
Performing Taxometric Analysis to Distinguish Categorical and
Dimensional Variables

John Ruscioa, Ayelet Meron Rusciob, and Lauren M. Carneya

aThe College of New Jersey, P. O. Box 7718, Ewing, NJ 08628.
bPsychology Department, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA
19104

Abstract
A fundamental question facing clinical scientists is whether the constructs they are studying are
categorical or dimensional in nature. The taxometric method was developed expressly to answer
this question and is being used by a growing number of investigators to inform theory, research,
and practice in psychopathology. The current paper provides a practical introduction to the
method, updating earlier tutorials based on the findings of recent methodological studies. We offer
revised guidelines for data requirements, indicator selection, parameter estimation, and procedure
selection and implementation. We illustrate our recommended approach to taxometric analysis
using idealized data sets as well as data sets representative of those found in clinical research. We
close with advice to help newcomers get started on their own taxometric analyses.
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Introduction
Beginning in the 1960s, Paul Meehl pioneered the development of a technique to determine
whether a latent variable—the construct underlying observed measures, or indicators—was
categorical or dimensional. Several data-analytic procedures could be used to examine the
relationships among indicators, providing nonredundant clues to the structure of the latent
variable. In a series of technical reports, Meehl and his colleagues presented these
procedures to help test a central claim of his etiological theory of schizophrenia. Meehl’s
(1990) theory posits a genetic liability for the disorder only among schizotypes, a discrete
group hypothesized to comprise approximately 10% of the general population. Meehl sought
a method to test for a categorical boundary between these schizotypes and individuals with
no such susceptibility to schizophrenia. Dissatisfied with the ability of available methods to
distinguish between categorical and dimensional latent variables, he created his own
taxometric method as a practical solution to a pressing problem in psychopathological
research (Meehl, 1995).

In the nearly half a century since the first of these technical reports was circulated (Meehl,
1965), the taxometric method has seen extensive growth, refinement, evaluation, and
application. Haslam (in press) provides the most recent review of applied taxometric
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investigations, including 111 published studies of dozens of psychological constructs.
Perhaps owing to its origins in psychopathology, personality, and clinical assessment,
taxometric studies continue to be performed most often in these areas. The enduring
popularity of Meehl’s method, its continued methodological development, and the
accelerating pace of its application attest to researchers’ embrace of the utility of taxometric
analysis. Many other data-analytic approaches can be used to test the structure of latent
variables (e.g., cluster analysis, mixture modeling or factor mixture modeling, latent class or
latent profile analysis). Elsewhere, we have discussed some of the relative strengths and
weaknesses of these approaches (e.g., Ruscio, Haslam, &, 2006; Ruscio & Ruscio, 2004c).
In this paper, we focus on the taxometric method because of its particular strengths for
addressing a central question in the study of psychopathology: whether clinical constructs
are most accurately represented as categories or dimensions.

We begin with a brief overview of why one might want to test the structure of a latent
variable, then show how to do this using taxometric analysis. Two earlier tutorial-style
papers covered similar ground (Ruscio & Ruscio, 2004c, 2004a), and we update those
reviews based on the findings of several methodological studies published since that time.
Ruscio (2007) emphasized the need for empirical guidelines to facilitate appropriate and
effective implementation of taxometric procedures. We discuss the options a researcher
should consider when conducting a taxometric investigation and describe the empirical
evidence available for guiding decisions. After reviewing and illustrating the current state of
the art in the taxometric method, we conclude with some suggestions for how readers can
get started on their own taxometric analyses.

Reasons to Distinguish Categorical and Dimensional Variables
Many researchers have preferences—sometimes very strong ones—for conceptualizing or
assessing particular variables in categorical or dimensional ways. Making this distinction
correctly, however, is important for the advancement of theory, research, and practice. For
example, as Meehl’s (1990) theory of schizophrenia illustrates, knowing whether a construct
is best fit by a categorical or dimensional model can help guide the development of causal
theories or evaluate the fit of competing causal theories (Haslam, 1997; Meehl, 1992). This
is because dimensional variation may arise from the sum of many small influences (e.g.,
additive genetic and environmental factors), whereas categorical variation requires a
mechanism such as a dichotomous causal factor (e.g., a single gene or formative event
necessary and sufficient to produce a disorder), interactive effects (e.g., a genetic
predisposition and a high stress level are jointly sufficient to produce a disorder), or
threshold effects (e.g., individuals can cope with stress to a point, but beyond this level
stress triggers a disorder).

Categorical and dimensional variables should also be classified in different ways (Meehl,
1995). Many psychologists, coming from a psychometric tradition, propose that the next
edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM) should move
toward dimensional classification, at least for the personality disorders (e.g., Widiger &
Trull, 2007). In contrast, many psychiatrists, coming from a medical tradition, conceptualize
mental disorders as entities that are either present or absent. As some psychopathological
constructs appear to be categorical, whereas others appear to be dimensional, a one-size-fits-
all classification scheme may not be appropriate (Haslam, in press; A. M. Ruscio, 2008).

Categorical and dimensional variables should be assessed in different ways (Meehl, 1992;
Ruscio & Ruscio, 2002). Should an assessment tool be designed to classify individuals into
groups or to locate their relative positions along dimensions? These are very different goals
requiring very different approaches. For example, a relatively small number of items with
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discriminating power focused near a categorical boundary can maximize the accuracy with
which individuals are assigned to groups. On the other hand, a larger number of items that
provide discrimination across the full range of trait levels can maximize the precision with
which individuals are located along dimensions.

Knowing whether a variable is categorical or dimensional has further implications for
research design and statistical analysis. For example, the practice of using analogue samples
(e.g., college students with subclinical symptom levels) is premised on dimensional structure
and may be inappropriate for categorical variables. Conversely, the practice of
dichotomizing continuous score distributions is justified when (a) the structure of a variable
is categorical and (b) the selected threshold validly classifies cases into groups. If either
condition is not satisfied, the use of dichotomous scores risks discarding important
information and reducing the statistical power of analyses (DeCoster, Iselin, & Gallucci,
2009; MacCallum, Zhang, Preacher, & Rucker, 2002). These and other implications of
categorical versus dimensional structure (for a more detailed treatment, see Ruscio, Haslam,
and Ruscio, 2006) underscore the importance of studying, rather than presuming, which
structure best fits the data.

Characteristics of the Taxometric Method
Readers who have made it this far have hopefully been persuaded that it is worthwhile to
test the latent structure of a construct of interest. We consequently turn our attention to key
features of the taxometric method that make it a good choice for performing this test. None
of these features are unique to taxometric analysis, but together they provide an appealing
methodological approach.

One key feature of the taxometric method is that it can be used to compare the relative fit of
competing structural models. Rather than presuming there are categories or dimensions and
attempting to determine how many exist, the taxometric method can help to determine
whether a categorical or a dimensional model better fits the data. Conceptually, this is
analogous to testing for the presence or absence of a single categorical boundary (Ruscio &
Ruscio, 2004c). As Waller and Meehl (1998) emphasized, whether or not such a boundary
exists, there can be variation along one or more dimensions. Thus, the two competing
structural models tested in the approach to taxometric analysis that we prefer are (a) the
common factor model, which allows purely dimensional variation along one or more
dimensions; and (b) a two-category model, which also allows for the possibility of
dimensional variation within each group. The latter model specifies that individuals belong
to one of two groups, each of which may—or may not—exhibit some degree of residual
variation according to the common factor model. Successive iterations of taxometric
analysis can be used to test for additional categorical boundaries (e.g., between more than
two categories or between subgroups within a category). The taxometric method is not
designed to test the number of latent dimensions underlying a construct, either in the full
sample or within any category; exploratory or confirmatory factor analysis would be a more
appropriate tool.

The “competing-models” inferential framework is not the only one that can be adopted when
using the taxometric method, but it is the one that we prefer. An alternative “taxon-
detection” framework is preferred by some researchers (e.g., Beauchaine, 2003). In this
approach, dimensional structure is treated as a null hypothesis to be rejected if there is
sufficiently strong evidence for the existence of discrete groups. Like traditional null-
hypothesis significance testing, this framework does not allow researchers to “accept the
null” (i.e., to conclude that latent structure is dimensional). Unfortunately, there is a long-
standing ambiguity in the taxometric literature about which inferential framework is
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intended. There are reasonable arguments on both sides of this issue (for further discussion,
see Ruscio, 2007 and Ruscio & Kaczetow, 2009). We believe that many, if not most, users
of the taxometric method are seeking to differentiate competing categorical and dimensional
models rather than searching solely for evidence of categorical structure. Most important,
developments in taxometric methodology—specifically, the parallel analysis of categorical
and dimensional comparison data—have placed the competing-models approach on a firm
foundation. Without these developments, which we describe next, we believe that criticisms
of the competing-models framework would carry considerably more weight.

A second key feature of the taxometric method is that it allows parallel analyses of
categorical and dimensional comparison data. This approach has been developed within the
past decade, during which the methods for generating comparison data have evolved and
their use has become standard practice in taxometric research (Ruscio et al., 2010). The
utility of parallel analyses of comparison data stems from the fact that taxometric procedures
do not provide significance tests or fit indices. Instead, as we discuss in detail later,
investigators examine results and reach a judgment based on their resemblance to prototypic
results expected under categorical or dimensional structure. Unfortunately, empirical data
seldom produce results that match these prototypes, in part because the characteristics of
actual data diverge from the ideal conditions used to generate the illustrative data. For
example, prototypes have typically been generated using normally distributed data. Micceri
(1989) showed that normal distributions are uncommon, and Ruscio, Ruscio, and Keane
(2004) showed that skewed distributions can exert a substantial influence on taxometric
results.

This is where parallel analyses of comparison data enter the picture. Ruscio, Ruscio, and
Meron (2007) introduced a technique for generating comparison data that reproduce
important characteristics of an empirical data set (e.g., sample size, number of indicators,
marginal distributions, correlation matrix) using either a categorical or a dimensional
structural model. Ruscio and Kaczetow (2008) placed the data-generation technique on a
more solid statistical foundation and improved its run-time efficiency. The technique begins
by generating a population of comparison data using the categorical model, then generating
a second population of data using the dimensional model. A series of random samples, each
the same size as the empirical data set, is drawn from the two populations. All samples are
then submitted to the same taxometric analyses as the empirical data set. This provides a
very useful interpretive aid. Rather than comparing results for the empirical data to
prototypical results for idealized categorical or dimensional data, one can compare results to
those for artificial comparison data that hold constant important aspects of the empirical data
but differ in their underlying structures. Do the empirical results more closely resemble
those for the categorical or the dimensional comparison data? This question can be answered
by visually comparing the results or by using an objective index of the relative fit of results
for categorical versus dimensional comparison data. This Comparison Curve Fit Index
(CCFI) has been shown in many studies to successfully differentiate the two structural
models (e.g., Ruscio, 2007; Ruscio & Kaczetow, 2009; Ruscio & Marcus, 2007; Ruscio et
al., 2007; Ruscio & Walters, 2009; Ruscio, Walters, Marcus, & Kaczetow, 2010; Walters,
McGrath, & Knight, 2010; Walters & Ruscio, 2009). The first step in calculating the CCFI
is to compute FitCat as the root-mean-square distance between data points on curves for the
empirical data and categorical comparison data. The more these two curves resemble one
another, the smaller the value of FitCat. Next, repeat to compute FitDim as the root-mean-
square distance between data points on curves for the empirical data and dimensional
comparison data. Finally, calculate CCFI = FitDim / (FitDim + FitCat).

As a relative, rather than absolute, fit index, the CCFI facilitates the use of the competing-
models inferential framework. CCFI values can range from 0 (strongest support for
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dimensional structure, when FitDim = 0) to 1 (strongest support for categorical structure,
when FitCat = 0). Moreover, CCFI values close to .50 are ambiguous, indicative of
comparably good (or poor) fit with both models (i.e., FitDim = FitCat). This alerts the
researcher that the analysis is not able to powerfully distinguish categorical from
dimensional structure, and hence that strong conclusions should not be drawn.Ruscio et al.
(2010) recommended treating CCFI values between .45 and .55 as ambiguous or, if one
wanted to be even more confident in the accuracy of results—at the risk of failing to reach a
structural conclusion—treating CCFI values between .40 and .60 as ambiguous. We
consider the calculation of the CCFI and the designation of some results as interpretationally
ambiguous an important asset of the parallel analysis approach. Meehl (2004) emphasized
the value of knowing whether taxometric results provide strong support for categorical
structure, provide strong support for dimensional structure, or are ambiguous, and the CCFI
achieves this in an objective manner.

A third key feature of the taxometric method is that it affords many opportunities to check
the consistency of results. From the earliest stages of development, Meehl emphasized the
desirability of performing consistency tests as a bedrock principle of his taxometric method.
He and his colleagues created multiple taxometric procedures that can be used to obtain
nonredundant evidence, with converging results providing increasing confidence in a
structural solution. Further checks of consistency can be obtained by performing the same
analyses with multiple measures or in multiple samples. Just as the CCFI value for a single
taxometric analysis can provide support for categorical structure, dimensional structure, or
neither, an examination of results across many analyses can reveal consistent support for
categorical structure, dimensional structure, or neither.

Data Requirements
Like any data-analytic tool, taxometric analysis requires that the data meet certain
requirements in order to provide informative results. Each taxometric procedure examines
the relations among the observed variables that serve as indicators of the target construct.
There are a number of factors that should be considered to determine whether a particular
data set is appropriate for taxometric analysis. Meehl (1995) provided rules of thumb for
several of these factors, and systematic study has found that most of Meehl’s guidelines
were quite prescient. Below, we summarize what is presently known about data
requirements for taxometrics, relying heavily on a simulation study by Ruscio et al. (2010)
in which 100,000 data sets (50,000 categorical and 50,000 dimensional) spanning a wide
range of data conditions were analyzed using multiple taxometric procedures. Other large-
scale simulation studies are also cited when their findings help to address specific issues.

Our impression from running a number of these simulations is that the failure to meet one or
more of the criteria presented below may be offset by especially favorable characteristics on
other criteria in the same data set. Especially if it appears that data are on the borderline with
regard to some criteria but acceptable on others, there may be relatively little risk in
performing taxometric analyses so long as parallel analysis of comparison data is used to
identify ambiguous results and prevent unwarranted conclusions. With this in mind, we
discuss six characteristics to consider when evaluating data for possible taxometric analysis,
along with recommended criteria (see Table 1). After we review these criteria and their
empirical support, we describe data sets based on these criteria that will be used in
illustrative taxometric analyses later in the paper. These include idealized data sets that will
be used to illustrate prototypical taxometric results as well as data sets that are more
representative of empirical data in psychopathology research.
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Sample Size
Sample size requirements for taxometric analysis are fairly large, with Meehl’s (1995) rule
of thumb being N ≥ 300. For the 57 published taxometric studies reviewed byRuscio et al.
(2006), the median sample size was 809 and only 4 studies (7%) performed analyses with N
< 300.Ruscio et al. (2010) found that categorical structure was no more difficult to identify
when N was as low as 100 but that the accuracy with which dimensional structure was
identified deteriorated when N fell below 300. Because one cannot know latent structure in
advance of doing the analyses, it seems prudent to strive for an N of at least 300.

Size of the Putative Taxon
By convention, the taxometric literature refers to a discrete latent class (e.g., schizotypes in
Meehl’s theory of schizophrenia) as a taxon whose members can be distinguished from a
mutually exclusive complement class (e.g., non-schizotypes). In a taxometric analysis, the
size of the putative taxon must be sufficiently large for that taxon to be detected, if it exists.
Meehl’s rule of thumb for the estimated taxon base rate (the proportion P of taxon members
in the sample) is P ≥ .10. In theRuscio et al. (2010) study, although the rate of ambiguous
results crept up slightly for categorical data with .05 < P < .10, erroneous results remained
rare. Thus, there appears to be relatively little risk of extending Meehl’s rule of thumb
downward a bit. Moreover, Ruscio and Ruscio (2004c) demonstrated that the absolute
number of taxon members can be at least as important as the taxon base rate. For example,
with a total sample size of N = 600, a taxon of size nt = 60 would meet the criterion of P ≥ .
10. All else being equal, these same 60 taxon members might still be sufficient to identify
categorical structure even if total N was increased to 1,200, which would correspond to P = .
05 and appear unsatisfactory. With the caveat that further research is required to flesh out
guidelines for absolute taxon size, we tentatively suggest that researchers strive to satisfy
two criteria: nt ≥ 50 and P > .05.

Unlike total sample size, one cannot know with certainty how large a taxon may be. Indeed,
to justify a taxometric analysis, one must have at least some doubt about whether there
exists a taxon at all. This means that one is estimating quantities (nt, P) to address a
hypothetical question: If the data are categorical, is the size of the taxon sufficiently large
for taxometric analysis? Although the question is hypothetical, showing that estimates
conform to the guidelines above offers preliminary reassurance (later supplemented through
parallel analysis of comparison data) that the data are capable of detecting a taxon and
consequently may be appropriate for taxometric analysis. There are many ways to estimate
nt and p, and the best choice will depend on the research context. For example, if one is
testing the structure of a mental disorder, one could estimate the size of the taxon by tallying
the number (and proportion) of cases that meet the diagnostic criteria for the disorder.
Alternatively, if there is a validated or conventional cutting score on a measure available in
the data set, one can see how many cases score above this level. It is incumbent on the
researcher to present a best-guess estimate, or perhaps a range of plausible estimates, of the
size of the putative taxon. Contrary to occasional misconceptions, doing so does not mean
that one believes a categorical model will fit the data better than a dimensional model. The
point is to ensure that taxometric analysis is capable of providing an informative test
between these two competing models.

Number of Indicators
By convention, the variables that are submitted to taxometric analysis are referred to as
indicators. There is no rule of thumb for the number of indicators that is acceptable, but
some tentative guidelines can be suggested. At least k = 2 indicators must be present to
perform any taxometric analyses, and some procedures require k ≥ 3. Three simulation
studies have evaluated the influence of k on the accuracy of taxometric results obtained
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using multiple taxometric procedures.Ruscio et al. (2010) found that there was little risk of
incorrect results even with just k = 3, the smallest value included in the study, although the
proportion of ambiguous results decreased further with larger values of k. Walters and
Ruscio (2009) found that performance deteriorated for k < 5 when data varied along ordered
categorical response scales (i.e., Likert-type scales with a fixed number of response options),
especially with fewer than 4 ordered categories (i.e., response options). This is noteworthy
given that Likert-type scales are commonly used in assessments of clinical constructs.
Finally, Ruscio and Walters (in press) found that reasonably accurate taxometric results
could be obtained with k = 2 provided that both sample size and the number of ordered
categories were large (e.g., N ≥ 600 and C ≥ 10). The number of ordered categories was
much more important than sample size, and accuracy increased steadily with the number of
ordered categories.

So where does this leave us? We suggest that for large samples of data—roughly, with an N
of at least 500 or 600—that vary along continuous scales (or scales with so many distinct
values that they approximate continuity well), k ≥ 2 should suffice. Below, we discuss
recommendations when data vary along ordered categories rather than approximating
continuity, in which case more indicators are likely to be required for informative results.
Our advice in these areas is based on the findings of simulation studies, but because the
interactions between the relevant factors revealed graduated trends rather than step
functions, we offer criteria hesitantly and caution against their rigid application.

Number of Ordered Categories
Here, too, no rule of thumb has been suggested, but a few investigations have studied the
number of response categories along which the indicators vary. Walters and Ruscio (2009)
found that accuracy was poor with C < 4 ordered categories (i.e., with dichotomous or
trichotomous response scales). They recommended that, when analyzing ordered categorical
data, one strive for a combination of C ≥ 4 and k ≥ 5. It is difficult to disentangle criteria for
C and k, but we suggest that C ≥ 4 should be adequate under most circumstances. When C <
4, it may be possible to increase the number of ordered categories by summing or otherwise
combining raw items into composite indicators, as we describe later. Sample size also
interacted with C and k in determining the accuracy of taxometric results. The influence of
sample size was not particularly strong, so one should only consider raising or lowering the
criterion for k if working with an especially small or large sample.

Indicator Validity
Like the size of the putative taxon, indicator validity involves a hypothetical question: If the
data are categorical, do the indicators differentiate members of the taxon and complement
with sufficient validity for taxometric analysis? Even if data are categorical, if the groups
overlap too much in their scores on the indicators, it would be impossible for taxometric
procedures (or any other data-analytic tool) to distinguish this categorical structure from a
purely dimensional structure. Meehl’s (1995) rule of thumb is that indicators must
differentiate members of putative groups with a validity of d ≥ 1.25; this is usually indexed
using Cohen’s d, the standardized mean difference between groups.Ruscio et al. (2010)
found that accuracy does in fact decline sharply with d < 1.25, so we echo Meehl’s advice.

Estimating indicator validity requires assigning cases to putative groups so that d can be
calculated. Once again, it is the researcher’s responsibility to justify the method used to
classify cases for estimating indicator validity. Cases might be grouped on the basis of a
diagnostic algorithm, a cutting score on a valid assessment instrument, or some other
method. If no reasonable grouping variable is available, cases can be assigned to groups
using the estimated taxon base rate P. This base-rate classification procedure involves
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calculating a total score across all indicators (after standardizing them, if necessary), then
assigning the highest-scoring proportion P of cases to the putative taxon and all other cases
to the complement (Ruscio, 2009). Throughout this article, we assume that taxon members
score higher on each indicator, which may require reverse-scoring some or all indicators
prior to analysis. Having classified cases in whatever manner seems most appropriate,
Cohen’s d can then be calculated for each indicator.

Within-Group Correlations
Meehl’s (1995) rule of thumb for within-group correlations between indicators is rwg ≤ .30.
Ruscio et al.’s (2010) findings were consistent with this advice, so we reiterate it here. As
with taxon size and indicator validity, considering this data characteristic involves a
hypothetical question: If the data are categorical, are the indicators sufficiently independent
of one another within groups for taxometric analysis? Note that this does not mean that
indicators should be correlated at low levels in the full sample. If the indicators do in fact
represent multiple facets of a target construct, they should be positively correlated in the full
sample. The problem with large within-group correlations is that they interfere with the
ability of taxometric procedures to produce different patterns of results for categorical and
dimensional data.

Estimating within-group correlations can—and should—be done using the same
classification of cases with which indicator validity was estimated. Provided that this neither
accentuates nor masks outliers in a correlation matrix, usually the mean rwg is reported for
each group or, if these are similar in magnitude, a single mean is reported for all correlations
within both groups. An unresolved question involves what to do if within-group correlations
are widely dispersed, with an acceptable mean rwg but some values above the conventional
threshold. As discussed shortly, one might consider removing or combining indicators that
yield unacceptably large within-group correlations.

Data Management and Reporting Parameter Estimates
Before taxometric analysis can begin, researchers must select or construct a set of indicators
from what may be a much larger number of variables available in the data set. A few general
principles can help to guide this process. First, strive for representation of theoretically
important facets of the target construct. Although the clarity of taxometric results has been
shown to increase with number of indicators, the objective is not to include as many
indicators as possible. Such a “kitchen sink” strategy might backfire if the number of
variables surpasses the number of conceptually distinct facets of the target construct,
increasing the likelihood of problematically large within-group correlations. A better
approach is to include only as many indicators as there are conceptually distinct facets of the
construct under study.

This leads to our second principle: Combine or remove redundant variables to arrive at a set
of reasonably distinct indicators. Variables that correlate very highly with one another
within putative groups make good candidates for aggregation into composites that can then
serve as indicators. In addition to reducing within-group correlations, forming composite
indicators can increase the number of ordered categories per indicator (which is especially
useful when the original variables range across few values) as well as increase the reliability
and validity of the resulting indicators. For these reasons, composite variables can be more
effective indicators than individual variables under many circumstances.

Third, take an iterative approach to the process of selecting or constructing indicators.
Construct a set of candidate indicators based on theoretical considerations, then evaluate
them empirically. Do the values (or estimates) of k, C, d, and rwg appear acceptable for
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taxometric analysis? Can the indicators be improved by reconfiguring the raw variables in
some way? Typical data sets in psychopathology research contain many features that make it
challenging to obtain clear, interpretable taxometric results. Putative taxa are often small,
their members’ scores often overlap substantially with members of the complement,
response scales often span few ordered categories, and even variables that appear to be
conceptually distinct are often correlated with one another within groups. It may take
considerable effort in a trial-and-error process to craft a set of indicators that meet the data
requirements of taxometric analysis.

Before leaving this section, we want to briefly discuss the purpose and practice of estimating
parameters a priori and post hoc. A priori estimates, those obtained before performing the
taxometric analyses that will ultimately be reported and interpreted, can be useful to
demonstrate that a data set is appropriate for taxometric analysis. For this purpose, we
recommend that researchers report a single set of parameter estimates (i.e., taxon size,
indicator validity, within-group correlations) for that indicator set based on the single, best
classification of cases available for the data. In taxometric reports, it is not uncommon for
multiple sets of parameter estimates to be presented, typically one set for each taxometric
procedure that was performed. We recommend instead that cases be assigned to groups in
the most defensible manner possible, and that a priori parameter estimates be presented
based on this classification alone. An important exception is in cases where more than one
defensible classification is available, provided the multiple classification methods are chosen
deliberately and justified clearly. For example, there may be multiple cutting scores that
could reasonably be applied to a given assessment instrument (e.g., one for “clinically
significant” and another for “severe” symptom levels), or different thresholds may be
advocated by different authors for the same purpose. We have no qualms with estimating
parameters a priori more than once if there is a good reason to do so. Rather, we discourage
the reflexive reporting of parameter estimates appearing in the output of multiple taxometric
procedures, which are each based on different, atheoretical classifications of cases that are
probably less justifiable than one a thoughtful investigator can construct.

In contrast to the use of a priori parameter estimates to establish that a data set is appropriate
for taxometric analysis, estimating parameters once the final series of analyses has been
performed (post hoc) might be done in as many ways as possible to serve as a check on the
consistency of results (Meehl, 1995). We discuss the practice of consistency testing toward
the end of the next section. For now, we emphasize only that when one is estimating
parameters a priori for the purpose of reporting the estimates as evidence that the data are
suitable for taxometrics, we recommend using the most defensible classification of cases to
generate a single set of estimates.

Taxometric Procedures
Many taxometric procedures have been proposed, but three procedures form the core of
most contemporary taxometric studies: MAMBAC, MAXCOV (or the closely-related
MAXEIG or MAXSLOPE), and L-Mode. We review the mechanics of each procedure, the
decisions that must be made to implement it, and guidelines for making reasoned, thoughtful
choices. We illustrate the procedures with analyses of four data sets whose characteristics
are summarized in Table 1. Two of these data sets have characteristics that should make it
very easy for taxometric analysis to yield informative results (e.g., large sample size, many
indicators that span many ordered categories, and for the categorical data a large taxon); we
refer to one as our idealized categorical (IC) data set, the other as our idealized dimensional
(ID) data set. The other two data sets have characteristics designed to pose the kinds of
challenges typical of psychopathology data (e.g., more modest sample size, fewer indicators
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that span fewer ordered categories, skewed indicators, and for the categorical data a small
taxon).

As these are simulated data sets for which no conceptually meaningful a priori classification
of cases was available, preliminary MAMBAC, MAXEIG, and L-Mode analyses were
performed without comparison data to estimate the taxon base rate (see Table 2); the mean
of these estimates was used to classify cases into groups in order to estimate latent
parameters (i.e., size of the putative taxon, indicator validity, within-group correlations) and
to generate a population of categorical comparison data. A single population of N = 100,000
was generated with categorical structure, then a second population of the same size was
generated with dimensional structure. Each taxometric analysis was followed by parallel
analysis of 100 random samples of data drawn from each simulated population of
comparison data.

Results for the four empirical data sets and corresponding comparison data are presented
graphically in Figures 1 through 4. Each figure contains a panel of MAMBAC, MAXEIG,
and L-Mode curves. Within each two-curve panel, the results for the empirical data (dark
curve) are superimposed over the results for categorical (left graph) and dimensional (right
graph) comparison data (plotted as bands of values bounded by ±1 SD from the M at each
data point). All CCFI values appear in Table 3.

MAMBAC
The MAMBAC procedure (Mean Above Minus Below A Cut; Meehl & Yonce, 1994)
requires only two indicators: one (the “input” indicator) is used to sort cases along a score
distribution, and the other (the “output” indicator) is used to calculate mean differences for
cases falling above and below a moving cutting score on this score distribution. This mean
difference is plotted along the y axis of a MAMBAC graph, with case numbers plotted as the
x axis. The first cutting score is located near the lowest-scoring case on the input indicator.
Cutting scores are then advanced some number of cases until the final cutting score is
reached; this will be located near the highest-scoring case. This yields a MAMBAC curve
that shows how the mean difference for cases above and below the cut varies with the
location of the cutting score. For prototypical categorical data, the MAMBAC curve is
expected to be convex, with a maximum value near the cutting score that best distinguishes
taxon and complement members. The location of the peak suggests the relative sizes of the
taxon and complement; the further toward the right, the smaller the taxon (see Meehl &
Yonce, 1994, for the algorithm used to estimate the taxon base rate from a MAMBAC
curve). For prototypical dimensional data, the MAMBAC curve is expected to be concave,
often described as “dish-shaped” in the taxometric literature.

Illustration—Figures 1 and 2 (top panels) show MAMBAC curves for our idealized
categorical and dimensional data sets, respectively. Without even referring to the CCFI
values, it is obvious that the IC curve perfectly matches the prototypical expectation for
categorical data and the ID curve perfectly matches the prototypical expectation for
dimensional data. The CCFI value of .947 provides extremely strong support for the superior
fit of a categorical model for the IC data set, whereas the CCFI of .047 provides comparably
strong support for the superior fit of a dimensional model for the ID data set. Figures 3 and 4
(top panels) show the MAMBAC curves for our representative data sets. Each curve rises
toward a cusp at the right end, an interpretationally ambiguous shape. Notably, neither curve
looks much like the prototypical MAMBAC results. It consequently is hard to tell whether
these curves should be considered concave (indicative of dimensional structure) or whether
the right-end cusp should be considered a peak in the curve (indicative of a very small
taxon). The reason that the RC and RD data sets exhibit this pattern is that the indicators are
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positively skewed; all skewness values are approximately 1.00. Ruscio et al. (2004)
demonstrated that positively skewed indicators tend to yield rising, ambiguously shaped
MAMBAC curves of the sort shown here. Parallel analyses of comparison data help to
resolve this ambiguity. For RC, it is clear that the empirical results resemble those for the
categorical comparison data more closely than those for the dimensional comparison data;
the CCFI value of .733 provides objective support for this interpretation. For RD, the results
are less clear, but there is a closer visual match to the dimensional comparison data; the
CCFI value of .459 favors a dimensional interpretation, but is close to the ambiguous value
of .50 and should be interpreted with caution. In practice, we recommend drawing final
conclusions based on the results from all procedures rather than relying solely on individual
CCFI values. As we’ll see, the full array of CCFI values does provide consistent support for
the dimensional structure of RD.

Implementation—When performing MAMBAC, there are many decisions to be made
about how to implement the procedure. Our analyses illustrate the choices we can
recommend based on existing methodological research. First, we performed analyses using
all pairwise configurations of indicators, with each indicator, in turn, serving as the input
indicator while each other indicator served as output indicator. This yields k(k — 1)
MAMBAC curves, which we averaged for presentation and calculation of the CCFI. Walters
and Ruscio (2009) compared this pairwise strategy to the use of summed input indicators,
wherein each indicator serves once as the output indicator and the sum of the remaining k —
1 indicators serves as the input indicator, yielding k MAMBAC curves. Results showed
essentially equivalent accuracy across these two strategies. The pairwise strategy has the
advantage of providing more opportunities to determine whether particular indicators, or
combinations of indicators, yield especially clear or ambiguous results; this might be helpful
for refining a set of indicators to provide a more informative analysis. When performing the
analyses that will ultimately be reported and interpreted, there seems to be no empirical
reason to prefer either technique.

A second decision concerns how to locate cuts along the input indicator. Walters and Ruscio
(in press) compared five ways to do this, varying the number or proportion of cases beyond
the two most extreme cuts while holding the total number of cuts along the input indicator
constant at 50 (this is the norm, though it has not been empirically tested against smaller or
larger values). Results showed that it made fairly little difference how cuts were located,
with slightly greater accuracy when leaving a small, fixed number of cases beyond the
extreme cuts; this finding was not qualified by an interaction with the size of the taxon in
categorical data sets. We located the first and last cuts 25 cases from each end, and we used
a total of 50 cuts.

Third, if there are tied scores on the indicators, we strongly recommend performing internal
replications to counteract the effect of locating cuts arbitrarily between cases with tied
scores. By internal replications, we refer to a procedure by which scores on the input
indicator are randomly re-sorted to shuffle the order of cases with tied scores, and the
analysis is re-run. After the full series of internal replications, the mean differences at each
cut are averaged across the replications to produce the final results. Using a sufficient
number of internal replications cancels out the obfuscating effects of locating cuts between
cases with tied scores, where it is completely arbitrary which cases fall on either side of the
cut. Indicators in the RC and RD data sets vary across only 5 ordered categories, and
indicators in the IC and ID data sets vary across 20 ordered categories; both scenarios result
in a large numbers of tied scores. Using 50 cuts may seem absurd when only 5 or 20 distinct
values occur on the input indicator, as most of the cuts will be located between cases with
tied scores. It turns out that this not only poses no problem, but actually yields smoother,
more interpretable curves than a smaller number of cuts—provided that one uses internal
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replications. Naturally, there are diminishing returns with the use of larger numbers of
internal replications, and the benefits need to be balanced against the increase in computing
time required to complete the analysis. Ruscio and Walters (in press) examined the
performance of MAMBAC with 1, 5, 10, or 25 internal replications and found that there was
relatively little gain beyond 10 replications. There is no harm in using more, provided time
allows this luxury. In our analyses, we used 25 internal replications.

Fourth and finally, one should determine whether or not it is appropriate to present an
averaged MAMBAC curve rather than the full panel of curves. Our analyses of IC and ID
yielded 30 curves each, and our analyses of RC and RD yielded 12 curves each. We
examined the full panels of curves and judged them sufficiently consistent in shape that a
single, averaged curve could represent the full panel well. Likewise, we calculated the CCFI
using only averaged curves. Research has not yet examined the potential utility of
calculating CCFI values for each curve in a full panel, but we do recommend inspecting the
full panel to determine whether some indicators provide less interpretable results. This can
be helpful to refine a set of indicators for a more powerful analysis. Please note that we are
not advocating the selection of indicators based on whether one favors the results they
provide. Rather, we are suggesting that if some indicators consistently yield ambiguous
results, it may be reasonable to reconsider their use, perhaps combining them with other
indicators or removing them from analysis.

MAXCOV
The MAXCOV procedure (MAXimum COVariance; Meehl & Yonce, 1996) requires three
indicators, one serving as the input indicator along which cases are sorted, the other two
serving as output indicators whose covariance is calculated within ordered subsamples of
cases. Each covariance is plotted along the y axis of a MAXCOV graph above the mean
score for that subsample on the input indicator, located on the x axis. This yields a
MAXCOV curve that shows how the association (covariance) between two indicators varies
across subsamples of cases scoring at low, intermediate, and high levels on the input
indicator. For prototypical categorical data, the curve is expected to be peaked, with a
maximum value occurring within the subsample that contains the most equal mixture of
taxon and complement members. In lower-scoring subsamples that contain mostly
complement members, the covariances should be lower because of the small within-group
correlations among indicators. The same is true in higher-scoring subsamples. It is only
when subsamples contain a mixture of groups that covariances should increase, as the
combination of complement members with low scores on both output indicators and taxon
members with high scores on both output indicators creates a positive association between
these indicators. As with MAMBAC, the location of a peak suggests the relative sizes of the
taxon and complement; the further toward the right, the smaller the taxon (see Meehl &
Yonce, 1996, for the algorithm used to estimate the taxon base rate from a MAXCOV
curve). For prototypical dimensional data, the MAXCOV curve is expected to be flat,
exhibiting a fairly constant positive covariance due to shared loadings on one or more latent
dimensions. When there are more than three indicators, analyzing them in triplets yields k(k
— 1)(k — 2)/2 MAXCOV curves.

MAXEIG—Waller and Meehl (1998) introduced the MAXEIG procedure (MAXimum
EIGenvalue) as a multivariate generalization of MAXCOV. Rather than calculating the
covariance between two output indicators as in MAXCOV, one calculates the first (largest)
eigenvalue of the covariance matrix (the usual variance-covariance matrix, with variances
replaced on the diagonal by 0s to leave only covariances) for two or more output indicators.
This allows all available indicators to be included in each analysis. Using each indicator
once as input indicator (with the remaining k — 1 indicators serving as output indicators for
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that analysis) yields k MAXEIG curves. The interpretation of MAXEIG curves is the same
as for MAXCOV, as is the algorithm for estimating the taxon base rate (see Ruscio et al.,
2006, for details on how the MAXCOV technique was adapted for MAXEIG).

MAXSLOPE—Grove and Meehl (1993) introduced the MAXSLOPE procedure
(MAXimum SLOPE) as a simplified version of MAXCOV that requires only two indicators.
A scatterplot is constructed between the two variables, and from this a nonlinear regression
is calculated using a technique such as Cleveland’s (1979) LOWESS (LOcally WEighted
Scatterplot Smoother) procedure. For prototypical categorical data, the LOWESS curve is
expected to follow an S-shaped trajectory, with fairly flat slopes among low-scoring cases
(mostly complement members, among whom the indicators do not exhibit strong
correlations) and high-scoring cases (mostly taxon members, among whom the indicators
also do not exhibit strong correlations), but steeper slopes among intermediate-scoring cases
including a mixture of group members. For prototypical dimensional data, the LOWESS
curve is expected to be straight, with a fairly consistent positive slope.

Rather than displaying the scatterplot itself, Ruscio and Walters (in press) suggested
changing the y axis from indicator scores to the slope of the LOWESS curve. Changing a
MAXSLOPE graph from a scatterplot to a plot of slopes by indicator scores offers three
significant benefits. First, the graph takes on an appearance similar to those for MAXCOV
or MAXEIG, which renders the results easier to interpret for those more familiar with these
procedures. Second, results for the full panel of k(k — 1) MAXSLOPE analyses can be
averaged for presentation in a single graph. Third, results for parallel analyses of comparison
data can be presented in the usual manner and a CCFI value can be calculated.

Selecting a Procedure—Because the MAXCOV, MAXEIG, and MAXSLOPE
procedures are so closely related, it would not be advisable to perform more than one of
these to contribute results for consistency testing. Any apparent consistency could too easily
be spurious, owing more to the conceptual and mathematical similarities of the procedures
than to anything else. While engaged in the iterative process of refining an indicator set for
analysis, it might be helpful to use MAXSLOPE to examine the influence of particular
indicators within paired combinations, or MAXCOV to examine the results within triplets.
However, we recommend choosing just one of these procedures for the final series of
analyses that will be reported and interpreted. MAXSLOPE is the only choice when just two
indicators are available. MAXCOV and MAXEIG give virtually identical results with k = 3
indicators; the only difference in this instance is that the eigenvalues are the absolute value
of the covariances and so cannot be negative.Ruscio et al. (2010) found that MAXCOV and
MAXEIG produced nearly identical results even with k > 3 indicators; across the 100,000
data sets in that study, CCFI values for MAXCOV and MAXEIG were correlated at r > .999
and their difference scores were close to 0 (M = .000, SD = .006). Some researchers seem to
prefer MAXCOV and others MAXEIG, but we are aware of no empirically supported
reason to prefer either.

Illustration—Figures 1 and 2 (middle panels) show MAXEIG curves for our idealized data
sets. Once again, the IC curve perfectly matches the prototypical expectation for categorical
data and the ID curve perfectly matches the prototypical expectation for dimensional data.
The CCFI values of .958 and .076 provide extremely strong support for the better fit of
categorical and dimensional models, respectively, for these data sets. Figures 3 and 4
(middle panels) show the MAXEIG curves for our representative data sets. As was the case
for MAMBAC, each of these rises toward a cusp at the right end, albeit in a somewhat
choppy manner due to the small number of ordered categories. By the standards of
prototypical MAXEIG curve shapes, these would be considered suggestive of a very small
taxon. Again, however, the RC and RD data sets exhibit this pattern because the indicators
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are positively skewed (Ruscio et al., 2004), and parallel analyses of comparison data resolve
the ambiguity. For RC, the empirical results more closely resemble those for the categorical
than the dimensional comparison data; the CCFI value of .757 provides objective support for
this interpretation. For RD, the results are clearer than they were for MAMBAC. There is a
closer match to the dimensional comparison data and the CCFI value of .353 supports this.

Implementation—Performing MAXSLOPE is straightforward. Provided that one is
comfortable with the scatterplot smoothing technique that a MAXSLOPE program uses
(e.g., the LOWESS method), there is nothing to decide except whether or not to average
curves. The issues involved are the same as for MAMBAC in that regard.

When performing MAXCOV or MAXEIG, though, there are important decisions to be made
about how to implement the procedure. Again, our analyses illustrate choices that we can
recommend based on ethodological research. First, we formed ordered subsamples along the
input indicator using overlapping windows rather than nonoverlapping intervals. Prior to
Waller and Meehl’s (1998) introduction of windows, the use of intervals was standard
practice. For example, the 2,000 cases in our idealized data sets could have been divided
into 10 deciles. This would have yielded 10 data points on our MAXEIG curves, each
subject to sampling error based on n = 200 cases. Instead, we used 25 windows that
overlapped 90% with one another. This yielded 25 data points, each subject to sampling
error based on n = 588 cases (see Waller & Meehl, 1998, for how to calculate n per
window). For any given subsample size n, one could use a much larger number of windows
than intervals, which helps to flesh out the shape of a MAXCOV or MAXEIG curve.
Walters and Ruscio (in press) compared 12 different ways to form ordered subsamples for
MAXCOV or MAXEIG analyses. They varied three factors: windows vs. intervals, fixed
number of subsamples vs. fixed subsample n, and the number/size of subsamples. Results
supported the use of 25 windows. This was superior to using intervals, using a fixed
subsample n, or using larger numbers of windows; these findings were not qualified by any
interactions with the size of the taxon in categorical data sets.

Second, under certain circumstances one might wish to increase the number of windows to
perform what is called the inchworm consistency test (Waller & Meehl, 1998). This was
originally introduced as a way to determine whether a cusp at the upper end of a curve
represents a small taxon or is merely the result of sampling error. With few windows, there
may be so many cases in each that even in the uppermost windows complement members
still outnumber taxon members. Hence, the MAXCOV or MAXEIG curve merely rises
toward a cusp and does not fall again to fully define a peak. Increasing the number of
windows decreases the number of cases in each, which would eventually allow taxon
members to outnumber complement members in the uppermost windows. Once this
happens, a peak (rather than a cusp) should emerge. Of course, reducing the subsample size
increases sampling error, and this may obscure rather than clarify the curve shape.Ruscio et
al. (2004) recommended the inchworm consistency test as a way to determine whether a
cusp at the upper end of a MAXCOV or MAXEIG curve represents a small taxon or is
merely the result of positively skewed indicators of a dimensional construct. Subsequent
work has found that categorical structure can be differentiated from dimensional structure
even with small taxa through the parallel analyses of comparison data (Ruscio & Marcus,
2007; Ruscio et al., 2010). Another reason to increase the number of subsamples, however,
is to improve the accuracy of taxon base rate estimates. A well-defined peak may lead to
more accurate estimates than a cusped curve, which is more ambiguous with regard to the
location of a region in which groups are mixed in equal numbers.

Third, as with MAMBAC, we highly recommend using internal replications (at least 10)
when there are tied scores on the indicators. Boundaries that are used to form windows
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might leave cases with tied scores in different subsamples, and internal replications will
reduce the obfuscating effects of arbitrary ordering of such cases.

Fourth, there is a long-standing practice of creating summed input indicators when each
varies along a small number of ordered categories. For example, two dichotomous indicators
can serve as output indicators, and the remaining k — 1 indicators can be summed to serve
as the input indicator for that analysis (Gangestad & Snyder, 1985). Walters and Ruscio
(2009) tested the utility of this approach and found that it cannot be recommended. Even
with indicators that span few ordered categories, allowing each to serve as an input indicator
yielded superior results to summing them for analysis. We are not suggesting that one can
necessarily obtain informative results for data spanning few ordered categories; rather,
Walters and Ruscio’s findings suggest that under these circumstances, using summed input
indicators will not help matters. This might seem surprising, but there is a parallel with
MAMBAC analyses. With MAMBAC, good results can be obtained even when the number
of cuts greatly exceeds the number of unique scores on the input indicator. With MAXCOV
or MAXEIG, good results can be obtained even when the number of subsamples greatly
exceeds the number of unique scores on the input indicator. The key in both instances is to
recognize the value of forming subsamples (above and below a cut for MAMBAC, windows
for MAXCOV or MAXEIG) at a series of successive case numbers. This can and does result
in many cases with tied scores falling in different subsamples, but the use of internal
replications handles this nicely.

For the reader who has trouble accepting this assertion, we present an extreme illustration
with the hope that a picture will be worth a thousand words. Figure 5 shows the results of a
MAXEIG analysis with 100 windows for a categorical data set with 8 dichotomous
indicators and a taxon base rate of P = .10 in a sample of N = 600 (hence nt = 60). Summed
input indicators were not used; instead, the input indicator for each of the 8 MAXEIG curves
varied across only two values, and the use of 25 internal replications helped to smooth the
shape of the curves. We have seen reviewers flatly insist that the number of subsamples in a
taxometric analysis cannot exceed the number of distinct values on the input indicator, else
the results would be uninterpretable. This example disproves that strong claim. The CCFI
value of .756 strongly supports the better fit of a categorical than a dimensional model. We
hasten to add, however, that we are not recommending the analysis of dichotomous
indicators. As noted earlier, Walters and Ruscio (2009) found that results were much less
accurate with fewer than four ordered categories. Our point is that one need not worry about
having more subsamples than input indicator scores, nor should one feel obliged—or even
tempted—to form summed input indicators in a MAXCOV or MAXEIG analysis.

L-Mode
The L-Mode procedure (Latent Mode; Waller & Meehl, 1998) requires at least three
indicators. The indicators are submitted to a factor analysis. Factor scores are estimated for
the first factor using Bartlett’s (1937) weighted least squares method, and the density of their
distribution is plotted. For prototypical categorical data, the distribution is expected to be
bimodal and the location of each mode can be used to generate an estimate of the taxon base
rate (see Waller & Meehl, 1998, for details). For prototypical dimensional data, the
distribution is expected to be unimodal.

Illustration—Figures 1 and 2 (bottom panels) show such factor score density plots for our
idealized data sets. The L-Mode graph for the IC data perfectly matches the prototypical
expectation for categorical structure and the graph for the ID data perfectly matches the
prototypical expectation for dimensional structure. The CCFI values of .964 and .103
provide extremely strong support for the better fit of categorical and dimensional models,
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respectively, for these data sets. Figures 3 and 4 (bottom panels) show the factor score
density plots for our representative data sets. At first glance, each of these appears to be
unimodal. For the RC distribution, there is some lumpiness in the right tail that one might
interpret as evidence of a small taxon. However, by that standard one might be forced to
judge the distribution for the RD data as bimodal, too, as the shoulders of this distribution
appear to be separated by a slight dip. In our experience, L-Mode graphs based on non-
idealized research data are often somewhat ambiguous.

Steinley and McDonald (2007) counted the modes in factor score density plots, with modes
operationalized as local maxima, and found that this technique performed reasonably well in
identifying dimensional data (i.e., counts yielded one mode) but poorly in identifying
categorical data (i.e., counts yielded either too few or too many modes). Ruscio and Walters
(2009) found that counting modes was not very accurate even for dimensional data when
indicators were skewed, because the long right tail of a distribution was prone to exhibiting
local maxima. They found that parallel analyses of comparison data were considerably more
helpful than counting modes for distinguishing dimensional and categorical structure,
especially using skewed indicators. In the present case, parallel analyses of comparison
resolved the ambiguity well. For RC, the empirical results resemble those for the categorical
comparison data more closely than those for the dimensional comparison data, and the
opposite is true for RD. The CCFI values of .771 for RC and .377 for RD support these
interpretations.

Implementation—L-Mode is a very straightforward procedure to perform. Unless one is
considering the removal of an indicator during the iterative process of refining the indicator
set, there appears to be little reason to perform L-Mode with a subset of the indicators rather
than the full set. In any event, once a set of indicators is considered finalized for analysis, L-
Mode should probably be performed only once using all available indicators. The advantage
of performing multiple L-Mode analyses using systematically chosen subsets of the
indicators would be to check the consistency of results. Because other effective means of
checking consistency are available, as we describe below, we are not optimistic that multiple
L-Mode graphs are worth the likely loss in power associated with submitting only a subset
of indicators to each analysis.

Ruscio and Walters (2009) also introduced a new technique for estimating the taxon base
rate from L-Mode results. Waller and Meehl’s (1998) technique requires the location of two
modes, and this is often a subjective process because two and only two local maxima may
not emerge in a factor score density plot. Rather, there might be a single local maximum
with one or more distinct “humps” in the downward sloping regions on either or both sides,
or there might be more than two local maxima. Ruscio and Walters developed an approach
that alleviates the need to locate modes. Instead, one generates multiple populations of
categorical comparison data, each with a different taxon base rate, and uses each to calculate
a CCFI value. The base rate used to generate the population of categorical comparison data
that yielded the largest CCFI value serves as the taxon base rate estimate. Not only is this
method applicable with no subjective judgment required to locate modes, it yielded greater
accuracy than the original technique (Ruscio & Walters, 2009). To illustrate this approach,
we performed six L-Mode analyses of RC using taxon base rate estimates of .05, .10, .15, .
20, .25, and .30 to generate the populations of categorical comparison data for each (the
same population of dimensional comparison data was generated for each analysis). Ruscio
and Walters introduced this approach in a paper about L-Mode and tested it using that
procedure, and Ruscio (2009) illustrated something very similar using MAXEIG. We
suggest—though it merits rigorous testing—that this approach might work well if mean
CCFI values are calculated across multiple taxometric procedures, rather than using L-Mode
alone. Figure 6 plots the series of CCFI values obtained using L-Mode alone (dotted line)
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and the series of mean CCFI values obtained using MAMBAC, MAXEIG, and L-Mode
(solid line). For each series, the maximum CCFI value emerged with a base rate of .10,
which coincides with the actual taxon base rate in the RC data set.

Consistency Testing
A hallmark of taxometric investigations is the examination of consistency of results across
multiple data analyses.Ruscio et al. (2006) reviewed a wide range of consistency tests that
have been proposed, noted that few of these had been subjected to rigorous empirical trials,
and suggested that fewer still had fared well in such trials. As of that time, despite universal
agreement in the taxometric literature on the importance of consistency testing, nobody had
operationalized this practice. What tests should be performed? What counts as sufficiently
consistent evidence to draw a conclusion? These questions had seldom been raised
explicitly, let alone addressed empirically.

Until very recently, perhaps the most popular consistency test had been to compare the taxon
base rate estimates derived from multiple taxometric procedures. Many procedures provide
multiple estimates of the taxon base rate, typically one per curve produced by the procedure.
It has long been argued that, if a taxon exists, its size should be estimated consistently within
and across procedures, whereas for dimensional data, taxon base rate estimates should be
dispersed more widely because there is no constant entity whose size is being estimated
(Meehl, 1995). This reasoning seemed highly plausible, and we ourselves repeated the
assertion in many places.

Based on rigorous study (e.g., Ruscio, 2007; Ruscio et al., 2006), however, we can no longer
recommend the examination of taxon base rates as a taxometric consistency test. Under
some data conditions categorical data yield a smaller SD of base rate estimates than
dimensional data. However, under many other data conditions this is not true. In general,
there does not appear to be a useful threshold that one can apply within or across procedures
such that values below this threshold accurately identify categorical data and values above
this threshold accurately identify dimensional data. Even the results for our four data sets,
shown in Table 2, demonstrate the danger of drawing conclusions from the consistency (or
inconsistency) of taxon base rate estimates. Values in parentheses are SDs of base rate
estimates. All of these are small irrespective of latent structure, and for some comparisons
they are smaller for dimensional than categorical data (e.g., SD across procedures was lower
for RD than RC). More to the point, large-scale simulation studies have failed to support the
utility of base rate consistency testing, and we find the evidence sufficiently compelling to
recommend against its use. This recommendation runs counter to common practice, as most
taxometric reports (86% of the 57 published studies reviewed by Ruscio et al., 2006) have
included estimates of the taxon base rate, and nearly as many (72%) included some kind of
base rate consistency test. Although some editors or reviewers may continue to expect this
test, we advocate making a data-based argument against the practice.

So what do we recommend with regard to consistency testing? To our knowledge, the first
rigorous evaluation of an operationalized method for consistency testing was presented
byRuscio et al. (2010). They recommended performing multiple taxometric procedures,
averaging the CCFI values, and using dual thresholds at .45 and .55 to draw conclusions. In
other words, a mean CCFI less than .45 constitutes support for dimensional structure, a
mean CCFI greater than .55 constitutes support for categorical structure, and a mean CCFI
between .45 and .55 constitutes an ambiguous result from which no conclusions should be
drawn. For those who wish to exercise greater caution against mistaken conclusions, Ruscio
et al. recommended spreading the dual thresholds to .40 and .60 or using a non-
compensatory technique (e.g., each procedure’s CCFI value must be outside the ambiguous
range and in the same direction—all CCFIs < .45 [or .40] or all CCFIs > .55 [or .60]). Rates
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of accurate, ambiguous, and inaccurate results also varied depending on which taxometric
procedure(s) were performed (see Ruscio et al. for details). Selecting a criterion for
consistency involves a trade-off between accuracy and the likelihood of obtaining
ambiguous results; if one is more willing to tolerate the risk of ambiguous results, the
accuracy rate for results that are not ambiguous increases. It is too soon to tell whether this
approach to consistency testing or these interpretive standards will prove to be most useful,
but at present no alternatives have been operationalized and tested. We encourage
researchers to operationalize and test alternative approaches to consistency testing; the
100,000 samples in which Ruscio et al. tested their approach can be recreated to compare the
effectiveness of others. For now, we tentatively endorse the guidelines outlined by Ruscio et
al. as the only empirically-supported way to demonstrate consistency of results.

Table 3 shows the mean CCFI values across the MAMBAC, MAXEIG, and L-Mode
analyses for each of our four data sets. In each case, this mean value is not only outside the
narrow dual thresholds of .45 to .55, but also outside the broad dual thresholds of .40 to .60.
This suggests that, on the basis of these analyses, one could have considerable confidence
that a categorical model is a better fit for IC (mean CCFI = .956) and RC (mean CCFI = .
754), whereas a dimensional model is a better fit for ID (mean CCFI = .086) and RD (mean
CCFI = .396).Ruscio et al. (2010) showed that CCFI values in these ranges leave remarkably
little room for incremental improvements in accuracy; consequently, the present findings
suggest little or no reason to seek additional checks of the consistency of results. While we
wholeheartedly support the enterprise of consistency testing, we believe that its application
is best limited to data-analytic techniques whose incremental validity—specifically, the
contribution of valid information over and above what other results provide—has been
demonstrated empirically.

Concluding Remarks on Getting Started
We hope that this review of data requirements and implementation decisions provides
something fresh and valuable for those already familiar with Meehl’s taxometric method.
For those new to the method, though, we would like to close with some advice on how to get
started running your own taxometric analyses. Programs that can be used to perform all of
the taxometric procedures described and illustrated in this paper, as well as some additional
programs that can be helpful for related functions, are available for free at http://
www.tcnj.edu/~ruscio/taxometrics.html. A comprehensive user’s manual is available at the
same location; this describes the nuts and bolts of running the programs and illustrates them
with sample commands and output. Interested readers will find detailed discussions of the
many options available for implementing each program, including those discussed in this
paper as well as more minor issues not considered here. The user’s manual also contains a
brief introduction to the R computing environment in which the taxometric programs run;
the R software is available for free at http://www.R-project.org.

The user’s manual contains numerous sample commands that one can run to become
familiar with R and the taxometric programs. A good next step would be to modify the
commands to get a feel for the options that are available for each procedure and the effect
they can have on the results. One of the included programs allows users to create their own
categorical or dimensional data sets, with easy control over many important data
characteristics (e.g., sample size, number of indicators, indicator skew, number of ordered
categories, and, for categorical data, the taxon base rate, indicator validity, and within-group
correlations). Creating and analyzing artificial data sets is a useful way to experience
firsthand how various data conditions and procedural implementations affect taxometric
results, and serves as a bridge from reading the results of other people’s analyses to
performing one’s own. The subsequent step of carrying out an independent taxometric
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investigation will be feasible for those who are willing to navigate through what may be an
unfamiliar computing environment and who exhibit a healthy curiosity regarding an
unfamiliar statistical methodology. Anyone who has grappled with the theoretical,
methodological, and statistical challenges involved in doing good psychopathology research
should be capable of becoming adept at taxometric analysis.
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Figure 1.
Results for MAMBAC (top), MAXEIG (middle), and L-Mode (bottom) analyses of the
idealized categorical (IC) data set. Dark lines show the results for the IC data set, and lighter
lines show the results for parallel analyses of comparison data; the lines contain a band that
spans ±1 SD from the M at each data point on the curve.
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Figure 2.
Results for MAMBAC (top), MAXEIG (middle), and L-Mode (bottom) analyses of the
idealized dimensional (ID) data set. Dark lines show the results for the ID data set, and
lighter lines show the results for parallel analyses of comparison data; the lines contain a
band that spans ±1 SD from the M at each data point on the curve.
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Figure 3.
Results for MAMBAC (top), MAXEIG (middle), and L-Mode bottom) analyses of the
representative categorical (RC) data set. Dark lines show the results for the RC data set, and
lighter lines show the results for parallel analyses of comparison data; the lines contain a
band that spans ±1 SD from the M at each data point on the curve.
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Figure 4.
Results for MAMBAC (top), MAXEIG (middle), and L-Mode (bottom) analyses of the
representative dimensional (RD) data set. Dark lines show the results for the RD data set,
and lighter lines show the results for parallel analyses of comparison data; the lines contain a
band that spans ±1 SD from the M at each data point on the curve.
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Figure 5.
Results for a MAXEIG analysis of a categorical data set with eight dichotomous indicators
and a taxon base rate of P = .10. Dark lines show the results for the empirical data, and
lighter lines show the results for parallel analyses of comparison data; the lines contain a
band that spans ±1 SD from the M at each data point on the curve.
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Figure 6.
CCFI values for taxometric analyses performed using different taxon base rates. The dotted
line shows results for L-Mode, the solid line shows the averaged results for MAMBAC,
MAXEIG, and L-Mode. The vertical line highlights the actual taxon base rate (P = .10) for
these data.
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Table 2

Taxon Base Rate Estimates for Taxometric Analyses

Data Set

Idealized Categorical Idealized
Dimensional

Representative
Categorical

Representative
Dimensional

MAMBAC .497 (.065) .514 (.030) .206 (.068) .302 (.107)

MAXEIG .503 (.004) .643 (.043) .102 (.006) .296 (.044)

L-Mode .494a .500a .105b .361b

Across Procedures .498 (.005) .552 (.079) .138 (.059) .320 (.036)

Notes: For MAMBAC and MAXEIG, values are M (SD) across curves. The bottom row presents the M (SD) of the three procedures’ estimates.
MAMBAC = Mean Above Minus Below A Cut; MAXEIG = MAXimum EIGenvalue; L-Mode = Latent Mode.

a
Because estimates based on the locations of the left and right modes were very similar, the mean of these two estimates was used.

b
Because the location of the right mode was ambiguous (there was no local maximum), the estimate based on the location of the left mode was

used.
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Table 3

Comparison Curve Fit Index (CCFI) Values for Taxometric Analyses

Data Set

Idealized Categorical Idealized
Dimensional

Representative
Categorical

Representative
Dimensional

MAMBAC .947 .079 .733 .459

MAXEIG .958 .076 .757 .353

L-Mode .964 .103 .771 .377

Mean .956 .086 .754 .396

Notes: MAMBAC = Mean Above Minus Below A Cut; MAXEIG = MAXimum EIGenvalue; L-Mode = Latent Mode.
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