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Population codes assume that neural systems represent sensory
inputs through the firing rates of populations of differently tuned
neurons. However, trial-by-trial variability and noise correlations
are known to affect the information capacity of neural codes.
Although recent studies have shown that stimulus presentation
reduces both variability and rate correlations with respect to their
spontaneous level, possibly improving the encoding accuracy,
whether these second order statistics are tuned is unknown. If
so, second-order statistics could themselves carry information,
rather than being invariably detrimental. Here we show that rate
variability and noise correlation vary systematically with stimulus
direction in directionally selective middle temporal (MT) neurons,
leading to characteristic tuning curves. We show that such tuning
emerges in a stochastic recurrent network, for a set of connectivity
parameters that overlaps with a single-state scenario and multi-
stability. Information theoretic analysis shows that second-order
statistics carry information that can improve the accuracy of the
population code.

Cortical activity is highly variable during spontaneous activity
(1–4) and even when tested under constant experimental

conditions (5–8). This variability is thought to limit the capacity
of individual neurons to transmit information (9). Furthermore,
variability is often correlated among neurons, and thus, it cannot
be completely removed by averaging the population response
(9–12). Recent experimental studies have examined the second-
order statistics of neural responses across a variety of species,
cortical areas, tasks, and stimulus and/or attentional conditions
(13–17). In particular, it has been shown that the Fano factor
(FF)—that is, the ratio between the variance of the spike counts
over trials and its mean—is reduced when a stimulus is applied
(16), thus improving the encoding of the stimulus. Importantly,
both preferred and nonpreferred stimuli reduced the FF. In
addition, the evoked noise correlation—that is, the trial-to-trial
covariance of stimulus induced activity between two simulta-
neously recorded neurons—is also reduced upon stimulus pre-
sentation (18), after stimulus adaptation (19) or perceptual
learning (20), and under attention (14, 21), an effect that could,
under certain conditions, lead to more reliable estimates of the
mean population activity (22). Hence, there is a growing body
of evidence suggesting that the encoding of a signal through
cortical activity may be improved by minimizing both trial-
by-trial variability and noise correlations. However, it remains an
open experimental and theoretical question, whether these sta-
tistics are themselves tuned to different stimulus features, an
aspect that may be overlooked when only analyzing preferred
and nonpreferred stimuli.
Here, we examined the statistics of responses of area–middle

temporal (MT) neurons in awake, fixating primates, to moving
gratings and different plaid patterns of different directions, as
well as moving gratings of different luminance contrasts. Spe-
cifically, we examined the baseline levels and the evoked di-
rectional and contrast tuning of the FF of individual neurons and
the noise correlations between pairs of neurons with similar
direction preferences. To get further theoretical insight, we

investigated the effect of an applied stimulus on variability and
correlations in an extended ring network model implementing
direction selectivity (23).
We found that both the trial-by-trial variability and the noise

correlations among MT neurons showed a directional tuning that
is not trivially explained by firing rate variations alone. We dem-
onstrated that the tuning of these second-order statistics is well
explained by a ring model operating near or beyond a bifurcation
separating a single homogeneous state regime and a regime of
multistability. Finally, we evaluated the impact of tuned second-
order statistics on the accuracy of the population code.

Results
Tuning of the Trial-by-Trial Variability. Two experiments were ana-
lyzed to investigate the statistics of responses of area–MT neu-
rons as a function of motion direction and contrast of visual
stimuli. In our direction tuning experiment, we recorded 42
directionally selective cells from area MT in three awake fixating
macaques and 50 direction selective cells from two awake fixating
macaques in our contrast experiments (Methods and SI Methods).
Directional tuning was measured with square wave gratings and
plaid pattern stimuli (see Fig. 1 for a brief description of the
different stimuli used). Based on the responses to different
grating directions, we calculated a directional vector (SI Meth-
ods) for each neuron and the preferred direction (PD) was taken
to be the stimulus direction most similar to this directional
vector. Other directions were then assigned a value according to
their proximity relative to PD [i.e., ±45°, ±90°, ±135°, 180° (anti-
PD)]. We were interested in the rate variability after stimulus
onset for different directions of motion relative to preferred. We
therefore calculated the FF for the different stimulus directions,
using a sliding time window of 100 ms length, moving in 10 ms
steps. Fig. 1A shows the FFs for the population of cells for the
different stimulus types and motion directions (example single
cell activity is available in Fig. S1; FFs of different cell types are
shown in Fig. S2). Before stimulus onset FFs are relatively high,
as reported previously. Immediately after stimulus onset, FFs are
strongly reduced, irrespective of the motion direction. However,
within ∼100 ms the FFs associated with different directions of
stimulus motion diverge. FFs associated with motion in PD stay
at a low level, even if they increase slightly with time. FFs for
motion directions further away from preferred were higher and
seemed to peak for motion directions ±135° off preferred. Stimuli
moving in anti-PD were again associated with lower FFs.
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We quantified this apparent tuning by averaging the FFs during
the time window within 100–400 ms after stimulus onset for each
neuron (Fig. 1B). FFs showed an M-shaped tuning for most
stimuli, whereby FFs associated with preferred stimulus motion
were lowest, whereas those associated with stimulus motion ±135°
relative to preferred were the highest. A two-factor repeated
measures ANOVA revealed that the tuning of FF was significant
(P = 0.0429, two-factor ANOVA)—that is, FFs significantly var-
ied with direction of stimulus motion relative to preferred. There
was a trend for FFs to differ between different stimulus types, but
this did not reach significance (P = 0.0658, two-factor ANOVA).
Importantly, there was no interaction between stimulus type and
stimulus direction (P = 0.888, two-factor ANOVA), suggesting
that the FF tuning does not depend on the stimulus type.
In principle the M-shaped tuning of the FF could reflect a

nonlinear relation between variance and mean firing rate rather
than direction tuning per se (see Fig. 1C and Figs. S3 and S4 for

non-normalized mean firing rate and variance). If variance and
mean firing rate invariably diverged at intermediate firing rates,
then the FF tuning would thus not be useful for decoding
strategies (see below). To examine the dependence of FF on
response amplitude, we investigated the contrast-dependent FF
tuning of MT neurons to moving stimuli, when either preferred
(Fig. 1 D and E) or antipreferred motion was presented (see Fig.
S5 for antipreferred motion effects). FFs decreased as stimulus
contrast increased for both motion directions (although this was
more pronounced for preferred motion stimuli). Importantly, the
FF changes were monotonic throughout—that is, there was no
increase of FFs at intermediate firing rates (Fig. 1 E and F).
Thus, the FF directional tuning is not a by-product of a FF–
firing rate nonlinear relation.

Tuning of the Noise Correlations of Neurons with Similar Direction
Selectivity. We next determined whether covariance of firing
rates between neurons shows similar tuning to that of the FF. We
calculated the noise correlation for neurons recorded from one
or different recording electrodes (Methods and SI Methods),
provided their PD was within ±45° from one another. We then
took the overall PD to be the direction preferred by one of the
two neurons and calculated noise correlations for the different
stimulus directions relative to this PD. We recorded from 15
pairs with sufficiently similar PDs and calculated the tuning of
the noise correlation (Fig. 2). Noise correlations during sponta-
neous activity were close to 0.1. Stimuli moving in PD resulted in
noise correlations close to zero. Stimuli moving at 90° or 135°
relative to preferred resulted in noise correlations close to those
obtained during spontaneous activity. Although tuning of the
noise correlation data overall looks noisier than the FF tuning,
there still are indications of M-shaped tuning for all stimuli.
Importantly, noise correlations significantly differed for different
directions of motion (P = 0.0164, two-factor ANOVA)—that is,
they were tuned. Noise correlations differed significantly between
different stimulus types (plaid types and grating, P < 0.001, two-
factor ANOVA), but there was no interaction between stimulus
direction and stimulus type (P = 0.189, two-factor ANOVA).

Network Model.We next studied the behavior of a stochastic rate-
based network model (Methods and SI Methods) in spontaneous
(baseline) and evoked conditions. Here, we concentrate on the
statistics of the underlying firing rate and assume that spikes are
generated via a Poisson process. Thus, the spiking process is
doubly stochastic, and hence, the FF is the sum of the variance-
to-mean ratios of the underlying rate and the spike emission.
MT neuronal responses were modeled using a version of the

ring network model (23), composed of M neural populations,
each containing N neurons of same direction preference, rep-
resented by an angle θ (Fig. 3A). Neurons receive external and
lateral recurrent inputs and uncorrelated noise. Connectivity
between populations θ and θ’ depends only on the difference
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Fig. 1. Tuning of FFs for different motion directions. (A) Time-resolved
population FFs, indicated by color coding, for different stimuli and different
directions of motion relative to preferred, were calculated in sliding win-
dows of 100 ms shifted in 10 ms steps. The y-axis shows stimulus direction
(PD-preferred). The left side of the figure indicates the stimuli used: co-
herently moving plaids (Top), noncoherently moving plaids (Upper Middle),
depth ordered plaids (Lower Middle), and gratings (Bottom). (B) Averaged
FF (±SEM) for different stimulus types calculated within the time window is
indicated by the gray horizontal bar in A. The dashed line shows average (±
SEM) of FF before stimulus onset. (C) Normalized mean firing rate (±SEM)
for the different stimulus conditions and before stimulus onset (dashed line).
(D) Time-resolved population (n = 50 cells) tuning of FFs for different lu-
minance contrast (% Michelson contrast) when gratings of preferred motion
direction were presented. (E) Averaged FF (±SEM) calculated within the time
window is indicated by the gray horizontal bar in D. Dashed line, average FF
(±SEM) before stimulus onset. (F) Normalized mean firing rate (±SEM) for
the different stimulus contrasts and before stimulus onset (dashed line).

Fig. 2. Noise correlation tuning for different stimulus types. Averaged noise
correlations for different stimulus directions (relative to preferred). Neuro-
nal pairs had similar PDs. Error bars represent SEM. Solid horizontal gray line
represents mean value before stimulus onset (baseline), dashed lines the
corresponding SEM. Stimuli yielding the different noise correlations are
shown on the right.
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between PDs and is given by: W(θ, θ’) = J0+J2cos(θ–θ’), where J0
is a global uniform excitation (J0 > 0) or inhibition (J0 < 0) and
J2 is the magnitude of the spatial interaction that parameterizes
the level of network recurrence. The phase diagram of the net-
work―that is, its spontaneous state given the set of parameters
{J0, J2} in the absence of noise―is shown in Fig. 3B. For low J2,
the network converges to a homogeneous stable state in which all
neurons have the same low firing rate (Fig. 3C). For J2 higher
than a critical value (J2

c), the network enters into a multistable
regime, called marginal phase, and depending on the initial con-
ditions (ICs), settles into one ofM possible bumps of activity (Fig.
3D). For higher J2 and insufficient global inhibition (J0 < 0) or for
sufficiently high global excitation (J0 > 0), the network activity
saturates. Subject to stimulation, the steady-state response of the
network peaks for the neural population whose angle matches
the stimulus direction (Fig. 3 C and D)―independent of ICs.

Approximation of Second-Order Statistics, Weak Noise. To estimate
the network’s statistics, we used the Augmented Moment Method
(AMM) (24, 25) that approximates deterministic dynamical
equations for statistical moments of network activity (Methods
and SI Methods). This reduces the number of variables and
allows for parameter exploration that, otherwise, is unpractical
as moments estimation would require many simulations of the
entire stochastic system. In the AMM, the activity of a population
of N units is expressed by μ, the mean firing rate; γ, the averaged
firing rate fluctuations; and ρ, averaged covariance between pairs
of neurons. The degree of correlation inside a given population is
given by the quantity S (Methods and SI Methods). A limitation of
the AMM is that it is restricted to the case of weak noise (24). For
this reason, in the AMM framework, changes of second-order
statistics must be interpreted relative, between neural populations
or between spontaneous and evoked conditions, because their
absolute values depend on noise intensity. In addition, the AMM
cannot handle stochastic transitions between multiple stable
points, as it requires the distribution of the state variables to be
unimodal (26). For this reason, the AMM was not used to calcu-
late the spontaneous second-order statistics in the marginal
phase―this case is treated below using direct simulations. In this
phase, only evoked statistics were obtained, as the stimulus ef-
fectively clamped the network to a specific single bump state, and
thus, the validity conditions of the AMM are met.
Using the AMM we calculated the spontaneous and evoked

network’s mean activity (Fig. 4A), variances (Fig. 4B), and

correlations (Fig. 4C). J0 was fixed to –30, for which the bi-
furcation is at J2

c = 26.29. Notably, the variances and the cor-
relations of the different neural populations depend on the
connectivity parameters. Indeed, the derived equations for the
second-order statistics show the contribution of network inter-
actions (SI Methods). Far from the bifurcation (J2 < 26), the
variance (/correlation) is very weakly tuned and it is minimal
(/maximal) for the neural population for which the stimulus di-
rection is the preferred (Fig. 4 B and C, Insets). The neural
populations receiving the null stimulus are inhibited, and their
variance is dominated by the additive noise—that is, for these
populations, the network does not amplify the noise (SI
Methods). Near the bifurcation (J2 = 26.1), the evoked variance
and the correlation are strongly reduced compared with their
spontaneous level and show a pronounced directional tuning,
presenting an M-shape, with maxima for neural populations of
intermediate preference. This tuning is also found in the mar-
ginal phase (Fig. 4 B and C, last three panels), and as shown
below using direct simulations, both variances and correlations
are reduced from their spontaneous levels. Interestingly, for
sufficiently high spatial interaction, the tuning of the variance/
correlation does not depend on the tested stimulus contrast.

Second-Order Statistics, High Noise.We tested these predictions by
performing explicit simulations of the network in the presence of
high level of noise, which is ubiquitous in neural systems. In
addition, the input noise was a slow colored noise (SI Methods),
mimicking the slow fluctuations of ongoing activity and ensuring
that the rate fluctuations have a longer time scale within a trial,
instead of rapidly jittering around the mean level. We first ex-
amined the network in the homogeneous phase, near the bi-
furcation (Fig. 5 A–E). Network’s statistics were calculated in
two periods, before the stimulus application and after the net-
work stabilizes with a unique evoked bump of activity (Fig. 5 A
and B). Spontaneous and evoked variances are shown in Fig. 5C.
The resulting FF is reduced in the stimulus-elicited response,
and it is maximal for neural populations of intermediate pref-
erence, replicating the empirical results (Fig. 5D). Note also that
the dropdown of variance is less pronounced that for vanishing
noise; this is due to the well-known noise-smoothing of the

Fig. 3. Network phase diagram. (A) Neurons (small circles) are fully con-
nected and clustered into M populations (large circles). Arrows represent
spatially modulated connections from one population to the others. (B)
Depending on J0 and J2, and the ICs, the network converges to a single stable
state (homogeneous), to a bump of activity (marginal), or to a saturated
state (instability). For each set of parameters, 10 random ICs were used. The
red points indicate the parameters used in C and D. (C) Spontaneous (black)
and evoked (blue) mean activity profile in the homogeneous phase (J0 =
–40 and J2 = 20). (D) Spontaneous (for two different ICs, black and green,
respectively) and evoked (blue) mean activity profile in the marginal phase
(J0 = –40 and J2 = 33). Parameters, I0 = 1; β = 0.01; βI = 0.01; n = 20; M = 32,
θ* = 180°, C = 1.

Fig. 4. Network first- and second-order statistics, weak noise. (A–C) The
expected mean firing rates (μ), variances (γ), and intrapopulation correla-
tions (S) of the neural populations using the AMM in both spontaneous
(black) and evoked (green and red) conditions. J0 was fixed to –30, for which
J2

c = 26.29. The direction of the stimulus was θ* = 180°, and its contrast was
C = 0.5 (green) or C = 1 (red). In C, the gray shaded area indicates negative
values. Because the AMM cannot handle multistability, we did not treat the
spontaneous second-order statistics in the marginal phase (thus the absence
of a spontaneous line in B and C when J2 ≥ 27). Parameters, I0 = 1; β = 0.01;
βI = 0.01; n = 20; M = 32.
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threshold of the neurons’ transfer function. Similarly, the evoked
mean (Pearson) correlation coefficient among pairs of neurons
in each neural population is reduced and tuned (Fig. 5E). Both
FF and correlations are modulated by the stimulus contrast. In
the marginal phase, we found qualitatively the same results as
for the homogeneous phase (Fig. 5 G–J); however, the reduction
of the evoked variability and correlations comes from a concep-
tually different way in the different phases. In the homogeneous
phase, the network fluctuates around a single state (Fig. 5K) that
has more variability/correlation than the evoked attractor, whereas,
in the marginal phase, the network undergoes noise-driven tran-
sitions between the multiple spontaneous bump attractors (Fig.
5L) that increase the level of variability and correlations, but are
suppressed when a stimulus stabilizes the network in one state.
The empirical evoked FFs of MT neurons first decreased, irre-

spective of the motion direction, and then evolve to a function of
stimulus direction (Fig. 1A). Following previous studies suggesting
that a change in the field of view drives the initial phasic response
of neurons from visual areas, which later represents specific fea-
tures of the visual scene (27, 28), we showed that consecutive
application of a transient nonselective stimulus followed by a di-
rected stimulus might explain the sudden reduction of FF and
subsequent directional tuning (SI Methods and Figs. S6 and S7).

Effect of Stimulus-Dependent Second-Order Statistics on Coding
Accuracy. The above experimental and theoretical results indi-
cate that second-order statistics are stimulus-dependent. Sur-
prisingly, both rate variability and noise correlations are maximal
for neural populations for which small variations of stimulus di-
rection lead to pronounced mean firing rate variations. Thus,
these neural populations contribute the most to the encoding
information through mean firing rate variation (29). The ques-
tion arises of whether the directional tuning of the second-order
statistics impairs or improves the encoding of the stimulus. We
calculated the Fisher information (FI), which gives an upper
bound to the accuracy that any population code can achieve (29).
The FI takes into account the change of the mean activity and
covariances with respect to a variation in the stimulus direction
(SI Methods). It can be written as a sum of two quantities, FImean

and FIcov, representing the contribution of the mean response
and the covariance, respectively. Because empirical estimation of
the covariance matrix and its derivative requires a prohibitive
amount of data―composed of pairs of simultaneously recorded
neurons for each combination of considered direction prefer-
ences―we used the model to calculate the FI. FImean and FIcov
were calculated as a function of J2, for different stimulus con-
trasts (Fig. 6A). For low contrast and for increasing values of J2
approaching or exceeding the bifurcation value, the term FIcov is
of the same order or even larger than FImean. For higher con-
trasts, the term FImean dominates. Therefore, depending on the
network parameters and the stimulus contrast, a substantial part
of the information can come from the tuning of second-order
statistics. We tested these predictions by using direct simulations
of the entire network with high colored noise and by comparing
them to the case of a network with independent neurons, for
which the covariances were set to zero and the variances were set
to the mean value (Fig. 6B). We found that the presence of
stimulus-dependent variances and noise correlations can make
the population code as accurate as seen otherwise in a pop-
ulation of independent neurons.

Fig. 5. Network statistics at the edge and beyond the bifurcation. (A–E)
Network statistics in the homogeneous phase (J0 = –40; J2 = 32), near the
bifurcation (J2

c = 32.3). (A) Rates of three example neurons from different
populations (color-indicated direction selectivity as in the inset), for three
trials (i.e., simulations) among a total of 200 trials. The white line indicates
the onset of a constant stimulus of direction θ* = 180° and contrast C = 3.
(Inset) Color radiuses represent the stimulus intensity that neural popula-
tions (circles) receive. Colors indicate the PD of neural populations. (B and
C) Spontaneous (black) and evoked (blue, C = 1; green, C = 2; red, C = 3)
mean activity (B) and variance γ (C) in each population. (D) Relation between
the mean rate and the total variance (rate variance plus expected Poisson
variance), expressed as the FF. To compare with the empirical results, the FFs
of neural populations with similar (i.e., jθ–θ’j<45°) direction preferences
were averaged. (E) Spontaneous and evoked mean correlation coefficient.
All spontaneous and evoked statistics were computed in the two corre-
sponding time windows shown in A. (F–J) Same analysis as in A–E, but for
a network in the marginal phase (J0 = –40; J2 = 33). (K–L) Spontaneous firing
rates of the neurons (arranged according to their PD), in the homogeneous
(K) and the marginal (l) phases (gray scale). (Insets) Mean activity profile,
calculated in the time window shown in white. Parameters, I0 = 2, β = 0.01,
σ = 0.3, n = 20, M = 16.

Fig. 6. Impact of tuned second-order statistics on coding accuracy. (A)
FImean and FIcov (scaled by the total number of neurons) calculated using the
AMM, for different J2 and different stimulus contrasts compared with the
noise level (SN, signal-to-noise ratio). Because for low contrasts and high J2
the stimulus is not strong enough to stabilize a bump of activity centered at
the stimulus direction θ*, only data for which the evoked bump’s center
matches θ* are presented. (B) Scaled FImean and FIcov estimated using 2,000
direct simulations of the entire network, in the presence of colored noise.
The red trace represents the FI of a network in which covariances between
different neural populations are set to zero and variances are set to
the mean value. Parameters in A, I0 = 1, β = 0.01, βI = 0.01, n = 20, M = 60; in
B, I0 = 1, β = 0.01, σ = 0.3, n = 20, M = 60, C = 1.
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Discussion
We have shown that trial-by-trial variability and noise correla-
tions of MT neurons are significantly tuned to the direction of
moving gratings and plaid pattern stimuli. This tuning cannot be
explained by variation of the mean firing rate. Previous reports
suggest that variance and correlations increase with increasing
firing rate (8, 30), whereas here we showed that the FF is direc-
tionally tuned and that it is a not a side-product of a nonlinear
dependence between FF and firing rate that would make FFs
higher for intermediate firing rates. This suggests that the tuning
of the second-order statistics arises from a network effect. Using
a recurrent network, we show that the qualitative shape of the
tuning of second-order statistics emerges close to or in the
presence of multistability. In the model, trial-by-trial variability
and noise correlations are assumed to be determined by fluctu-
ations of the underlying rate functions that add an extra vari-
ability to the Poisson spike generation process. This assumption
is reasonable as the reported variability of MT neurons is higher
than the Poisson process—that is, FF > 1 (31–34) (Fig. 1B). Note
that both the evoked trial-by-trial variability and noise correla-
tions are reduced compared with their spontaneous levels, con-
sistent with previous empirical observations (16, 18), a feature
that is captured by the model.
Although the present model explains well the stationary dis-

tribution of variability and correlations, it hardly accounts for the
rich temporal evolution of neural response statistics. As a first
approximation, the sudden initial decrease of the empirical FF
following the stimulus onset might be exogenously driven by
nonselective pre-excitation (SI Methods). However, whether and
how internal network dynamics govern the transient evolution of
neural statistics remains an open question. Internal nonstationary
dynamics might be governed by single-cell or network features,
not considered in our simple model, such as excitation–inhibition
unbalancing (35); time lag between excitation and inhibition (36),
possibly mediated by different adaptation of excitatory and in-
hibitory cells (37); a change of the spiking-generation process due
to an increase of feed-forward inputs (18); or even a complex
interaction between sensory inputs and ongoing activity (38).
Previous empirical studies reported that FFs change with

stimulus due to negative correlations between FF and firing rate
(6, 39), whereas stimulus-dependent changes of trial-by-trial
variability have only been observed in the midbrain and thalamus
(40, 41). Variations of noise correlations with respect to speed of
moving targets and movement direction have been reported in
pairs of MT and motor–cortical neurons, respectively (42, 43).
Our study provides a theoretical framework to test hypotheses on
how a particular underlying connectivity and dynamical proper-
ties structure the fluctuations in neural networks.
Together, these results raise the question of how the structured

variability and correlations impact the efficiency of the population
code. Here, we showed that the covariance matrix evoked by the
stimulus provides a substantial contribution to the information
transmission, especially for low stimulus intensity. In this case, the
encoding accuracy of correlated neuronal populations practically
equals the accuracy of a population of independent neurons. Our
results are consistent with previous theoretical work showing that
information transmission in feed-forward models relies less on
correlations than in the case of recurrent models (44). Indeed, the
covariance increasingly contributes to the FI as model parameters
change the network from feed-forward to highly recurrent (Fig. 6).
Here, we provide experimental evidence suggesting that stimulus-
dependent correlations might be used to transmit information.
However, information readout from the covariance structure is
nontrivial and requires nonlinear schemes (45), and it remains to
be determined whether and how they are implemented by neural
systems in vivo.

The empirical results are well explained by a ring network
placed at the edge or beyond a bifurcation separating a stable
point of low activity and a set of stable bump states. Although the
rich spatiotemporal structure of spontaneous activity is often
associated with multistability (1–3, 46–48), this view is subject to
debate (49, 50). To elucidate the dynamical state of spontaneous
activity in MT, more investigation, using large ensembles of si-
multaneously recorded neurons, is needed. Nevertheless, the low
level of spontaneous correlations (∼0.1) reported here may be an
indication that the network operates in a single state, but near
the multistability. This view is supported by recent studies showing
that spiking networks represent better both the FF reduction and
the resting-state correlations of fMRI signals near criticality (51,
52). This scenario is functionally meaningful as, at this working
point, the network can rapidly react to an external stimulus and
represent it in one attractor.
Our results argue that variability and correlations of MT neu-

rons are globally attenuated and tuned upon stimulus application,
suggesting that second-order statistics are shaped in structured
networks in a way that can improve the population code.

Methods
Recording Techniques. After training, monkeys (Macaca mulatta) were im-
planted with a head holder and recording chambers above MT under gen-
eral anesthesia and sterile conditions, as described previously (53). All
procedures complied with the European Communities Council Directive RL
2010/63/EC, the US National Institutes of Health Guidelines for the Care and
Use of Animals for Experimental Procedures, and the UK Animals Scientific
Procedures Act. Single-unit activity from area MT was recorded using a
4-electrode devise (Alpha Omega), while grating and plaid pattern stimuli
were presented. Spike sorting techniques are detailed in SI Methods.

Visual Stimuli. Motion direction experiment. Animals fixated a 0.48-diameter
target (within 1.0–1.5°) during a 700 ms prestimulus and 2 s stimulus pre-
sentation period. For single grating motion and for each of the three-plaid
pattern, eight different directions of motion were used (22.5–337.58, in
steps of 45°). Motion direction for the plaid pattern is aligned to the motion
of the grating under the assumption that the “coherent” motion direction
corresponds to the motion direction of the single grating. Grating stimuli
and plaid patterns were generated as described previously (53).
Contrast experiment. Animals fixated a small target as described above during
0.5 s prestimulus and a 1s stimulus period. Generation of visual stimuli of
different luminance (Michelson) contrast is detailed in SI Methods.

Data Analysis. We analyzed the activity of single neurons and pairs of si-
multaneously recorded neurons that fulfilled our inclusion criteria (see SI
Methods for details). The criteria were defined to select stable recordings
(without drifts of activity) of neurons with significant directional selectivity
as measured by a direction index. For pairs of cells to be included into the
noise correlation analysis, their PD had to be within 45°. FFs and noise cor-
relations were calculated separately for each stimulus condition. Noise cor-
relation was calculated as the Pearson correlation coefficient (shift predictor
corrected) between the single-trial spike-counts recorded from the two cells
for each stimulus condition within the analysis window (SI Methods).

Model. We studied M interconnected neural populations, each containing
N neurons, using a rate-based model (SI Methods). Briefly, neural pop-
ulations are arranged on a ring, so that they are labeled by a unique angle θ
(23). Each neuron transforms rate inputs (u) into an output rate (r) through
a saturating transfer function H(u). The dynamics are given by:

τm
drmi ðtÞ
dt

= − rmi ðtÞ+H
�
um
i ðtÞ

�
+ ξiðtÞ [1]

and

um
i ðtÞ=

wmm

N− 1

X

j≠i
rmj ðtÞ+

X

n≠m

wmn

ðM−1ÞN
X

j

rnj ðtÞ+ ImðtÞ; [2]

where ri
θ(t) is the firing rate of unit i (1≤i≤N) from the populationm = θ, and

τm = 10 ms. H(u) = tanh(u/a)Θ(u), where Θ is the Heaviside function acting as
a threshold and a = 10. ξi(t) is an additive uncorrelated noise of size β.
The connection weight between populations θ and θ’ is wθ,θ’ = J0+J2cos
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(θ–θ’). I0 is a constant input. In stimulus condition, all neurons from
population θ receive an external input Iθ that is broadly tuned around θ*
and taken as Iθ = C(1–e+e.cos(θ–θ*)), e and C being the stimulus’ anisot-
ropy (fixed to 0.1) and contrast, respectively. Uncorrelated noise of
magnitude βI is added to Iθ. Rate variables were multiplied by 60 to get
a biological range of firing rates.

AMM. We used the AMM (24, 25) to express the system of stochastic dif-
ferential Eqs. 1–3 in terms of means—that is, μmðtÞ=RmðtÞ=N−1 P

i r
m
i ðtÞ;

variances—that is, γmðtÞ=N−1 P
i ½rmi ðtÞ− μmðtÞ�2; and covariances of network

activity—that is, ρmnðtÞ=N−2 P
i

P
j ½rmi ðtÞ− μmðtÞ�½rnj ðtÞ− μnðtÞ�. Using the

AMM, deterministic equations of motion of the moments are obtained

(SI Methods). The level of correlation inside a given population is expressed
by the synchronization ratio: Sm(t) = [Nρmm(t)/γm(t)–1]/(N–1) (SI Methods). Sm is
null in the asynchronous state, and it is equal to 1 in the completely synchro-
nous state in which all neurons have the same firing rate R(t) (24).
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