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Imposing curvature on crystalline sheets, such as 2D packings of
colloids or proteins, or covalently bonded graphene leads to
distinct types of structural instabilities. The first type involves
the proliferation of localized defects that disrupt the crystalline
order without affecting the imposed shape, whereas the second
type consists of elastic modes, such as wrinkles and crumples,
which deform the shape and also are common in amorphous
polymer sheets. Here, we propose a profound link between these
types of patterns, encapsulated in a universal, compression-free
stress field, which is determined solely by the macroscale confin-
ing conditions. This “stress universality” principle and a few of its
immediate consequences are borne out by studying a circular crys-
talline patch bound to a deformable spherical substrate, in which
the two distinct patterns become, respectively, radial chains of dis-
locations (called “scars”) and radial wrinkles. The simplicity of this
set-up allows us to characterize the morphologies and evaluate the
energies of both patterns, from which we construct a phase dia-
gram that predicts a wrinkle–scar transition in confined crystalline
sheets at a critical value of the substrate stiffness. The construction
of a unified theoretical framework that bridges inelastic crystalline
defects and elastic deformations opens unique research directions.
Beyond the potential use of this concept for finding energy-optimiz-
ing packings in curved topographies, the possibility of transforming
defects into shape deformations that retain the crystalline structure
may be valuable for a broad range of material applications, such as
manipulations of graphene’s electronic structure.
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Confining crystalline sheets to spherically curved substrates is
associated with an unavoidable geometric conflict, because

the local hexagonal packing, a planar tiling of equilateral tri-
angles, is incompatible with spherical geometry. According to
Gauss’s Theorema Egregium, the distortion of the preferred
equilateral packing grows in proportion to the fraction of sphere
area covered by the sheet, and consequently the sheet acquires
mechanical stresses. Resolving this conflict underlies a host of
problems in materials geometry, from assembly of proteins at cell
walls (1, 2) to the thermodynamics of phase-separated domains
on model membranes (3–5) and, more recently, to the structure
and stability of particle-stabilized droplets (6, 7). Remarkably,
when the (hexagonal) lattice spacing is much smaller than the
lateral dimension of the sheet, a single continuum theory, which
uses the classical Föppl–von Kármán (FvK) equations, describes
the long-wavelength properties of this diverse range of systems (8).
Studies of this problem fall largely into two groups according

to two distinct mechanisms of structural relaxation. The first
group, inspired by the classical Thomson problem of packing on
spherical surfaces (9), seeks the ground-state ordering for fixed
surface topography (8, 10–13), in which the elastic stresses induced
by curvature are relieved only by topological defects—“hard”
singular zones of a size comparable to that of the unit cell of the
lattice, in which the sixfold bond coordination breaks down.
The most primitive defect, an isolated fivefold disclination,
emerges only when the sheet occupies a finite fraction of the
spherical surface (4). The high-energy disclinations typically are
preempted by the lower-energy dislocations—pairs of five- and
sevenfold disclinations (7, 12, 14). As was shown by Nelson and

collaborators (8, 10), these defects are described by singular
point-like sources for stress in the FvK equations, whose far-field
effect is analogous to point and dipolar charges in electrostatics.
The second group of studies, inspired by classical elasticity of
plates and shells (15, 16), has focused on the mechanical, long-
wavelength response, which is independent of the crystalline order.
In this case, the small scale on which elasticity theory breaks down
is determined by the sheet’s thickness, and the deformations that
relax the elastic cost of confinement are wrinkles and crumples
(17), folds (18), and blisters (19), which do not conform to the
imposed spherical shape. In comparison with the hard singular-
ities of crystalline defects, these deformations are “soft,” because
their characteristic scales decrease with the sheet’s thickness slowly
enough so that elasticity theory is valid throughout the sheet.
Here, we propose a conceptual, previously unrecognized con-

nection between these two distinct classes of deformations: both
wrinkle patterns and defect distributions are governed by a single,
compression-free stress field. Although the compression-free stress
field characterizes a defect-riddled or a highly wrinkled state, it is
determined solely by the geometric confinement and exhibits no
dependence on the bending modulus or the energy of defects; yet
it is markedly different from the original (defect-free, wrinkle-
free) stress of the unstable, compressed state of the sheet. The
existence of a compression-free stress field, which stores the
dominant part of the elastic energy but is distinct from the stress of
the undeformed state, has been recognized in studies of wrinkling
in amorphous sheets (15, 17, 20–22). However, our analysis reveals
the universal nature of such a stress field, showing that it can be
achieved equivalently by purely elastic deformation of the shape,
or by localized, inelastic deformation of the crystalline structure.
To uncover the universal nature of the stress field and its im-

plication for the structure of crystalline sheets, we analyze a model
system of circular crystalline patch adhered to a deformable,
spherical substrate. The axial symmetry of the system allows us to
identify and compute the energy of the two primary modes that
relax the cost of conforming to the spherical geometry: a pattern
of radial wrinkles decorating the sheet’s periphery (soft buckling
mode) and an array of lattice dislocations organized into equally
spaced radial chains, which here we call “neutral scars” (hard
mode). The mechanical connection between scar and wrinkle
patterns is uncovered by analyzing the continuum limit, in
which the unit cell size is much smaller than the lateral size of
the sheet. In this limit, these distinct structures are found to
relax the energetic cost of confinement by the same dominant
amount. The subdominant costs of generating these patterns
vanish in the continuum limit and depend, respectively, on the
underlying energies of defect cores and out-of-plane defor-
mation, the latter cost deriving from both bending of the sheet
and deformation of the substrate. The separation between a uni-
versal, dominant energy and a nonuniversal, subdominant cost led
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us to construct a “morphological phase” diagram of this model in
terms of two parameters that are proportional, respectively, to the
substrate stiffness and to the reduction of area, or confinement, of
the bound sheet. A central prediction of our theory is a transition
between wrinkle and scar patterns, whose exact value depends on
both the stiffness of the substrate and the confinement level.

Model
Our model system is a circular sheet of radius W in contact with
a spherical substrate of radius R, such that W � R (Fig. 1). The
interior of the sheet is a 2D hexagonal crystal whose stretching and
bending moduli are Y and B, respectively. The surface (adhesion)
energy that pulls the sheet over the substrate is γ � Y . The ratio
t=

ffiffiffiffiffiffiffiffiffi
B=Y

p
is the effective thickness of the sheet, and the vonKármán

ratio YW 2=B∼ ðW=tÞ2 � 1, such that the sheet’s resistance to the
Gaussian curvature 1=R2 imposed by the substrate is dominated by
stretching rather than by bending. In contrast to the wetting of a
planar substrate, it is impossible to uniformly stretch a sheet on a
substrate with nonvanishing Gaussian curvature. The inherent
geometric conflict is related to the two distinct sources of strain in
the sheet. The “mechanical” strain ∼ γ=Y , which exists also for
planar adhesion, favors uniform, isotropic tension everywhere. On
the other hand, a “geometric” strain ∼ ðW=RÞ2 is imposed by the
spherical substrate as a result of the azimuthal confinement of circles
on a flat disk upon projection onto the latitudes of a sphere. The
ratio between these two characteristic strains defines a dimensionless
measure of confinement (17):

α= ðW=RÞ2ðY=γÞ: [1]

The confinement quantifies the relative effects of the mechanical
and geometric strains on the deformation of the sheet, as
evidenced by considering the axisymmetric state, in which the
stress in the sheet has radial and hoop components:

σaxiθθ ðrÞ=γ= α
h
1− 3ðr=W Þ2

i.
16+ 1

σaxirr ðrÞ=γ= α
h
1− ðr=W Þ2

i.
16+ 1;

[2]

where r is the radial distance from the center. [Eq. 2 assumes that
the substrate is sufficiently stiff to resist deformations on the scale
of W, such that the radial profile of the shape is well approxi-
mated by a sphere.] If α is below a threshold α* = 8 (strong me-
chanical strain), the sheet is under pure tension:σaxirr ðrÞ; σaxiθθ ðrÞ> 0.
In contrast, for α> α* (strong geometric strain), the hoop stress
becomes compressive ðσaxiθθ ðrÞ< 0Þ at an annulus LaxiðαÞ< r<W ,
where Laxi=W =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+ 16α−1Þ=3

p
(Fig. 1E). If both the costs of

bending deformations and defects in the crystalline order are
infinite, the compressive state remains stable until delamination
occurs when α& ðR=W Þ2 (19). However, for substrates of finite
stiffness and sheets characterized by a finite cost of lattice defects,
the system generically is unstable to the formation of multidislo-
cation “scars” (which leave the substrate intact) and wrinkles (in
which the sheet deflects together with the attached substrate),
even under weak compression:

Δα= ðα− α*Þ=α* � 1: [3]

In this parameter regime, which we call “weak confinement,” we
find for the compressive zone LaxiðαÞ< r<W :

Laxi ≈W − ℓaxi  ;  ℓaxi =W ðΔαÞ=3 [4]

σaxirr ðrÞ≈ γ ;  σaxiθθ ðrÞ≈−γðΔαÞðr−LaxiÞ=ℓaxi: [5]

In the axisymmetric state, the total energy stored in the sheet is
the sum of the elastic energy minus the adhesive work of area
change of the sheet, ΔA:

Uaxi =
1
2

Z ​

dAσijuij − γΔA ≈ πW 2γ2

Y
½ν− 5=6+Δα=3�; [6]

where ν is the Poisson ratio. Focusing on the weak confinement
regime, we find that the linear stress distribution in the narrow
compressive zone leads to analytically tractable equations for
both scars and wrinkle patterns, as we show below.

Fig. 1. Our model system: a circular, crystalline sheet of radius W adhered to a spherical substrate of radius R � W . Colors of contours indicate the level of
hoop stress: tension (red), vanishing stress (white), and compression (blue). (A) The rest (stress-free) state of the sheet is shown above a schematic of the
confinement geometry. (B) The axisymmetric state for confinement α> α*: The hoop stress is compressive in a confined zone of width ℓaxi near the perimeter.
(C) The wrinkle pattern, in which the hoop stress vanishes in the confined zone as the bendability e−1b →∞. Wrinkles require small deformation of the spherical
substrate with the attached sheet. (D) The scar pattern that maintains the imposed spherical shape, in which the stress approaches a profile identical to that of
C as the defectability e−1d →∞. The shaded area indicates the range beyond which dislocation interactions are effectively screened by the boundary r =W . (E
and F) The stress fields of the axisymmetric, unstable state (B) and the compression-free state (C and D). (G and H) Profiles of the axisymmetric and
compression-free stresses for a negative-curvature (saddle) substrate, in which both radial and hoop stresses collapse in the center of the sheet.
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Neutral Scars
A grain boundary is an elementary lattice defect that relaxes
stress in crystalline solids. In a sheet, grain boundaries may be
viewed as series of edge dislocations along a line (11–14, 23),
where the Burgers vectors, b, of individual dislocations are (on
average) mutually parallel and perpendicular to the line (24).
When a curved shape is imposed on a crystalline sheet (11), low-
energy grain boundaries may terminate inside the “bulk” of the
sheet, and this motif has been dubbed as scars or “pleats” (7).
[We prefer the term “neutral scars” (or “scars” for brevity) to
distinguish them from charged scars which carry excess dis-
clination charge (7, 11, 23) and to avoid the connotation of shape
deformation implied by the colloquial use of “pleat.”] The effect
of scars on the elastic energy may be addressed by continuum
theory, considering each dislocation as a dipole source for stress,
whose far-field distribution may be computed through Green’s
function of the biharmonic equation (10). Lattice defects enable
purely in-plane relaxation of stress that does not require a de-
formation of the spherical substrate. Hence, the energy of the
scarred sheet may be expressed as

Uscars =Uaxi +Urelax +Uinter +Uself ; [7]

where Urelax is the energy gain due to the interaction of scars with
the compressive stress field σaxi, Uinter is the energy associated
with the elastic interaction between all pairs of scars, and Uself is
the self-energy of a single scar, which consists of the elastic in-
teraction between all pairs of dislocations along the scar as well
as their (inelastic) core energy.
In the axial symmetry of our system, the hoop compression is

relaxed by nsc radial scars that reside in an annulus Lsc < r<W ,
each of which has a length ℓsc =W −Lsc and consists of N dis-
locations with Burgers vectors b= bθ̂. [We find that the ground
state structure of a simple periodic array of scars is suitable for
the weak confinement conditions addressed here (Δα � 1). As
we discuss later, beyond the weak confinement regime, we expect
more complex patterns of dislocations. Note that on spherical
substrates, isolated (“charged”) fivefold disclinations can emerge
only for W=R& 1. (See refs. 7 and 14.)] The orientation of dis-
locations corresponds to a missing partial row of lattice sites
extending from the boundary along the radial direction and
terminating at each defect. Our analysis determines the number
nsc and length ℓsc of scars, and the number N of dislocations per
scar, by minimizing Uscars, Eq. 7. Our prime interest is in the
continuum limit for weak confinement, where b=W → 0 at a fixed
Δα � 1 (Table S1). Our analysis (see SI Text) shows that in this
case, the scars are distributed densely, such that

Continuum limit  ðb=W → 0Þ :  nsc � 1=Δα: [8]

The relaxation of compression is intimately related to the Peach–
Koehler force fPKðrÞ= σaxiθθ ðrÞb  r̂, exerted by a compressive com-
ponent of the stress tensor on a dislocation at distance r from the
center (24). Because fPK ðrÞ is a conservative force and the work
associated with “glide” or “climb” approaches to r hence is iden-
tical, onemay evaluate the elastic relaxation of a defect through the
work done by fPKðrÞ when “pulling” dislocations from the edge at
r=W into the compressive zone (12, 14). The total relaxation is
obtained by summing over all dislocations in the nsc scars:

Urelax = ðnscN=ℓscÞb
ZW

Lsc

dr
ZW

r

dr′σaxiθθ ðr′Þ

’ −ℓscnscNbγðΔα=2Þð1− ℓsc=3ℓaxiÞ:

[9]

Note that a scar may lower the elastic energy (i.e., Urelax < 0) only
if ℓsc < 3ℓaxi ∼Δα.
The energetic costsUself ,Uinter may be evaluated similarly, from

the elastic energy associated with dislocation-induced stresses (SI
Text). It is useful to note that the far-field elastic stress generated

by a dislocation at a distance r< ℓsc from the free boundary of the
sheet vanishes beyond distances large compared with ℓsc. This
screening effect (which is not unlike the electrostatic screening of
charges near a conducting wall) allows us to evaluate the energies
Uself and Uinter to leading order in ℓsc=W . Practically, the leading
order term amounts to replacing the circular boundary r=W with
a straight infinite line where the dislocation-induced stress van-
ishes. With the aid of Green’s function of the biharmonic equation
near an infinite stress-free boundary (25, 26), we obtain after
summation of all dislocations inside single scars (SI Text)

Uself = nsc
�
Yb2=8π

��
N2 +N

�
Ec −

1
2
− lnð4Na=ℓscÞ

��
; [10]

where a≈ b is the dipolar separation of the 5–7 disclination pair
and Yb2Ec=ð8πÞ is the microscopic cost of the defect core. The
first term ð∼N2Þ originates from interactions between disloca-
tion pairs along the same scar, whereas the second term ð∼NÞ
results from the self-energy of single dislocations.
The scar–scar interaction energy Uinter is evaluated by sum-

ming over dislocation interactions between pairs on separate
scars. As depicted in Fig. 1D, scars interact strongly within a
lateral distance of order ℓsc, implying Uinter ∼ ðnscℓsc=W ÞUself . The
dense distribution of scars (Eq. 8), together with Eqs. 4 and 9,
implies that Uinter � Uself and enables us to evaluate the sum
over scar pairs, yielding (SI Text)

Uinter ≈ n2scYN
2b2ℓsc=12πW : [11]

Furthermore, because Uinter � Uself , Uscar is dominated by the
sum Urelax +Uinter. Minimizing over the scar length ℓsc and the
product Nnsc, we obtain ℓsc ≈ ℓaxi ≈W ðΔαÞ=3 and

sθ = bNnsc=2πW = ðγ=Y ÞðΔαÞ; [12]

where sθ denotes the excess hoop strain in the compressive zone
that is “absorbed” by scars. Substituting these values for ℓsc and
Nnsc in Eqs. 9 and 11, we find

Udom ≡Uaxi +Urelax +Uinter =Uaxi −
πW 2

9
γ2

Y
ðΔαÞ3: [13]

Remarkably, we find that in the continuum limit (Eq. 8), the
dominant scar energy does not depend on any microscopic fea-
tures (e.g., the Burgers vector b or the core energy Ec).
The optimal scar number is found by minimizing the sub-

dominant energy Usub
scars =Uself subject to Eq. 12, yielding

nsc = 2πðγ=Y Þðℓaxi=bÞ: [14]

The subdominant cost depends explicitly on fine features of
scars, and is conveniently expressed by a dimensionless group

defectability : e−1d = ðγW=YbÞ2; [15]

which compares the elastic cost per dislocation, ∼Yb2, to the
elastic energy, Uaxi ∼ γ2W 2=Y , stored in the axisymmetric state.
Note that ed → 0 in the continuum limit b=W → 0. In terms of the
defectability ratio, we may write the scar energy Uscars as a (sin-
gular) expansion in ed:

Uscars =Udom +Usub
scars; [16]

where Udom, Eq. 13, is independent on ed and

Usub
scars =

		Udom −UaxijðΔαÞ−2λ  e1=2d [17]
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vanishes as ed → 0 (for fixed confinement Δα). Here, λ= 9=ð8πÞ
ðln½ΔαW=6a�+ 1=2+EcÞ is a dimensionless measure of the effec-
tive “line tension” of scars.
Eq. 16 reflects a separation of energy scales that is inherent in

the scar pattern. A dominant energy is independent on micro-
scopic details and governs two macroscale features: the scar
length ℓsc and a “slaving” condition (12) between the number of
scars nsc and the number of dislocations per scar N. The optimal
values of the “fine” features of the pattern are governed by
a subdominant energy, which is sensitive to the microscopic
parameters (b and Ec). This hierarchical structure is akin to
wrinkle patterns, in which a bendability parameter governs the
fine features of the pattern (22).

Universal Collapse of Compression
To further understand the physical mechanism underlying the en-
ergetic hierarchy of scar patterns, Eq. 16, we analyze the stress field
σscars. For the scar pattern under weak confinement ðΔα � 1Þ, one
may evaluate σscars by superposing the stress of the equilibrium
defect pattern with σaxi of the axisymmetric state (Eq. 2) (SI Text).
Notably, one finds that to order Oðb=W Þ and for a dislocation
density satisfying Eq. 12, σscarsθθ = 0 for Laxi < r<W . Intuitively, like
wrinkles (15, 20–22), scars essentially are a mechanism to collapse
compression. As long as hoop compression remains finite, addi-
tional dislocations may be pulled from the boundary to relax the
compression further. The ultimate residual level of compression
(associated with fine-scale stress variation) is determined by the
subdominant (self-) energy of scars, Eq. 17 and therefore vanishes
asymptotically as b=W → 0.
Pushing this idea further, we propose that in analogy to wrinkle

patterns, the asymptotic stress field underlying the dominant scar
energy Udom

scars can be evaluated de novo without any reference to
the fine details of scars. Importantly, this principle enables cal-
culations of scarred sheets beyond the weak confinement limit
studied here. The derivation of this compression-free stress field
[also known as the “membrane limit” or “tension field” in studies
of wrinkling phenomena (15)] is given in SI Text, in which we
follow the scheme developed in refs. 17 and 22. We find that the
compression-free region where scars emerge is LðαÞ< r<W ,
where the stress is

σrr=γ=W=r   ;  σθθ=γ= 0  for  LðαÞ< r<W ; [18]

and LðαÞ=W = ðα*=αÞ1=3. In the unscarred center of the sheet,
0 < r < LðαÞ, the stress field is purely tensile and is described by
Eq. 2 by replacing W →LðαÞ and γ→ σrrðLÞ. This far-from-
threshold, compression-free stress field is depicted in Fig. 1F.
We note that although for weak confinement ðΔα � 1Þ one finds
LðαÞ≈Laxi (Eq. 4), this feature is not generic. Comparing Fig. 1
E and F, we see that as α increases, the extent ðW −LÞ of the
compression-free (defect-riddled or highly wrinkled) zone exceeds
the compressed annulus of the axisymmetric (defect-free, wrinkle-
free) state. The difference becomes dramatic in the strong confine-
ment limit ðα � 1Þ in which Laxi=W → 1=

ffiffiffi
3

p
whereas L=W → 0.

This analysis emphasizes that the connection between wrinkles
and scars is not the trivial existence of a common unstable state
of the confined sheet. Instead, we find a unique, compression-
free stress profile (Fig. 1F), strictly distinct from the unstable
compressive stress field (Fig. 1E), which is common to both
defect-riddled and highly wrinkled states.

Wrinkles vs. Scars
Unlike scars, which relax compression via inelastic lattice defects
without deforming the spherical substrate, wrinkling is a purely
elastic mechanism that enables the sheet to reach the same
compression-free stress field by way of a minute deformation
of the sheet and the attached substrate. The wrinkle pattern
is described by a smooth deformation of the sheet and the at-
tached substrate in the zone LðαÞ< r<W :

ζðr; θÞ = ζ0ðrÞ+ f ðrÞcosðmθÞ; [19]

where ζ0ðrÞ≈−r2=ð2RÞ is the original spherical profile of the sub-
strate. For sufficiently thin sheets, the amplitude f ðrÞ becomes
arbitrarily small; hence, wrinkles may form even on highly stiff
(but not infinitely rigid) substrates. Relaxation of the hoop com-
pression imposes a slaving condition (SI Text):

sθ ≈m2f ðrÞ2=4r2 ≈ ðγ=Y ÞðΔαÞ; [20]

where sθ again is the excess hoop strain. This relation implies
that a fraction sθ of the original length of (undeformed) latitudes
is “absorbed” by the wrinkle undulations, such that σθθ → 0. Eq.
20 indicates that the amplitude suppression is tied to divergence
of the number of wrinkles, but neither f ðrÞ nor m appears explic-
itly in the dominant energy associated with the compression-free
stress field, which thus is identical to the energy Udom of the scar
pattern, Eq. 13. The slaving condition for wrinkles, Eq. 20, is the
analog of Eq. 12 for scars, constraining the fine features of the
patterns to reach an asymptotic, compression-free stress profile.
The wrinkle number m is determined by minimizing the sub-

dominant energy, Usub
wrink. We describe here the central arguments

for evaluating Usub
wrink and delegate various technical details to SI

Text. The three restoring forces underlying Usub
wrink are associated

with bending rigidity∼B, radial tension in the sheet ∼ σrr ≈ γ,
and the stiffness of the spherical substrate, which we assume to
be given by a constant K. The respective energies are denoted
Ubend;Utens;Usubst. For simplicity, in the current study, we follow
ref. 27, assuming that the substrate is modeled by a Winkler
foundation, which is characterized by a local restoring force (per
area) −KΔζsphðxÞ to deformations ΔζsphðxÞ of its spherical shape
at a surface point x. Anticipating the wrinkle number m to di-
verge as the sheet thickness vanishes and recalling that the
slaving condition, Eq. 20, implies inverse proportionality be-
tween m and the wrinkle amplitude f ðrÞ, one notices that
Ubend ∼m2, whereas Utens and Usubst both scale as m−2. As was
observed by Cerda and Mahadevan (27), this implies that the
subdominant wrinkle energy Usub

wrink is governed by a balance of
Ubend and maxfUtens;Usubstg, such that the wrinkle number that
minimizes the energy satisfies

m∼W
�
Keff=B

�1=4
  ;   Keff =max



K ; γ=ℓ2axi

�
: [21]

The parameter Keff is the effective stiffness of a supported, uni-
axially stretched sheet, to the formation of wrinkles (27). Imple-
menting this principle for our problem (SI Text), we find that
Usub

wrink and m can be conveniently expressed by defining two di-
mensionless measures of mechanical response:

bendability :  e−1b = γW 2=B; [22]

deformability :  ~K−1 = γ=KW 2: [23]

Our wrinkling analysis applies to the asymptotic parameter range:
eb � 1, corresponding to very thin sheets or large radial tension,
and rigid substrates, ~K � 1. [For ~K < 1, the spherical substrate
flattens beneath the sheet (17), invalidating our calculations of
the axisymmetric energy Uaxi and the dominant energy Udom of
the compression-free stress.] The bendability and deformability
parameters enable us to identify three regimes:

(W1) No Wrinkles for e
−1=2
b ¿ ðΔαÞ−2. In this regime, the compres-

sion is so small that the bending cost Ubend is larger than the gain
Uaxi −Udom due to the compression relaxation. Thus, the com-
pressed axisymmetric state remains stable.
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(W2) Tensional Wrinkles for 1¿ ~K¿Δα−2¿ e
−1=2
b .Here, the wrinkle

amplitude is suppressed by the cost of out-of-plane pulling against
radial tension, Keff ≈ γ=ðℓaxiÞ2, and we find hence:

m∼ e
−1=4
b Δα−1=2  ;  Usub

wrink ∼
		Udom −UaxijðΔαÞ−2e1=2b : [24]

(W3) Substrate Wrinkles for 1¿Δα−2¿ e
−1=2
b ¿ ~K. Here, the sub-

strate stiffness is strong, and Keff ≈K . Hence,

m∼
�
eb=~K


−1=4
  ;  Usub

wrink ∼
		Udom −UaxijðΔαÞ−1

�
eb ~K


1=2
: [25]

Recalling Eq. 15, we may write analogously:

(S1) No Defects for e−1=2d ¿ (Δα)−2. For such weak confinement, the
scar self-energy Uself outweighs the energy of elastic relaxation,
and the unscarred sheet remains stable.

(S2) Scars for e
−1=2
d � (Δα)−2. Where scars penetrate through the

confined zone, collapsing compressive stress.

Wrinkles-to-Scars Transition
Characterized by an identical compression-free stress field,
wrinkle and scar patterns share the same dominant energy Udom,
which further implies that subdominant energies alone distin-
guish between these states. To compare those energies, we as-
sume b≈ t, which means that both the Burgers vector b and the
thickness t of a (monolayer) crystalline sheet are comparable to
the unit cell; hence, ed=eb ∼ ðR=W Þ2 � 1. Comparing the sub-
dominant energies of the wrinkles and scars, Eqs. 17, 24, and 25,
we note that Usub

scar is larger [by factor ∼ ðR=W Þ2] than the sub-
dominant energy of tensional wrinkles, but tensional wrinkles
ultimately give way to stiffness-dependent substrate wrinkles
when ~K &Δα−2. This result underlies a schematic phase diagram,
Fig. 2, spanned by the deformability and confinement parame-
ters. For a given confinement, scars are energetically favorable if

the substrate is extremely stiff. However, our analysis shows that
for a substrate with fixed stiffness, at a deformability range
e
1=2
d =eb � ~K � 1, wrinkles are the favorable mechanism for
relaxing compression if the confinement level is sufficiently small
[ðΔαÞ2 � ðed=ebÞ~K−1

]. If confinement is raised gradually (e.g., by
increasing the substrate curvature R−2), our analysis predicts that
equilibrium crystalline sheets undergo a wrinkles-to-scars tran-
sition at a critical confinement Δαc ∼ ðR=W Þ~K−1=2

.

Universality Beyond the Spherical Cap
Our analysis of a circular crystalline patch attached to deform-
able sphere revealed the existence of a universal, compression-
free stress field, which encapsulates the dominant part of the
energy ðUdomÞ of both wrinkle patterns and arrays of neutral
scars. This compression-free stress nevertheless is strictly distinct
from the original (defect-free, wrinkle-free) stress field, whose
high energy ðUaxiÞ underlies the instability of the axisymmetri-
cally compressed state to scars, wrinkles, and potentially other
modes of deformation. To demonstrate the generic nature and
a few implications of this principle, we briefly discuss some
examples that illustrate its applicability for other confining ge-
ometries and stress-relieving patterns.

Hyperbolic Shapes. Consider a circular sheet stretched by a radial
tension γ at it edge ðr=W Þ on a substrate whose surface has
a uniform negative Gaussian curvature, G= −R−2. Such a sys-
tem [inspired by a recent study (28) in which the boundary stress
was unspecified] is identical to the one studied above, except that
the sign of Gaussian curvature is reversed. The stress in the
axisymmetric state is shown in Fig. 1G, where a compressed zone
appears at the center of the sheet. Without specific reference to
the actual pattern that relieves the compression, it is straight-
forward to show (SI Text) that collapse of compression is possible
only away from the edge ðr=W Þ, where both radial and hoop
stresses vanish (Fig. 1H). Interestingly, the simultaneous collapse
of σrr and σθθ implies a jump in σθθ at the borderline of the
compressive and tensile zones, which requires an appropriate
“boundary layer” (29). Although the stress profile (Fig. 1H) is
different from the spherical cap (Fig. 1F), the same principle
applies. The size of the compression-free zone on the saddle-
shaped substrate, as well as the dominant energy of the relaxed
states, is independent of fine details of the pattern, be it radial
wrinkles, scars, or another stress-relieving mode. The precise
features of the minimal-energy patterns of dislocations or wrin-
kles require a careful analysis of the subdominant energies of
both modes, although it is interesting to point out that collapse
of stress along both directions in the saddle suggests questions
about the degeneracy of radial vs. concentric patterns of wrinkles
or scars. The latter pattern was observed in numerical simu-
lations of elastic sheets (28).

Strong Confinement and Large Slope. Inspired by the Thomson
problem (13), many studies have addressed patterns of crystal-
line defects on curved surfaces: spheres (6, 11), spherical caps
(7), “Gaussian bumps” (12), and hyperbolic surfaces (7, 23).
In the absence of the simplifying conditions of small slope
ðW=R � 1Þ and weak confinement ðΔα � 1Þ assumed in our
model system, the patterns of crystalline defects are no longer
periodic arrays of radial, neutral scars; hence, finding the optimal
pattern of defects that relaxes the curvature-induced stress
becomes a daunting task. Nevertheless, the computational com-
plexity —namely, the scar relaxation energy and scar–scar inter-
actions—may be subsumed by themuch simpler calculation of the
dominant elastic energy stored within the universal compression-
free stress that underlies the pattern. Remarkably, the remaining
subdominant energy that ultimately determines the fine features
(e.g., number of scars) is simply the self-energy of a single scar.
We find that the minimization of this energy is tractable and,
more importantly, it leads to predictions about the optimal struc-
ture of multiscar morphologies: For a given geometry and load,

Fig. 2. Schematic phase diagram of the model spanned by the weak con-
finement ðΔα � 1Þ and inverse deformability ð~KÞ parameters, for fixed, high
values of the bendability and defectability parameters, e−1b ∼ ðR=WÞ2e−1d � 1.
Increasing confinement at a fixed deformability ~K, Eq. 23, leads to distinct
sequences of pattern transformation, depending on the value of ~K: (A) For
~K � e

1=2
d =eb (highly stiff substrate), the axisymmetric state is stable for very

weak confinement and becomes unstable to scars (S1→ S2) above a con-
finement Δα∼ e

1=4
d (orange). (B) For e

1=2
d =eb � ~K � e

−1=2
b , the axisymmetric

state becomes unstable to substrate wrinkles (W1→W3) at Δα∼ ð~KebÞ1=2
(pink), and a wrinkle–scar transition (W3→ S2) occurs at Δαc ∼ ðed=eb ~KÞ1=2.
(C) For e

−1=2
b � ~K � 1, the axisymmetric state becomes unstable first to

tensional wrinkles (W1→W2) at Δα∼ e
1=4
b (blue), then to substrate wrinkles

at Δα∼ ~K
−1=2

(W2→W3), and a wrinkle–scar transition (W3→ S2) occurs
again at Δαc ∼ ðed=eb ~KÞ1=2. (D) Finally, for ~K � 1, the substrate deforms
substantially beneath the sheet [similar to a sheet on a liquid drop (17)].
This regime is not addressed in the current study.
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the number of scars nsc diverges as b=W → 0 whereas the number
of dislocations N per scar remains finite. Continuum theory
analyses of “Gaussian curvature screening” by dislocations, which
previously were applied to multiscar structures [both charged (11)
and neutral (7, 14)], essentially are focused on the dominant stress
pattern; hence, they resolve only the total dislocation number
nsc N and cannot determine the optimal symmetry of scar patterns.
In light of our present analysis, we propose that the principle of
compression-free stress, as well as analysis of subdominant scar
energetics, may be applied to the “charged scar” morphologies to
shed light on the ground states of the Thomson problem at the
continuum limit ðR=b � 1Þ (11).
Coexistence and Decoupling of Wrinkles and Scars.Returning to our
original set-up of a sheet on deformable sphere, we note that the
universal compression-free stress (Fig. 1F) may be obtained by
“mixed” states of wrinkles and scars, parameterized by 0≤ c≤ 1,
through a generalized slaving condition:

sθ = c m2f ðrÞ2=4r2 + ð1− cÞ  bNnsc=2πW = ðγ=Y ÞΔα; [26]

where sθ is the compressive hoop strain that must be wasted to
assure σθθ → 0 in the confined zone, and c; 1− c are the fractions
of that strain absorbed by wrinkles and scars, respectively. Eq. 26
may be viewed as an analog of the “lever rule” for coexisting
phases that assures conservation of an extrinsic variable (e.g.,
mass). It may be shown that for weak confinement, the patterns
that minimize the subdominant energy are always one of the two
“pure” phases (c= 0 or c= 1). Further numerical work is re-
quired to test whether a nontrivial coexistence of wrinkles and
scars is possible at other regimes of the parameter space (e.g.,
strong confinement) or for other confining geometries (e.g.,
hyperbolic substrate).
Notwithstanding the striking similarity of scar and wrinkle pat-

terns, there exists a profound difference between them. Wrinkles
enable collapse of compression but not tension, whereas scars may
relax compression and tension alike, by reversing the orientation
of each dislocation. It remains an open question whether it is

possible for wrinkles to “decouple” from scars, with wrinkles and
scars relaxing compression and tension, respectively, in distinct
regions of the same sheet.

Concluding Remarks
Our study reveals that two distinct modes of stress relaxation in
spherically confined crystalline sheets, wrinkles, and neutral scars
both are governed by an identical, compression-free stress pro-
file. Here, we focused on the analytically tractable parameter
regime, in which confinement is weak ðΔα � 1Þ and the sub-
strate has a highly stiff, Winkler-type response ð~K � 1Þ. How-
ever, we expect that the universal nature of the stress relaxation
mechanism remains valid under rather general conditions, such
as strong confinement, flexible substrate, and shapes that are not
characterized by a constant curvature or axial symmetry. In such
circumstances, evaluation of the dominant energy of the com-
pression-free stress and the subdominant energies of wrinkles
and scars may be more challenging. Nevertheless, the indepen-
dence of the dominant energy on the bendability and defect-
ability parameters, and consequently on any fine features of
the emerging patterns, is an overarching principle that should
serve as a valuable computational tool in the mechanics of
crystalline sheets.
Finally, beyond mechanical–geometric applications, one may

envision further implications of this study, such as the “strain
engineering”—the influence of lattice deformations on the
structure of electronic bands in atomic sheets (e.g., graphene)
(30). The effect of smooth deformations on electronic prop-
erties, such as scattering and tunneling, is qualitatively different
from the effect induced by defects. A wrinkle-to-defect transi-
tion, whose feasibility is predicted by our study, may provide
a channel for manipulating electronic properties through con-
trolled lattice deformations.
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