at time ti (i > 0) are retrieved from the solutions of the LN-ODE saved in the previous time
step ti−1 + 10. We define ΔAPC the difference between the sum of infected and chronically
infected macrophages between contiguous iterations (ti+1 and ti): if ΔAPC > 0, then the
initial condition for Eq. (1) is updated by adding ΔAPC to the previous solution (e.g.,
APC(ti+1)=APC(ti+10)+ΔAPC). It is left unchanged otherwise (as for the rest of the
variables of the ODE system). Since the increments in infected macrophages are discrete (by
integers), the changes in the lung compartment are reflected in the LN-ODE as pulses of
APCs over 10 min intervals. Fig. S1 in the Supplementary Material shows a numerical
solution of the APC Eq. (1) based on the time course of [MI(t)+MCI(t)] in the grid from a
containment scenario. The time course of APC is usually lower than the combined infected
macrophage trajectories: APC dynamics mirror [MI(t)+MCI(t)] time courses with a natural
delay induced by the differential Eq. (1) form and by the parameter scalingAPC.

2.6. T cell recruitment: from the LN to the lung
The sum of the fluxes of Eqs. (10) and (12) is used to generate Interferon γ-producing cells
(Tγ), while the flux of Eq. (13) describes cytotoxic T cells (TC) dynamics. Regulatory T
cells (Treg) are calculated as 10% of Tγ cells.

Given APC inputs, the LN-ODE generates continuous fluxes of effector T cells that need to
be converted into integers before entering the lung compartment (T cell agents are discrete).
We define a ΔTcell for each T cell subset and check if ΔTcell > 1 between contiguous
iterations (ti+1 and ti): if the condition is fulfilled we add the correspondent T cell subtype
(more than one if the integers crossed are more than one) to a queue (T cell queue). During
macrophage recruitment, we generate a table (Source table) of enabled vascular sources. To
enable a vascular source for T cell recruitment, threshold conditions are checked for each
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source, and if satisfied, the corresponding source is added to a list (one list per T cell
subtype), sorted by the highest gradient.

Then, a random T cell is chosen from the T cell queue and if the Source table is not empty
for the selected T cell phenotype, the source on top of the list is selected (highest gradient/
threshold recruitment condition) and the T cell is placed onto the grid and the T cell queue
updated. If the T cell cannot be input onto the grid (microcompartment is occupied or no
source enabled for that specific phenotype), a separate queue of stand-by cells is generated
(T cell Queue off). This queue (if not empty) has a priority in the next round of recruitment.
T cell recruitment ends when the Source Table is empty or when both queues are empty. T
cells in the T cell Queue off have a lifespan of 3 days: death cells are deleted and the queue
updated.

2.7. Model implementation
This section gives a brief top-level overview of the developed software; for a more detailed
description see (El-Kebir, 2010). For efficiency reasons, we preferred to do the memory
management manually as our computations involved the creation and deletion of many
objects representing various agents. That is why we used C++ rather than a managed
language such as Java (Oracle, 2010) or any of the .NET languages (Microsoft, 2010). In
order for our software to be cross-platform among Linux, Windows and MacOS X, we made
use of the Qt framework (Nokia, 2010). Qt is a framework for developing cross-platform
applications with a graphical user interface (GUI). The various visualization techniques
including color mapping, isolines, height plots and agent visualization have been
implemented using OpenGL (Khronos, 2010). Through the GUI, the user is able to zoom in
on a specific part of the grid, inspect the contents of a particular microcompartment and also
view simulation-wide attributes and statistics in real-time. All of this proceeds without any
observable delays while the simulation is running. The software also allows the user to save
and load model states and alter parameters, enabling the user to perform depletion
experiments regarding a particular cytokine or chemokine.

Initially we implemented the two-compartmental model as two separate modules: the lung
ABM in pure C++, and the lymph node ODE model as a Matlab function which takes as
input a vector of initial conditions and returns the same vector with updated values. Using
the Matlab compiler (Mathworks, 2010), we generated an executable that we called every
time step of the ABM. It turned out, however, that with this approach there was a significant
computational time slowdown mainly due to the penalty incurred by initializing the Matlab
Compiler Runtime (MCR) every time the executable is called. In addition, it often occurred
that the MCR would crash and output an error dialog box effectively blocking progress of
the entire application. For these reasons, we chose to re-implement the lymph node
compartment internally. We did this by employing a forward Euler integration strategy for
solving the ODEs, and verified that our solving method gave the same results as the method
used by Matlab. Using the Valgrind profiler (Developers, 2010), we could see that the
bottleneck in the computation was, similarly to the lung ABM model, the diffusion of
cytokines and chemokines rather than in the LN ODE compartment.

2.8. Parameter estimation and model validation
Mechanisms of the host–pathogen system are captured by rates and rate constants of the
mathematical model representation, and these must be estimated from many different
experimental sources or by mathematical means in order to perform simulations. Values for
most model parameters of the models are estimated from published experimental data
obtained from the murine model, and where possible from the non-human primate model.
Mtb experiments are favored over other mycobacterial species. There is an intrinsic
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biological and experimental variability in rates measured from in vivo or in vitro studies.
Further, some interactions in the Mtb-host system are not currently measurable, particularly
at the level of the lung granuloma. This complicates accurate estimation of model
parameters (baseline values are unknown) as well as model validation.

We conduct model validation in three steps. First we perform negative control simulations
and establish steady state dynamics with no infection: cells levels are set to known baseline
homeo-static values in both compartments. Then, as a second step, the TB models must
replicate qualitatively typical TB infection outcomes, such as latency and dissemination.
Total bacterial load is usually used as the best informative marker of TB disease in the ODE
models, where bacterial levels can distinguish between different scenarios: latent infection
(steady state, low stable bacterial levels), dissemination (unchecked bacterial growth) and
clearance (no Mtb present at the site of infection). In the ABM framework, we coupled
bacterial load with spatial information on disease progression, such as granuloma size.

As a last validation step, the model should qualitatively recapitulate experimental data
available in the literature from gene knockouts and neutralization studies. These can be
simulated with a mathematical/computational model as virtual deletion and depletion
experiments, respectively. Virtual deletions remove an element from the system at day zero
while virtual depletions mimic experimental conditions where an element can be depleted or
neutralized via antibody treatment at any time during the infection. Virtual deletion and
depletion experiments can be performed for all of the relevant cells and cytokines in the
model where the experimental results are known.

Since our goal is to inform the human condition for TB granuloma formation and T cell
priming, we rely on non-human primates (NHPs) data, which are similar to humans in
almost all aspects (Chackerian et al., 2002; Herrmann and Lagrange, 2005). However,
comprehensive and accurate in vivo data collection in NHPs still remains very difficult and
expensive due to technical limitations and to the slow-progression of TB in this animal
model. This makes quantitative model validation particularly hard, especially for cell counts
by different phenotype during infection.

2.9. Model calibration
Given a certain set of parameter values (see Table 1), clearance, containment, and
disseminating infection can be replicated by the model. These baseline parameter sets are
chosen after extensive exploration of the parameter space through uncertainty analysis (see
Section 2.10). We have simulated a significant number of different types of granuloma that
could identify a spectrum within each outcome (via different parameters and stochasticity).
Model robustness is always tested for each infection scenario (replicating many times the
simulation with a fixed parameter set and different seeds for the stochastic components): this
ensures that any particular outcome of infection is the result of some biological mechanism
in place rather than a random effect. We focused on varying the LN-ODE module, allowing
very few changes in the parameter values obtained in our previous studies for the ABM lung
compartment. Model calibration for containment has been performed in a semi-quantitative
fashion: LN-ODE model parameters have been varied and we chose the sets that returned a
typical containment scenario in the lung compartment, with stable and low total bacterial
load, mostly intracellular and stable granuloma size. Clearance and dissemination outcomes
are chosen similarly, checking for either bacterial clearance or uncontrolled growth. The
results of the sensitivity analysis also guided our search for mechanisms (parameters) to
target in order to achieve these outcomes.
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2.10. Uncertainty and sensitivity analysis: determining key factors that control infection
outcomes

We quantify the importance of each host mechanism involved directly and indirectly in the
infection dynamics using statistical techniques known as uncertainty and sensitivity
analyses. We recently published a review on uncertainty and sensitivity (US) analyses
techniques, with the focus on systems biology applications (Marino et al., 2008). There we
showed how multidimensional parameter spaces can be globally sampled in a
computationally efficient manner by Latin hypercube sampling (LHS) algorithms.
Correlations between model output and parameter values can then be determined using
partial rank correlation coefficients (PRCC). Time dependent correlations can also be
identified. When combined, these uncertainty and sensitivity analysis tools (Blower and
Dowlatabadi, 1994; Greenland, 2001; Helton and Davis, 2002; Sanchez and Blower, 1997)
guide our understanding as to how and what extent variability in parameter values affects
infection outcomes. We have used this approach in our previous equation-based studies (i.e.,
ordinary, partial and delay differential equation systems), as well as agent-based model
settings (Gammack et al., 2004; Ganguli et al., 2005; Marino et al., 2007a; Ray et al., 2009;
Segovia-Juarez et al., 2004).

Given the multicompartment nature of our system, detailed uncertainty and sensitivity (US)
analyses was applied to our model to explore dynamics within the same compartment (intra-
compartmental/intra-scale) or between different compartments or scales (inter-
compartmental/inter-scale). Examples of multiscale/compartment sensitivity analyses can
also be found in our recent work (Chang et al., 2005, 2008; Kirschner et al., 2007). Here, we
vary 28 parameters total: all the parameters in the LN compartment (27) and 1 in the lung
compartment (see Table 1 for the parameters varied and the ranges used). Our previous
ABM studies highlight a key role for TNF in TB infection dynamics, in particular TNF
thresholds for Nfkb activation of Macs (τNFkb). Experimental data also suggest how TNF
plays an important role in proper granuloma formation and control. This new
implementation should confirm that finding and we chose to include at least 1 parameter
(e.g., the most important, τNFkb), in the uncertainty and sensitivity analysis. In addition, our
focus in this work is on results occurring in the lung compartment and how variations in the
LN-compartment affect granuloma formation and function in the lung. We looked at 5 time
points during infection progression: 7, 21, 50, 100, and 200 days.

2.11. Scaling initial conditions of the multi-organ model
In 2-D, the environment of our model represents one complete slice of a lung parenchyma of
a NHP, the tissue where granulomas form. Each microcompartment of the ABM grid is 20
µm3 and the total volume represented by the ABM is 2 mm × 2 mm × 20 µm= 0.08 mm3.
There is large variation in granuloma sizes, weights and volumes. Assuming from data on
humans and NHPs that a granuloma is approximately shaped like a sphere, we can project a
volume of 4.2 mm3 for a lesion of 2 mm in diameter: the 3D grid would be 100 times larger
in volume (a cube of 2 mm × 2 mm × 2 mm). Thus we would need to scale up the values we
derive to compare with data. Data on cell trafficking from the site of infection (lung) to the
LN, as well as fluxes of effector T cells reaching the granuloma in the lung, migrating from
the LN, are not available. Since we are seeding the LN ODE with real-time output from the
2D ABM, the LN-ODE captures the dynamics of 1/100 of a whole NHP LN. We then set the
initial conditions for naïve CD4+ and CD8+ T cells in the LN-ODE module to
approximately 1/100 of the known data for uninfected LN in human and NHP (Biancotto et
al., 2007; Haase, 1999; Hogue et al., 2008). Based on our murine data (see (Riggs et al.,
2008)), we use a 6 to 5 CD4/CD8 ratio (although some other data suggest higher ratios of
2:1, see (Latif et al., 2001)): initial conditions for naïve CD4+ T’s are set to 3e5 and for
naïve CD8+ T cells are set to 20% less (i.e., 2.4e5). The model can accommodate any ratio.
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3. Results
3.1. Outcomes of the hybrid, multi-organ model: containment and disseminated infection

We simulated the hybrid model for 200 days post-infection, with an initial inoculum of 1
infected macrophage (with 1 intracellular bacterium) in the lung model and 1 extracellular
bacterium into a neighboring compartment (the model gives similar results for other initial
conditions). Our focus is on results occurring in the lung compartment and how variations in
the LN-compartment affect granuloma formation and function in the lung. Fig. 2 shows
typical containment and dissemination snapshots of the granulomas at day 200 for 2
different parameter sets (see Table 1). We compare our hybrid model (ABM–ODE) time
courses of bacteria and T cells to the previous version without the LN-ODE compartment.
Fig. 2 also shows the corresponding TNF gradient for each snapshot during infection. In
addition, TNF and IFNγ virtual deletion experiments confirm known experimental data:
both result in dissemination and uncontrolled growth scenarios (although IFNγ deletion has
a faster progression, data not shown).

3.2. Scaling cell number predictions in the granuloma to NHP data
Latent and active TB are clearly different both in physiology and pathology. However, there
is a large variability in the data due to an observed wide spectrum governing infection
progression (Capuano et al., 2003; Lin et al., 2009). Moreover, reliable CFU and cell count
(e.g., macrophages and T cells) data from NHP and human granulomas are difficult to
collect (Lin et al., 2009). Here we use the model as a predictive tool for CFU and cell
numbers in human/NHP TB granulomas during containment and active infection. Since
bacterial load and cell numbers depend on the size of a granuloma, we need to scale our
results from 2D to 3D. To do this, we measure the diameter of the granuloma emerging at
the end of our model simulation and use it as our radius for the 3D axis. Table 2 shows the
volume of the 2D disk as a function of lesion diameter (e.g., area of the circle multiplied by
the 20 µm thickness of a single micro-compartment) and the volume of a sphere with the
same diameter. The fourth column illustrates the percentage of volume in the sphere
occupied by the 2D disk and the Projection factor column shows the scaling needed to get a
reasonable approximation of the cell and bacterial counts at the end of the 200 days
simulation in a 3D granuloma with a specific diameter. We assume that 2D densities are
preserved in the sphere. Therefore, if in a containment scenario at 200 days post-infection
we have 150 Tγ cells in a granuloma of 1 mm in diameter, a rough estimate of the number
of Tγ cells will be 5000 (i.e., 150×33.33). No NHP or human data are available on cell
counts for effector T cells and macrophage subpopulations (activated and infected) per
single granuloma. Some estimates are available per gram of tissue, while others show T cell
data broadly classified by CD4+ and CD8+ phenotype, without differentiating subtypes or
specificity (Lin et al., 2009). Using the parameter values outlined in Table 1, the lesions we
obtain for a containment scenario are very small, between 0.3 and 0.6 mm diameter. Lesions
for active infection and uncontrolled growth are usually larger, between 0.7 and 1 mm in
diameter. For reasonable bacterial and cell number predictions we then apply the scaling
factors shown in Table 2, depending on the emergent lesion diameter at day 200. Table 3
shows some prediction ranges for bacterial and cell numbers in typical infection scenarios.
Bacterial load predictions are in line with data measured by our collaborators on CFU counts
per gram of granuloma tissue (see Table 7 in Marino et al., 2004). According to some
recently published data from Flynn’s group for CD4+ and CD8+ T cell counts in the LN
(see Table 5 in Lin et al., 2009), our LN-ODE predictions are within the same order of
magnitude (given a scaling factor of 1e2, that accounts for the initial 1/100 scaling of the
LN-ODE volume). The values we predict for CD4+ and CD8+ T cells are very similar and
they are not significantly different between infection outcomes (i.e., ~1.65–2.5e7 for both
phenotypes in both scenarios). Our data are taken at 200 days post-infection, while the data
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from (Lin et al., 2009) are averaged over the time of necropsy, which is different for each
monkey (varies between 150 and 400 days).

3.3. Investigating immune mechanisms driving infection outcomes, before and after a
granuloma is established

In keeping with our goal of ascertaining how a more mechanistic LN compartment affects
the dynamics within the lung granuloma, we performed uncertainty and sensitivity analysis
as described in Methods and in Marino et al. (2008). Results guided our search for
mechanisms occurring in the LN compartment that can drive the lung system to clearance or
active infection starting from initial infection or from a containment scenario. This helps us
explore what factors control both the formation and the maintenance of a granuloma. The
outputs that we correlate to parameter variations are total bacterial load, macrophage
numbers (infected, chronically infected, and activated), effector T cells on the ABM grid
(Tγ, CTL, and Tregs) and granuloma size as in Ray et al. (2009). Bacterial load and infected
macrophages, as well as Tγ and Tregs, share the same set of significant PRCCs. Table S2 in
the Supplementary Material shows our detailed LHS-PRCC results. Below we discuss the
most significant findings.

3.4. Early impact of T cell priming and proliferation on disease progression
Proliferation rate of precursor effector CD4+ T cells (k15), and the maximum Th1
differentiation rate dependent on APCs (k20a) both have a strongly negative correlation on
bacterial load during early infection (<3 weeks post-infection, see Table S2). Increased
precursor effector CD4+ T cell proliferation and differentiation rates (k15 and k20a) result in
lower bacterial loads at the onset of infection. Not surprisingly, increasing APC efficiency in
priming naïve CD4+ T’s (k14), as well precursor effector T cell proliferation (k15) and
differentiation (k20a) in the LN has a positive impact on the levels of fully effector T cells in
the lung. This finding is important, implying that they are having the biggest impact early at
the onset of infection and not after the granuloma has been established.

3.5. Lymph node shut-down: better chance for clearance?
There are inconclusive data for T cell proliferation at the site of infection. We input onto the
granuloma grid only fully activated effector T cells: precursor T cells migrating out of the
LN are not accounted for and no differentiation mechanism is captured in the granuloma.
This explains why rates of precursor T cells migration from the LN to the blood (on the way
to the lung, ξ1 and ξ2), are consistently significantly correlated to most of the outcome
variables we tracked (see Table S2). We can relate these rates to a concept known as ‘lymph
node shut-down’, a transient, proportional accumulation of all T cell subsets in a lymph
node draining a site of inflammation (Cahill et al., 1976; Hall and Morris, 1965; MartIn-
Fontecha et al., 2003): higher T cell LN emigration rates (larger ξ1 and ξ2 rates) translate
into decreased lymph node shut-down, and vice versa. LN shut-down likely facilitates an
efficient T cell priming and successful effector T cell differentiation. Recent findings
showed a direct role for migrating APCs in T cell accumulation in the LN (MartIn-Fontecha
et al., 2003): it is not clear if this accumulation is a common feature of any viral or bacterial
infection. The positive correlation of ξ1 and ξ2 to bacterial load can be explained by a faster
migration out of the LN translating into less chances for full T cell differentiation in that
compartment, therefore less effector T cells are available for the lung, less Tγ cells and less
CTL killing in the granuloma (confirmed by the negative correlation of ξ1 and ξ2 to T cell
counts). We tested the impact of increased ξ1 and ξ2: protective immunity is not impaired
and a sufficient level of macrophage activation is observed (i.e., containment is achieved).
On the other hand, decreasing values for ξ1 and ξ2 has a major impact on infection
progression and may contribute to bacterial clearance. This is only successful early during
infection before the granuloma is established: infection (see Table S2, Early column) cannot
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be cleared by decreasing ξ1 and ξ2 once the granuloma has been established. Another
trafficking parameter, the scaling factor γ, is consistently negatively correlated to bacterial
burden and granuloma size. γ is a proxy for multiple LN sources of precursor and effector T
cells: increasing γcan partially account for additional T cell differentiation mechanisms
once precursor T cells migrate out of the LN (see Supplementary Text S1 for more details
on sensitivity analysis results for the scaling factor γ).

3.6. TNF-dependent macrophage activation: a necessary protective mechanism
The TNF threshold for NFkb activation of macrophages (τNFkb) has a consistently strong
positive correlation to granuloma size, late during infection (>100 days). If we increase this
threshold, higher TNF concentrations are required for macrophage activation, therefore less
activated macrophages are generated and less bacterial killing is observed. More cytokines
and TNF are then secreted due to increased bacterial load and more effector T cells (Tγ,
CTL, and Tregs) are recruited to the lung. The next section will address if single parameter
changes in the LN compartment can protect the host and have a significant impact on
granuloma formation and maintenance.

3.7. Vaccination and cell-based immunotherapy strategies
Stimulating the immune response leading to immunological memory, via use of an
infectious agent, is known as immunization. Vaccinations involve the administration of one
or more immunogens (molecules or antigenic material that stimulate the immune response):
if they are live bacteria, they are less virulent than the pathogen itself and only serve the
purpose to produce immunity to a disease and prevent (or ameliorate) the effects of infection
by future exposure to pathogens.

Immunotherapy is related to immunization and vaccination in the sense that refers to the
treatment of disease by inducing, enhancing (activation immunotherapy), or suppressing
(suppression immunotherapy) an immune response. The active agents of immunotherapy are
called immunomodulators: they are usually cytokines, but recent effort has been devoted to
cell-based immunotherapy, where APCs and T cells are stimulated ex-vivo and transferred
into a patient to generate the appropriate immune response. Based on our uncertainty and
sensitivity analysis results (Table 1), we predict key mechanisms in driving granuloma
formation and infection outcomes. We then study the impact of manipulating some of these
mechanisms on infection progression, suggesting potential vaccination and immunotherapy
strategies.

For example, since scalingAPC is one of the parameter consistently negatively correlated to
bacterial load, infected macrophages and granuloma size, we choose to target APC
trafficking to the LN as a possible vaccination strategy. We vary the parameter scalingAPC
in the range [0.01,2] (baseline for containment it is set to 1) and the impact on infection
outcome is significant. For low values of scalingAPC the system progresses to active
infection and dissemination, while clearance can be obtained with values close to 2. Fig. 3
compares time courses of MI+MCI, APC, effector T cells and bacterial load in low and high
APC trafficking scenarios (containment is also shown for comparison). For high DC
trafficking (scalingAPC =1.75) a higher number (comparing to containment) of APCs
reaches the LN at the onset of infection: although the difference is not dramatic, a few more
APCs in the LN early during infection have a significant impact on the infection progression
(first month, Fig. 3B). A spike in effector T cells by day 40 (Fig. 3E) results in a fast
declining number of infected and chronically infected macrophages (Fig. 3A) and in
bacterial clearance (Fig. 3C). This highlights the key role of APCs in regulating a protective
immune response to Mtb. The number of effector T cells is 20 times lower in the low
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trafficking scenario comparing to containment (Fig. 3F), and they reach the granuloma site
when it is already too late to control infection (Fig. 3D).

Similar clearance scenarios can be obtained by increasing APC efficiency in priming naïve
CD4+ T’s (k14) or naïve CD8+ T’s (k17). We use values of 1e-1 and 1 for k14 and k17.
Coupling the effect (e.g., both k14 and k17 are set to high values, such as 1) has a similar
result (clearance). Interestingly, lowering the efficiency of T cell priming does not
compromise a protective immune response: a stable granuloma always forms (but with a
slightly higher bacterial load) and containment is always achieved by day 200 (data not
shown). This result suggests how different levels of bacterial load are possible within the
spectrum of latency, as shown in Lin et al. (2009).

We then tested how to disturb a stable granuloma to manipulate a containment scenario to
try to shift the system to clear infection. Increasing APC trafficking can rescue the system
and clear infection: bacteria are gradually cleared and subsequently the granuloma slowly
dissolves (Fig. 4, enhanced APC trafficking column).

A similar outcome can be achieved by enhancing only CD4+ T cell priming (Fig. 4,
enhanced CD4 priming column).In contrast, increasing CD8+ T cell priming does not affect
granuloma stability and can impair the beneficial effect of enhancing CD4+ T cell priming:
when combined, both effects do not achieve clearance (Fig. 4, enhanced CD4/CD8 priming
column). This likely follows since once a macrophage is activated (CD4+ T cell dependent),
its intracellular bacterial load is completely cleared. CTL killing releases some bacteria in
the extracellular domain: in a very densely packed environment such as an already formed
granuloma, bacteria released into the extracellular domain are most likely internalized by
other resting macrophages rather than killed. This process will prevent immediate bacterial
killing and sustain the infection and the granuloma.

4. Discussion
CD4+ and CD8+ T cell priming in a LN is a key step to mounting a protective immune
response to most bacterial infection, and Mtb is no exception. For TB, how events occurring
in LNs can impact granuloma formation and maintenance is still an open question. Only a
multi-organ model that takes into account trafficking events can be used to capture the
complexity of TB and be useful for testing therapeutic and preventive strategies to combat
this disease. This study takes a multi-organ approach to study TB granuloma formation,
building onto an existing agent-based model of the lung some of the main mechanisms of T
cell priming occurring in the lung-draining LN. The cellular dynamics of the lymph node
model are described with a sufficient level of detail by a temporal-only representation (i.e.,
ODE system), while the lung compartment requires spatial details to capture the emergence
of a unique spatial structure, a granuloma. We recapitulate typical infection outcomes and
predict both cell and bacterial numbers in containment and dissemination scenarios, based
on the granuloma diameter (presently not measurable experimentally).

Here we show that enhanced APC trafficking can drive the system to clearance, both before
or after a granuloma has been established, suggesting a potential mechanism for successful
vaccination and immunotherapy strategies. We also show how impaired APC migration can
result in dissemination and uncontrolled growth of the bacteria. Unfortunately, the molecular
and cellular mechanisms governing pulmonary DC trafficking to the lymph node are poorly
understood. Most data are derived from studying the migration of skin DCs, and it remains
to be determined whether these findings are applicable to DCs in other tissues (Randolph et
al., 2005). Assays that directly analyze DCs transiting through lymphatic vessels are not
available yet (Randolph et al., 2005) and whether the regulation of this trafficking controls
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the nature of adaptive immune responses in the lung and in the granulomatous tissue is still
an open question (Cook and Bottomly, 2007).

Overall, we find that the role of effector T cells remains essential for a successful initial
immune response to Mtb invasion: even if few effector T cells are present at the site, the
IFNγ and TNF produced guarantee the necessary macrophage activation and containment is
achieved ad well as a stable granuloma. Manipulating the efficiency of T-cell–APC contacts
in vivo rather than the number of APC migrating to the LN can also be a viable strategy to
clear an infection, before a granuloma is fully developed. This can be accomplished by
increasing the duration of the interaction (Celli et al., 2005, 2007), the cognate frequency of
naïve T cells (Linderman et al., 2010; Zheng et al., 2008) or having DC into the system that
are highly immunogenic (Steinman, 2001).

Another finding of our spatial multi-organ model is how enhancing only effector CD4+ T
cell differentiation can represent a viable immunotherapy strategy for latently infected
individuals, where an infection can be cleared once a granuloma is fully formed. CTL
activity is a key to controlling the onset of infection and possibly for clearance, but not when
a granuloma has already been established.

The computational modeling platform described herein can be improved. First and
obviously, more mechanisms and cells can be included. For example anti-inflammatory
cytokines (such as IL-10) will be modeled explicitly (work in progress), as well as including
alternatively activated (AAM) and classically activated (CAM) macrophages that we have
explored previously (Marino et al., 2010b) Two key improvements will be in modeling
explicitly dendritic cells and model bacterial dynamics in more detail. We do not model
bacteria metabolic states and we plan to address replicating/slow replicating/dormant Mtb
states in future work. This will also give us the opportunity to capture mechanisms of tissue
liquefaction (extracellular bacilli do not grow unless there is liquefaction, see Grosset
(2003)) and test the dynamic hypothesis, suggested in recent work (Cardona, 2009). In mice,
the necrotic center of a granuloma comprises a ring of foamy macrophages (Russell et al.,
2009): we have not modeled the kinetics of foamy macrophages from the granuloma to the
alveolar space, some of them carrying non-replicating bacilli, as observed by different
groups (Caceres et al., 2009; Cardona et al., 2003; Ordway et al., 2006; Skold and Behar,
2008).

It is important to emphasize the modularity and tunable resolution (Marino et al., 2010a) of
this computational platform. By tunable resolution we mean that we have the ability to fine-
grain or coarse-grain model components at will. We can achieve containment “turning off”
the LN-ODE component by using a completely stochastic recruitment function, as shown in
Fig. 2. “Turning on” the LN-ODE component with its more mechanistic features allows us
to gain insights into the trade-off between number and quality of APCs migrating from the
lung to the priming compartment. We have previously predicted the nonlinear properties of
these trade-offs within a virtual lymph node environment (Linderman et al., 2010). Here,
these key mechanisms are explicitly modeled in a computational representation of
granuloma formation and they can be manipulated to ultimately control infection outcome.

A likely improvement will be to refine the granuloma environment in 3D. The limiting
factor of a 3D implementation revolves around how efficiently we model chemokine and
cytokine diffusion in a 3D environment. A single run of 200 days on a current generation
workstation takes approximately 1 h to complete, with approximately 90–95% of the CPU
time spent on calculating diffusion. In 3D this results in an increase of the total CPU time by
a factor of 300–500 which poses issues of computational cost and time, especially if a
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comprehensive uncertainty and sensitivity analysis is going to be performed (which means
hundreds of simulations).

We recently published a review (Marino et al., 2010a) emphasizing the importance of multi-
scale, multi-organ modeling platforms to capture the complexity of host–pathogen
interactions in TB as well as in any bacterial/viral infections. The work herein shows the
potentials of this approach, with a multi-organ (compartment) agent-based model
implementation. By incorporating events occurring in both the lung and the draining LN, we
gain insights into immune mechanisms operating in different compartments that regulate
granuloma formation and maintenance. Ultimately, our suggestions for viable vaccination
and immunotherapy strategies can be tested experimentally to aid in the prevention of spread
of infection and for treatment of latent TB.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Schematic of the hybrid model (granuloma ABM linked to a Lymph Node ODE). The left-
hand side of the figure shows some basic steps of the ABM algorithm in the lung
compartment. After cell movement is completed on the grid, the LN-ODE module (right-
hand side of the figure) retrieves information from the grid (i.e., the sum of infected and
chronically infected macrophages) to initialize the APC equation in the LN-ODE system.
Antigen presentation, T cell priming, proliferation and differentiation are computed for a
time span of 10 min. Effector T cell fluxes (continuous) from the LN to the lung are
generated and passed to a recruitment function that updates a T cell Queue (discrete) and a
Source Table at each iteration (see text for details). The T cell Queue lists randomly all the
effector T cells ready to be input onto the grid. The Source Table lists all the vascular
sources that are enabled on the grid (per T cell phenotype). At any iteration, we empty the T
cell Queue if enough sources are available. Otherwise, the remaining effector T cells will be
placed onto the grid in the next iteration. Effector cells in the queue have a lifespan of 3
days.
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Fig. 2.
Time courses and snapshots of infection progression during containment and dissemination
outcomes as predicted by our ABM. We compare outputs of the original version of the
ABM (without the LN-ODE compartment, Panels A–D and I–L) to the current
implementation (ABM–ODE—hybrid multi-compartmental model, Panels E–H and M–P).
A vertical axis (see the *) on the top panels shows the corresponding time of the snapshot in
the lower panels. For each snapshot, the corresponding TNF gradient is also shown (TNF
gradient could be use as a proxy for granuloma size). Panels A,B, E, F, I, J, M, and N
represent containment. Panels C, D, G, H, K, L, O, and P represent dissemination.
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Fig. 3.
Enhancing APCs trafficking as a vaccination strategy. Shown are time courses of infected
macrophages (Panel A), APCs (Panel B), bacterial counts (Panel C) and effector T cells
(Panels D–F) for a vaccination strategy that manipulates APC trafficking. We show low and
high APC trafficking scenarios, compared to containment. The x-axis represents days post-
infection and the y-axis the number of cells or number of bacteria.
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Fig. 4.
Immunotherapy strategies. Snapshots of granuloma state at different days after the initiation
of different immunotherapy strategies. The initial conditions are for a typical containment
scenario at day 150 post-infection. The first column represent enhanced CD4 priming
strategy, the second column enhanced CD4 and CD8 priming and the last column enhanced
APC trafficking. It takes approximately 10–15 days to resolve the inflammation after
bacteria is cleared.
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Table 1

List of initial conditions and parameter names, descriptions, values, and the ranges used to initialize the LN
compartment ODE model, as well as for uncertainty and sensitivity analysis. Rates are per day.

Name Description Baseline (containment) LHS ranges

µAPC Death rate for antigen presenting cell (APC) 3E–1 [2E–1,4E–1]

µN4 Death rate for Naïve CD4 + 2.5 [1E–4,1E1]

N4 (0) Initial (uninfected) Naïve CD4 + T cell population 3E5

sN4 [=µN4N4 (0)] Constant source of N4 (LN) 7.5E5

k13 Naïve CD4+ T cells maximum APC-dependent recruitment rate (LN) 1E1 [1E–3,1E4]

hs13 MDC half-sat Naïve CD4 + T cells recruitment rate (LN) 1E3 [1,1E4]

k14 Rate (likelihood) of Naïve CD4 + T cell priming when encountering an APC
(LN)

1E–2 [1E–6,1]

k15 Precursor Th1 proliferation rate (LN) 5 [1E–3,1E4]

ρ2 Precursor Th1 carrying capacity (LN) 1E7 [1E5,1E8]

k20a Maximum Th1 differentiation rate, dependent of IL-12 and APC (LN) 1E–1 [1E–6,1E1]

hs20a MDC half-sat on IL-12 and APC dependent Th1 differentiation (LN) 1E3 [1,1E4]

ξ1 Precursor Th1 cells migration rate out of the LN into the blood 1E1 [1E–2,1E3]

ξ1a Th1 cells migration rate out of the LN into the blood 1E–1 [1E–2,1E3]

µN8 Death rate for Naïve CD8 + 2.5 [1E–4,1E1]

N8 (0) Initial (uninfected) Naïve CD8 + T cell population 2.4E5

sN8 [=µN8*N8 (0)] Constant source of N8 (LN) 6E5

k16 Naïve CD8 + T cells maximum MDC-dependent recruitment rate (LN) 1E1 [1E–3,1E4]

hs16 MDC half-sat Naïve CD8 + T cells recruitment rate (LN) 1E3 [1,1E3]

k17 Maximum rate (likelihood) of Naïve CD8 + T cell priming when
encountering an APC (LN)

1E–2 [1E–6,1]

hs17 Th1 half-sat rate for Naïve CD8+ T cell priming when encountering an APC
(LN)

1E1 [1,1E2]

k18 Precursor T8/CTL proliferation rate (LN) 5 [1E–3,1E4]

ρ3 Precursor T8/CTL carrying capacity (LN) 1E7 [1E5,1E8]

k24a Maximum T8/CTL differentiation rate, dependent of IL-12 and APC (LN) 5E–1 [1E–6,1E1]

hs24a MDC half-sat on IL-12 and APC dependent T8/CTL differentiation (LN) 1E3 [1,1E3]

ξ2 Precursor T8/CTL cells migration rate out of the LN into the blood 1E1 [1E–2,1E3]

ξ2a T8 cells migration rate out of the LN into the blood 1E–1 [1E–2,1E3]

ξ2b CTL cells migration rate out of the LN into the blood 1E–1 [1E–2,1E3]

wT80 Weight factor between precursor Th1 and Th1 in Naïve CD8 differentiation 0.5 [1E–2,1]

γ Scaling factor between LN and Lung compartments (proxy for multiple LN
sources)

2 [1E–1,1E1]

ScalingAPC Scaling factor between Lung and LN compartments (proxy for delays in DC
trafficking)

1 [1E–2,2]

m Fraction of overlap between T8 (IFN producing CD8+ T’s) and CTL
phenotypes

0.75 [1E–1,1]

GR-ABM module

τNFkb TNF thresholds for Nfkb activation of Macs 0.05 [1E –2, 1E –1]
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Table 2

Projection factors to scale the 2D granuloma predictions (cell and bacterial numbers) to a 3D spherical
granuloma of equivalent diameter. List of diameter sizes and corresponding 2D and 3D volumes (assuming a
microcompartment volume of 0.08 mm3). The percentage volume occupied by the 2D volume in the 3D
sphere is obtained dividing the 3D by the 2D volume. The projection factor column lists the scaling needed to
project cell and bacterial numbers into a 3D spherical granuloma. A complete table with granuloma sizes from
0.1 to 2 mm in diameter is available in the Supplementary Material (Table S1).

Diameter granuloma (mm) Volume 2D (mm3) Volume 3D (mm3) Percentage of volume occupied by the 2D
disk

Projection factor

Containment

0.3 0.001413717 0.014137 10 10

0.4 0.002513274 0.03351 7.5 13.33333

0.5 0.003926991 0.06545 6 16.66667

0.6 0.005654867 0.113097 5 20

Dissemination

0.7 0.007696902 0.179594 4.285714 23.33333

0.8 0.010053096 0.268083 3.75 26.66667

0.9 0.01272345 0.381704 3.333333 30

1 0.015707963 0.523599 3 33.33333
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Table 3

Bacterial and cell number predictions for a NHP or human TB granuloma in typical infection scenarios. The
predictions are based on granuloma diameter at day 200 post-infection. The scaling factors are shown in Table
2.

T cells

Tγ TC Treg

Containment 800–1700 600–1300 100–220

Dissemination/active TB 5.4–7.7e3 5–7.1e3 4.8–7e3

Macrophages

Resting Infected Chronically infected Activated

Containment 1.5–3.1e4 120–240 90–180 700–1400

Dissemination/active TB 2.3–3.3e4 2–2.8e3 1.3–1.9e3 5.3–7.7e3

Bacteria

Intracellular Extracellular Total

Containment 1800–3700 300–600 2000–4500

Dissemination/active TB 3–4.2e5 1.5–2.2e5 1.8–2.7e5

J Theor Biol. Author manuscript; available in PMC 2013 August 12.


